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Abstract: Hepatocellular Carcinoma (HCC) ranks among the deadliest
of cancers and has a complex etiology. Proteomics analysis using
iTRAQ provides a direct way to analyse perturbations in protein
expression during HCC progression from early- to late-stage but suffers
from consistency and coverage issues. Appropriate use of network-
based analytical methods can help to overcome these issues. We built
an integrated and comprehensive Protein-Protein Interaction Network
(PPIN) by merging several major databases. Additionally, the network
was filtered for GO coherent edges. Significantly differential genes
(seeds) were selected from iTRAQ data and mapped onto this network.
Undetected proteins linked to seeds (linked proteins) were identified and
functionally characterised. The process of network cleaning provides a
list of higher quality linked proteins, which are highly enriched for
similar biological process Gene Ontology terms. Linked proteins are also
enriched for known cancer genes and are linked to many well-established
cancer processes such as apoptosis and immune response. We found that
there is an increased propensity for known cancer genes to be found in
highly linked proteins. Three highly-linked proteins were identified that
may play an important role in driving HCC progression – the G-protein
coupled receptor signaling proteins, ARRB1/2 and the structural protein
beta-actin, ACTB. Interestingly, both ARRB proteins evaded detection
in the iTRAQ screen. ACTB was not detected in the original dataset
derived from Mascot but was found to be strongly supported when
we re-ran analysis using another protein detection database (Paragon).
Identification of linked proteins helps to partially overcome the coverage
issue in shotgun proteomics analysis. The set of linked proteins are found
to be enriched for cancer-specific processes, and more likely so if they are
more highly linked. Additionally, a higher quality linked set is derived if
network-cleaning is performed prior. This form of network-based analysis
complements the cluster-based approach, and can provide a larger list of
proteins on which to perform functional analysis, as well as for biomarker
identification.

Keywords: biological networks; PPINs; MaxLink; liver cancer; HCC;
hepatitis B; proteomics expansion pipeline.
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1 Introduction

Hepatocellular Carcinoma (HCC) ranks among the deadliest cancers (El-Serag,
2004). Its risk factors are varied – and include viral infection, germline mutations
and alcohol-induction (Villanueva et al., 2010). Additionally, this cancer type
can be histologically classified into poor, moderate and well-differentiated stages.
Generally, the more poorly differentiated, the more advanced the cancer. However,
histological characterisation is limited, and may have poor accuracy in properly
staging the cancer patient. It also provides limited insight into the molecular
interactions underlying the disease.
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On one hand, high-throughput methods such as microarrays and RNA
sequencing have been very useful in enhancing our molecular understanding
of HCC. However, they only measure RNA levels, not protein level. Thus,
the evidences provided are indirect. On the other hand, there are many
difficulties associated with high-throughput protein analyses or proteomics. Recent
improvements in mass spectrometry (MS)-based technologies, however, have greatly
increased coverage and detection range. In particular, isobaric Tag Relative
and Absolute Quantitation (iTRAQ)-based technologies have recently gained
widespread popularity for their higher detection limits and ability to multiplex up
to 8 samples simultaneously (Tan et al., 2008; Choe et al., 2007). Despite these
improvements, proteomics still suffer from coverage and consistency issues. The
coverage issue – that is, the ability to cover the entire proteome – arises in part due
to the limited detection range of MS instruments, as well as due to inherent sample
complexity. The consistency issue – that is, whether the same results are produced
in repeated runs – arises in the seemingly random data acquisition and mechanics
of current MS instruments, caused by dominance of the proteome by a few highly
abundant proteins which leads to the oversampling of high abundance peptide ions
(Liu et al., 2004).

