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Abstract. Informatics has helped launch molecular biology into the genomic
era. It appears certain that informatics will remain a major contributor to molecu-
lar biology in the post-genome era. We discuss here data integration and datamin-
ing in bioinformatics, as well as the role that database theory played in these top-
ics. We also describe LIMS as a third key topic in bioinformatics where advances
in database system and theory can be very relevant.

1 The Great Challenges in Bioinformatics

Bioinformatics is key to genome projects. The main challenges are to improve the con-
tent and utility of databases, to develop better tools for data generation, capture, and an-
notation, to develop and improve tools and databases for functional studies, to develop
and improve tools for representing and analysing sequence similarity and variation, and
to create mechanisms to support effective approaches for producing robust software that
can be widely shared. In the 1990s, a lot of databases were produced by the numerous
mapping and sequencing initiatives. The hot topics were problems of managing and
integrating these databases, and of comparing and assembling sequences contained in
these databases. In the 2000s, several genomes have been completely sequenced and we
enter the era of post-genome knowledge discovery. The hot topics are problems of rec-
ognizing specific features and functions of DNA and protein sequences, understanding
their role in diseases, and their interaction with each other and their environment.

We focus on two stories. The first story concerns data integration challenges in
bioinformatics in the 1990s. We narrate the triumph of the theory of query languages
and the Kleisli system [6, 39, 9] in addressing these challenges. The second story con-
cerns knowledge discovery challenges in bioinformatics in the 2000s. We narrate the
tantalizing success of emerging patterns and the PCL technique [23, 22] in addressing
some of these challenges. This story is still an ongoing saga.

The paper is organized as follows. Section 2 presents the story of Kleisli. It begins
with a discussion (Subsection 2.1) on what are the problems in the integrating biological
data, and names (Subsection 2.2) the key features of a successful general solution to
this problem. The key features are nested relational data model (Subsection 2.3), self-
describing data exchange format (Subsection 2.4), thin wrapper (Subsection 2.5), and
high-level query language (Subsection 2.6).

Section 3 presents the story of PCL. It begins with a discussion (Subsection 3.1)
on knowledge discovery from biomedical data, and uses the recognition of translation
initiation site from mRNA sequences as an example (Subsection 3.2). Then several



general techniques for feature generation (Subsection 3.3) and feature selection (Sub-
section 3.4) are introduced. After that, PCL is introduced and applied to the recognition
of translation initiation sites (Subsection 3.5). The algorithmic aspects underlying PCL
are considered in Subsection 3.6.

Section 4 wraps up the paper with a discussion on laboratory information manage-
ment systems or LIMS. We describe the key considerations for LIMS in the manage-
ment of data and processes in a genome laboratory. While we have not conducted ex-
tensive research on this topic, we feel that LIMS is an area where advances in database
system and theory, especially those pertaining to workflows, can offer significant benefit
to molecular biology research.

2 From Theory of Query Languages to Biological Data Integration

2.1 Integration: What are the problems?

Many kinds of data are used in research in biology and medicine. They include labo-
ratory records, literatures, nucleic acid and amino acid sequences, microarray output,
and so on, as well as many computational tools for analysis of these data. We use the
term data sources to refer to both databases and computational analysis tools. These
data sources were mostly designed and built by biologists for their own individual use.
This root leads to a significant legacy problem [2]. At the same time, it is realised that
these data sources can also used in combination to answer questions that cannot be an-
swered by any single data source [10]. This is thus a great challenge for the research
and development of a general data integration system that can handle the heterogeneous,
complex, and geographically dispersed nature of biomedical data sources. Let us intro-
duce an “impossible query” from the US Department of Energy 1993 Bioinformatics
Summit Report [10] that made this challenge famous.

Example 1. The query was to find, as many as possible, non-human homologs of each
gene on a given cytogenetic band of a given human chromosome. Basically, this query
means that for each gene in a particular position in the human genome, find DNA se-
quences from non-human organisms that are similar to it.

source type location remarks

GDB Sybase Baltimore Flat tables, SQL joins, cytogenetic band info
Entrez ASN.1 Bethesda Nested tables, keyword retrieveal, homolog info

The challenge in this query lies not in the biology, but in the data sources as summarised
in the table above. At the time it was posed, the main database containing cytogenetic
band information was the GDB [29], which was a Sybase system. GDB did not store
the DNA sequences that were needed for determining homologs. The sequences needed
were kept in GenBank, which at that time could only be accessed via the ASN.1 version
of Entrez [33]. Entrez also kept precomputed homologs. So this query needed the inte-
gration of GDB (a relational database located in Baltimore) and Entrez (a non-relational
“database” located in Bethesda). This query was considered “impossible” as there was
at that time no system that could work across the bioinformatics sources involved due
to their heterogeneity, complexity, and geographical locations. ��



2.2 Integration: Solution

A large number of solutions have been proposed to the data integration challenge in
biomedicine. The main features of the most general and successful amongst these so-
lutions are: data models that support nesting of structures, simple self-describing data
exchange formats, thin wrappers, high-level query languages, good query optimizers,
host language interfaces, and backend stores that support nesting of structures. The no-
tions of data models, query languages, query optimizers, and backend stores are classic
ideas in relational database management systems. Even the host language interface idea
has manifested itself in the development of relational database systems as embedded
SQL, JDBC and ODBC for quite some time. The arena of biomedical data integra-
tion requires that these ideas be extended to nested relations or other equivalent forms.
These ideas still assume that the database system is the center of the world and that all
data are kept within the database system. On the other hand, the ideas of data exchange
formats and thin wrappers have appeared explicitly only in the mid 90s [28]. Further-
more, these ideas assume that data can be external to the database system and must be
communicated and accessed in different ways.