These two problems make it difficult to analyse MS data in a comprehensive
way. However, it is possible to partially overcome these issues by taking advantage
of the fact that proteins tend to work in groups rather than as singular entities.
In our previous work, we proposed a powerful complex prediction algorithm
termed the Proteomics Expansion Pipeline (PEP) (Goh et al., 2011). PEP first
identifies the group of high-confidence proteins or “seeds” from the proteomic
screen – i.e., proteins that are consistently found in patients with significant over-
or under-expression. These seeds are then mapped to nodes in a large integrated
Protein-Protein Interaction Network (PPIN). An expanded subnetwork is then
extracted from the PPIN by taking the immediate neighbours of the seeds in the
PPIN. The subnetwork is then clustered using CFinder (Adamcsek et al., 2006).
Each cluster is then ranked based on the average expression value of the proteins
it contains. This includes the expression values of non-seeds as well. Proteins (in
high-ranking clusters) not found in the proteomics screen are then screened against
the original mass spectra for evidence of existence.

PEP uses a very comprehensive PPIN comprising data from HPRD (Keshava
Prasad et al., 2009), BioGRID (Stark et al., 2006), IntAct (Aranda et al., 2010),
and DIP (Xenarios et al., 2002), as well as data from literature (Stelzl et al., 2005;
Rual et al., 2005). Although combining PPINs improves coverage of the protein
interactome, it also compounds the noise present in them (von Mering et al., 2002).
So, PEP uses the iterated Czekanowski-Dice distance (CD-distance) technique
from CMC (Liu et al., 2009) to identify and eliminate potential noise edges from
the integrated PPIN. The CD-distance technique is very effective – it produced
a cleaned integrated PPIN having a significantly higher level of functional and
localisation coherence, after eliminating about 50% of the edges from the original
integrated PPIN.

We applied PEP to a group of 12 hepatocellular carcinoma (HCC) patients,
of whom 5 were clinically diagnosed to be in the moderate (mod) and 7 in the
poor stage. In our analysis, we found that most of the detected mod-stage proteins
were also found in poor-stage patients. In terms of pathway enrichments, mod-stage
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patients appeared to exhibit signs of immune response not observed in poor-stage
patients, while poor-stage patients exhibited widespread metabolic deregulations.
From the network-based PEP analysis, we uncovered several interesting clusters
which might be crucial in driving mod-stage cancer to poor stage. Of these,
the cluster comprising of PRKDC, WRN, XRCC5/6 and PCNA appeared most
interesting.

The PEP approach is largely focused on cluster discovery and analysis, as well
as recovery of low abundance and low confidence proteins. However, there are
other network-based approaches which can be used on the cleaned PPIN. This
may produce results that can augment our existing findings. More interestingly, it
may reveal insights that have been missed. One useful approach may be Maxlink,
introduced by Ostlund et al. (2010). It is a method for identifying novel cancer
genes based on a given set of identified oncogenes. Maxlink first requires a set
of oncogenes (seeds) to be identified based on literature search and the Cancer
Gene Census (Futreal et al., 2004). It then produces a ranked list of new candidate
genes based on the number of links they have in the FunCoup PPIN database
(Alexeyenko and Sonnhammer, 2009) to the seed set. The higher the number of
connections to seeds, and the lower the number of connections to non-seeds, the
higher the rank. This approach relies on two reasonable hypotheses. The first
hypothesis is that a protein should participate in the same biological processes,
biological functions, or protein complexes that are over-represented among its
interaction partners (Schwikowski et al., 2000; Hishigaki et al., 2001). The second
hypothesis is that proteins in the same complex should have more interactions
between themselves than with proteins outside the complex (Chen and Yuan, 2006).

Maxlink has not yet been explicitly tested on proteomics data. In this work,
we apply a Maxlink-type approach on our HCC proteomics data.

2 Methods

2.1 Experimental setup

The experimental setup is described briefly here; details are given in supplementary
methods. Liver tissues were obtained from 12 male patients diagnosed with HCC
and suffered from cirrhosis with chronic Hepatitis B Virus (HBV) infection. There
was no metastasis at the point of surgery. Tissues collected were grouped according
to histology report; 5 had moderately differentiated HCC (mod) and 7 had
poorly differentiated HCC (poor). Paired tissues were obtained from each patient,
one from the adjacent non-tumour region (normal) and the other from the tumour
region of the resected liver. Mixed protein lysate from each patient was put through
an initial phase of iTRAQ followed by 2D liquid chromatography. Finally, the
resultant spectrum was resolved by peptide database search using Mascot.

2.2 Selection of seed proteins

A seed is defined as meeting the following requirements: Support by at least 4 poor
patients, and with a combined differential score ≥ 1.2. The combined differential
score is calculated as the average score of the protein ratios (tumour over self
non-tumour). If the ratio is below 1 (under-expressed), the reciprocal is used.
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2.3 Network integration and cleaning

An integrated PPIN was built comprising of data from HPRD (Keshava Prasad
et al., 2009), BioGRID (Stark et al., 2006), IntAct (Aranda et al., 2010), and DIP
(Xenarios et al., 2002), as well as data from literature (Stelzl et al., 2005; Rual
et al., 2005). The various IDs were mapped using BioMart to gene names. This
network was then filtered using the iterated CD-distance method from CMC (Liu
et al., 2009), and the top 90% of the highest non-zero scoring edges are kept. The
resultant combined network displayed the properties of a typical PPIN such as a
power-law distribution of the degrees, disassortativity (hubs less likely to be linked
to each other) and small-world (small diameter) (data not shown).

2.4 Identification of linked proteins

The code was written in PERL. Let the network G be comprised of nodes V
and edges E. From the set of seeds X ⊆ V , the set of non-seeds Y is derived
(Y = V − X). The set of linked proteins L are those proteins in Y that have at least
1 connection to proteins in X . That is, L = {y ∈ Y | 1 ≤ |{x ∈ X | (x, y) ∈ E}|}.

2.5 Gene-Ontology (GO)-based characterisation and coherence
measurement

Annotation and the GO tree (ver 1.2 OBO) files for Homo Sapiens were
downloaded from geneontology.org (dated 23 April 2011). UniProtKB accessions
were mapped to Ensembl Gene IDs and gene names via Biomart. Informative
biological process terms were extracted from the GO OBO file; as in Zhou et al.
(2002), a term is considered informative if it is annotated to at least 30 genes and no
direct descendent of the term is annotated to at least 30 genes. Significance testing
for each cluster was performed using the hypergeometric test with Bonferroni
correction (p ≤ 0.05).

To evaluate the quality of linked proteins derived from the cleaned and
uncleaned integrated network, we measured Gene Ontology Biological Process
(BP), Cellular Component (CC) and Molecular Function (MF) term coherence for
every edge – i.e., a seed protein connected to a linked protein – derived from
the cleaned and uncleaned network. Edge coherence is calculated by counting the
number of shared GO terms in each category for every GO-annotated edge divided
by the total number of considered edges.

3 Results

3.1 Identification of linked proteins and the important effects of network
cleaning

235 seeds were returned from the dataset. From the cleaned dataset, 288 linked
proteins were found to share at least one other connection with a seed. From the
uncleaned dataset, 902 linked proteins were returned.

We then built two sets of derived networks from cleaned and uncleaned
networks, obtaining edges formed between seed and linked proteins (seed + linked)
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from the reference integrated PPIN, and checked the extent of GO term sharing. It
is observed that the cleaned network boasts much higher quality edges where the
joined nodes tend to have deep sharing of GO terms. Hence, the linked proteins
derived from the cleaned network is likely to be more biologically relevant. The
improvement in quality as a result of the cleaning step is observed to be at least
two folds; see Table 1.

Table 1 GO term coherence of linked proteins derived from cleaned and uncleaned
networks

Network BP MF CC

Cleaned 0.180 0.376 0.755
Uncleaned 0.035 0.121 0.300

It can be observed that the cleaned network boasts higher quality edges where the joined
nodes tend to have deep sharing of GO terms. Hence, the linked proteins derived from
the cleaned network is likely to be more biologically relevant (BP: biological process, MF:
molecular function and CC: cellular localisation).

To see whether the improvement in the 3 GO categories (biological process –
BP, Molecular Function – MF and Cellular Localisation – CC) is greater than
the network generally, we calculated the log odds ratio. That is, seed+linked
from cleaned network/ seed+linked from uncleaned network divided over total
cleaned/total uncleaned network. Interestingly, there was a 1.5X enhancement for
BP terms whereas there were no improvements for MF (1.02X) and CC terms
(1.02X). This indicates that the cleaned seed+linked protein network is highly
enriched for proteins in shared biological processes. The significant enhancement
of GO term coherence in the cleaned network indicates that the cleaning step is
important. It also improves analytical results in combination with the Maxlink
approach.

There appears to be a strong linear correlation between the ranks of the linked
proteins (sorted in descending order by the number of connections to seeds) in
the cleaned and uncleaned networks; Figure 1. This is evident from the string of
points forming a near perfect diagonal and is not particularly surprising. However,
it can also be seen that a large number of points are ranked below the diagonal.
This means that they are ranked relatively higher than they would actually be after
the cleaning step. It also means that the cleaned linked proteins is enriched for
linked proteins with high ranks from the poor network. Although this is less direct
evidence than measuring GO coherence as above, it does demonstrate the efficacy
and relevance of the cleaning procedure.

We then turned to informative GO term enrichment for the linked proteins in
the cleaned network. This produced 87 significant GO BP terms (for 288 proteins).
To find out whether these terms are closely associated in the GO tree, we calculated
the shortest-path lengths between all terms, and returned the average path length.
A null distribution is then generated by picking a number of proteins equal to the
linked proteins from the reference network, calculating the significant informative
GO terms, and calculating the average GO term path length. This is repeated 1000
times. For linked proteins, we find that the GO terms are significantly more closely
associated (Z-score = −3.98, p = 0.000034).
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Table 2 List of most highly connected proteins to the seed set (sorted in descending
order)

Protein Links

ARRB1 13
ACTB 12
ARRB2 12
TRAF6 9
PPP2R2B 8
MCC 7
TBK1 6
TNFRSF1B 6
TP53 6
CFTR 5
IKBKG 5
NFKB2 5
RIPK1 5
FN1 4
PTMA 4
REL 4
SMAD2 4
SMAD3 4
VHL 4
ARF6 3
CASP3 3
CBL 3
CTSB 3
DYNLL1 3
EIF1B 3
EIF6 3
LARP1 3
MAP3K7IP1 3
PLG 3
PRKCD 3
RAF1 3
RELB 3
S100A1 3
SUMO4 3

3.2 Properties of the most highly linked proteins: ACTB and the ARRB1/2

In the cleaned dataset, 34 proteins share at least 3 connections to the seeds;
Supplementary Table 1. This set includes known oncogenes such as NFKB2, RAF1,
REL, TP53 and VHL.

Of these 34 highly linked proteins, ARRB1/2 and ACTB were found to be most
connected to the seeds. Interestingly, these 3 proteins were not found in the set of
detected non-seed proteins either. Hence, it is possible that these proteins were not
picked up by MS.

To verify this, we turned to another MS-protein identification algorithm,
Paragon. In Goh et al. (2011), we found that there was good correlation between
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Figure 1 (A) Overview of analytical pipeline. Two sets of networks are used; a cleaned
and uncleaned network, to discover linked proteins undetected by the MS
screen. The results are then compared using GO coherence measurements and
ranks correlation analysis. The set of interesting linked proteins are then
functionally annotated using GO terms. (B) A cleaned (left) and uncleaned
network (right). Note that this is for illustration purposes. The actual networks
are too complex to visualise. (C) An example of a Maxlinked protein (blue).
A Maxlinked protein is one that is highly connected to detected differentially
expressed proteins (see online version for colours)

the reported ranks and ratios of Mascot and Paragon. However, Paragon reported
many more proteins than Mascot even although these extra proteins were found
to originate from lower quality MS/MS spectra. We generated a Paragon excess
list comprising the read outs from all 12 patients not found in Mascot. Here,
ACTB was found to be supported in all 12 patients. It was also found to be very
confidently predicted in Paragon with a normalised average rank of 0.028 (out of
1). The omission of ACTB in the set of detected proteins could be due to a variety
of factors – e.g., Mascot’s filtering parameters, incomplete coverage in its database
or differences in peptide matching algorithms (Shilov et al., 2007). ARBB1 and 2
however, were not found to be predicted in Paragon.

The inter-connections of linked proteins to the seeds are shown in Figure 2. This
network appears to be quite sparse, and is probably not suitable for performing
cluster analysis. ARRB1 and ARRB2 share many seeds (Figure 2 inset). This
includes HSPA8, HNRNPM, HSPA5, TUBA1C, HNRNPH1, FLNA, CLTC,
S100A9, NCL and ANXA2. This set of proteins appear to be important in
vesicle-mediated transport (p = 0.0016), as well as actin cytoskeleton reorganisation
(p = 0.00885).
The subnet formed by ARRB1/2 and ACTB (Figure 2 inset) shows that ACTB is
less strongly connected to ARRB1/2. Here, proteins linked only to ARRB1 and 2
are colored yellow; ARRB1 and ACTB in light blue; all 3 in purple; proteins not
shared are in pink. GO term analysis of the 20 connected seeds does not reveal
any term typically associated with cancers. Instead, many of the terms are more
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Figure 2 Ranks correlations between uncleaned and cleaned networks. There is a strong
linear ranks correlation between the linked proteins found in the cleaned and
uncleaned networks. The trendline is approximated with a gradient of 2 and
y-intercept of 55 (adjusted R-squared = 0.39, p ≤ 2.2e − 16) (see online version
for colours)

akin to functionalities associated with the liver, e.g., vesicle-mediated transport and
transport. However, stress responses and wound healing is represented by half of
the proteins, and it does agree with our previous observations where many of the
significant clusters were also enriched for stress responses.

ARRB1/2 are signaling proteins of G protein-coupled receptors (GPCRs). They
are known to play an important role in tumour tissue invasion and metastasis.
Rosano et al. (2009) showed that in ovarian cancer, silencing of both ARRB1
and 2 inhibited endothelin-A (ET(A)R) receptor-driven silencing, resulting in
SRC suppression, mitogen-activated protein kinase (MAPK), AKT activation,
EGFR transactivation and, most importantly, complete inhibition of ET-1-induced
beta-catenin/TCF transcriptional activity and cell invasion. In colorectal cancer, it
was reported that the association of ARRB1 with SRC is critical for carcinoma cell
migration as well as metastatic spread of cancer to liver in vivo (Buchanan et al.,
2006). This association is stimulated by the expression of prostagladin E, and may
act by activation of the EGFR controlled pathways. Like Rosano et al. (2009),
this study also implied a functional role for ARRB1 as an important mediator of
tumour invasion and metastasis. Interestingly, to our best knowledge, ARRB1/2
have not been reported as a crucial factor in driving oncogenic progression in HCC
from mod to poor. However, the fact that it is linked to the most number of our
MS-detected dysregulated proteins, coupled to its enrichment in other metastatic
tumours suggests a potentially important role in driving HCC progression.

Actins are highly conserved proteins that are involved in cell motility,
structure, and integrity. ACTB or beta-action is a major constituent of the
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Figure 3 Background: the inter-connections of linked proteins to the seeds; Inset:
the connections between ARBB1,2 and ACTB. Background: The network
comprising seeds and linked proteins is topologically sparse. Inset: Here,
proteins linked only to ARRB1 and 2 are labelled yellow; ARRB1 and ACTB
in light blue; connections to all 3 in purple; proteins not shared are in pink
(see online version for colours)

contractile apparatus and one of two nonmuscle cytoskeletal actins. Because it is
a housekeeping protein, it is commonly used for normalisation in gene expression
studies. However, here, we found that ACTB is connected to a disproportionate
number of dysregulated proteins in the cleaned network (as well as in uncleaned),
and could possibly be involved in driving HCC progression. Indeed, several
studies have shown that ACTB is differentially expressed in cancer. This includes
differential expression of ACTB in N1S1 rat hepatoma (Chang et al., 1998), colon
carcinoma/colorectal cancer (CRC) (Sagynaliev et al., 2005), and blood cancers
such as Chronic Myelogenous Leukemia (CML), Chronic Lymphocytic Leukemia
(CLL), Acute Myelogenous Leukemia (AML) (Lupberger et al., 2002). In human
colon adenocarcinoma (Nowak et al., 2005), hepatoma (Popow et al., 2006) and
melanoma (Goidin et al., 2001), there is a tendency for ACTB to be dysregulated
in cells with greater metastatic capacity.

Of the 34 most highly linked proteins, there is an enrichment for significant GO
terms commonly associated with cancer. For example, apoptosis and programmed
cell death (n = 16, p = 5.19e − 09), activation of immune responses (n = 7,
p = 6.15e − 08), response to stress (n = 18, p = 1.40e − 06), positive regulation
of NF-kappaB transcription factor activity (n = 5, p = 4.30e − 05), and negative
regulation of cell proliferation (n = 8, p = 7.33e − 05). Comparing the highly linked
proteins (at least 3 connections to seeds) and lower linked proteins against the
Cancer Gene Census (Futreal et al., 2004), we found 1.86X more enrichment for
known cancer genes among the highly linked proteins. This reinforces the notion
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that increased connectivity to seed proteins is likely to imply potential oncogenic
function.

4 Discussions

4.1 How the Maxlink approach complements PEP

Both Maxlink (Ostlund et al., 2010) and PEP (Goh et al., 2011) addresses to an
extent incomplete coverage issues in proteomics. However, they do this differently.
Maxlink identifies additional proteins based on the number of connections to seed
proteins whereas PEP identifies significantly differentially expressed submodules
formed by the neighbours of the seeds. Functional analysis reveals a common
enrichment of terms such as apoptosis and stress responses. However, Maxlink
picked up immune responses which we did not observe in PEP. One likely
possibility is that these proteins are poorly connected in the reference PPIN
and therefore did not qualify as clusters. Since Maxlink only considers proteins
connected to seeds regardless of their inter-connectivity, it provides an additional
dimension to the results from cluster analysis. The Maxlink approach is also
dependent on the quality of the reference network. We show here that the process
of network cleaning greatly reduces the number of linked proteins from 902 to 288
but the latter set is enriched for coherent terms as well as highly ranked linked
proteins in the former.

However, both methods are not able to deal adequately with the consistency
issue in proteomics – viz., the unrepeatability of results from the same samples.
Furthermore, the dependence on identifying seeds from the iTRAQ screen filters
off a large amount of the limited available information, because only proteins
supported by the majority of samples and clearly differentially expressed are
primarily considered.

Hence, there is still avenue for further development of methods that can deal
with these shortfalls.

4.2 The role of ARRB1/2 proteins and ACTB in driving HCC progression

It is interesting that the most linked proteins in HCC to seeds turned out to
be non-classical oncogenes. This reinforces the notion of how complex cancer is,
and how limited current knowledge is. There is limited literature evidence on the
roles of ARRB1/2 and even beta-actin in driving metastasis. Although many of
the reported literature documents other cancer types, especially more aggressive
cancers, it is possible that dysregulation of these proteins can also have similar
effects in driving HCC progression.

Furthermore, although found in more aggressive tumours, GO term analysis of
the shared neighbours by these 3 proteins revealed no significant cancer associated
term, aside from wound healing and stress response. This could be also be due to
the limited annotations in GO, as well as due to the limited scope in analysing only
PPIN information. ARRB1/2 proteins are GPCR signaling proteins and may drive
invasiveness and metastasis via several different pathways ranging from ET(A)R,
SRC and EGFR, AKT and MAPK (Rosano et al., 2009; Buchanan et al., 2006).
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The role of beta-actin is more interesting given that it is a well-known
housekeeping protein with widespread expression. It is typically used, alongside
GADPH, as a marker for normalisation of gene expression experiments. Its
functional role in cancer is not particularly well-characterised despite literature
evidence indicating its dysregulation in more aggressive cancer types (Ruan and
Lai, 2007; Popow et al., 2006; Nowak et al., 2005).

In our derived network, we noted that ARRB1/2’s shared neighbours were
enriched for the GO term, actin cytoskeleton reorganisation (p = 0.00885). This
is effected by FLNA and S100A9, which are shared between ARRB1/2. FLNA
or filamin-A, an actin-binding protein, that is widely expressed and regulates
re-organisation of the actin cytoskeleton by interacting with integrins, transmembrane
receptor complexes and second messengers. S100A9 is a calcium binding protein,
and may be implicated in leukemia (Cheok et al., 2003). Furthermore, we found
significant crosstalk with actin via shared neighbours. Indeed, by looking at the shared
neighbours they seemed to converge on mRNA fate. NCL or nucleolin forms part
of mRNP complex which decides on mRNA localisation, translation and turnover
(Moore et al., 2005). EEF1A1, the translation elongation factor on the other hand
is required for binding of aminoacyl-tRNA to the ribosome during translation. The
perturbed mRNA dynamics could be the result of

• interaction of host cell with HBV and/or

• dysregulated protein synthesis in malignant neoplastic transformation to
poorly-differentiated HCC to promote tumour growth.

In the process of dedifferentiation from small, well differentiated to moderately
differentiated and finally poorly differentiated HCC tumours, the vasculature
remodels substantially and abnormally (Sonoda et al., 1989). This vasculogenic and
angiogenic switch is critical for tumour growth. Endothelial cell motility drives
the formation and maintenance of blood vessels and to do so, actin dynamics
is required. Of note, HBV upregulates and stabilises HIF-α, and subsequently
stimulate the cascade of signalling events that lead to angiogenesis (Moon et al.,
2004). Similarly, HBVx activates RhoA, a small GTPase that regulates actin (Fukui
et al., 2006). Together, our results support active angiogenesis and vasculogenesis
as important molecular events that occur in the progression of HBV-induced HCC
which requires the participation of actin. At the same time, tubulins A and B and
CAP1 are connected to ARRB and actin seeds, suggesting the importance of the
regulation of cytoskeletal events in multiple cellular responses during oncogenesis.

5 Conclusion

Identification of linked proteins helps to partially overcome the coverage issue
in proteomics analysis. The set of linked proteins are found to be enriched for
cancer-specific processes, and more likely so if they are highly linked. Additionally,
a higher quality linked set is derived if network-cleaning is performed prior. Here,
the most linked proteins (ARBB1/2 and ACTB) turned out to be non-classical
cancer genes which have been evidenced to play important roles in metastasis and
invasiveness although the mechanisms appear to be very complex. To the best of
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our knowledge, there is not much known about the role these proteins play in HCC
progression.

The Maxlink form of network-based analysis complements cluster-based
approaches such as PEP, because it concentrates on seed connections rather than
inter-connectivity between seeds and their neighbours. It can therefore add on to
the list of proteins on which to perform functional analysis, as well as for biomarker
identification. In addition, we find that cleaning the network prior to performing
Maxlink provides a higher quality set of linked proteins.
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