It is by embracing these generalized old ideas of the database world and newer ideas
outside of the database world that Kleisli [9] became the first successful general solution
to the data integration problem in biomedicine. In the next subsections, we describe
Kleisli and the influence of query language theory on its design and implementation.

2.3 Nested relational data model

The nested relational data model was first proposed by Makinouchi [26] and enjoyed a
fruitful evolution in a sequence of works [18, 35] in the database world. However, the
inspiration for the nested relational data model as in the Kleisli system arises from a
different consideration [5]. In modern programming language theory, the key concepts
are orthogonality and universality. These concepts together mean that for every data
type, there should be constructs to build data of that type and constructs to take apart
data of that type so that certain equations hold, and furthermore, so long as typing
constraints are respected, these constructs can be freely combined. When the constructs
for building sets and records are freely combined, nested sets arise naturally in Kleisli.

A data model is focused on the logical structure of data. The lexical aspect of data is
irrelevant. The application semantic aspect of data is also irrelevant. A data model also
comes with a query language for manipulating that logical structure. The link between
the logical structure and application semantics of the data is captured by queries that
are written a query language. The link between the logical structure and the lexical
structure of the data is captured by a data exchange format. We discuss these links next.

2.4 Self-describing data exchange format

The concept of a self-describing data exchange format is implicit in programming lan-
guages that support type inference [8]. In these programming languages, every linguistic
construct has an unambiguous meaning and type. The linguistic constructs for building



data thus gives a self-describing data exchange format. The same concept arises explic-
itly, but much later, in database research [28].

The aspects of a self-describing data exchange format are: “lexical”—how to parse?
“logical”—what is the structure? and “semantics”—what is the meaning? The lexical
and logical layers are the important aspects of an exchange format. The better they are
designed, the easier it is to exchange information. The semantics layer is not needed
to accomplish the exchange of data between two systems. In addition, the lexical layer
should support multiple logical layers. That is, objects of different structures can be laid
out in a data stream using the same lexical layer. “Printing” and “parsing” are the two
operations that map between the lexical and logical layers. “Transmit” is the operation
to move data laid out in the data exchange format between two systems. All good data
exchange systems provide the equivalent of “print”, “transmit”, and “parse”.

Example 2. We first present a poor data exchange format. Here is a GenPept report of
a F-box protein. The GenPept report is an inconvenient data exchange format as its
logical and lexical layers are not explicit. It is also not a versatile data exchange format
as it cannot be used for any other kind of data.

LOCUS T41727 577 aa PLN 03-DEC-1999
DEFINITION F-box domain protein Pof3p - fission yeast
ACCESSION T41727
PID g7490551
VERSION T41727 GI:7490551
DBSOURCE pir: locus T41727;

summary: #length 577 #weight 66238 ...
KEYWORDS .
SOURCE fission yeast.

ORGANISM Schizosaccharomyces pombe
Eukaryota; Fungi; Ascomycota; ...

REFERENCE 1 (residues 1 to 577)
AUTHORS Lyne,M., Wood,V., Rajandream,M.A., ...
TITLE Direct Submission
JOURNAL Submitted (??-JUN-1998) to the EMBL Data Library

FEATURES Location/Qualifiers
source 1..577

/organism="Schizosaccharomyces pombe"
/db_xref="taxon:4896"

Protein 1..577
/product="F-box domain protein Pof3p"

ORIGIN
1 mnnyqvkaik ektqqylskr kfedaltfit ktieqepnpt ... ��

The table below is a better exchange format used in Kleisli [40]. The logical and
lexical layers are separated so that a generic “parser” can be used for any data laid
out in this exchange format. The logical layer conforms to the nested relational model.
This allows a generic parser to be built into Kleisli so that it can directly parse and
manipulate any data conforming to this exchange format. Also, Kleisli outputs in this
format by default.



logical layer lexical layer remarks

Booleans true, false
Numbers 123, 123.123 Positive numbers

–123, –123.123 Negative numbers
Strings ”a string” String is inside double quotes
Records (# ��� : ��� , ..., # � � : ��� ) Record is inside round brackets
Sets

�
��� , ..., ��� � Set is inside curly brackets

Lists [ ��� , ..., ��� ] List is inside square brackets

Example 3. The F-box report from Example 2 looks like this in the data exchange for-
mat used by Kleisli:

(#uid: 7490551,
#title: "F-box domain protein Pof3p - fission yeast",
#accession: "T41727",
#common: "fission yeast.",
#organism: (#genus: "Schizosaccharomyces",

#species: "pombe",
#lineage: ["Eukaryota", "Fungi", "Ascomycota", ...]),

#feature: {(#name: "source", #start: 0, #end: 576,
#anno: [(#anno_name: "organism",

#descr: "Schizosaccharomyces pombe"),
(#anno_name:"db_xref", #descr:"taxon:4896")]),

(#name: "Protein", #start: 0, #end: 576,
#anno: [(#anno_name: "product",

#descr: "F-box domain protein Pof3p")])},
#sequence: "MNNYQVKAIKEKTQQYLSKRKFEDALTFITKTIEQEPNPTID...")

This format change is simple and has a few positive consequences: (a) the boundaries of
different nested structure becomes explicit, and (b) the lexical and logical aspects are no
longer mixed up. As a result, a parser specific to the GenPept format is not needed. ��

2.5 Thin Wrappers

A wrapper is an interface that (a) conveys requests from one system to a second system,
(b) conveys replies from the second system to the first system, and (c) performs any
necessary lexical/logical mapping. Whether a wrapper is easy to implement or not is
affected by the following factors: the impedance between the data models of the two
systems, the complexity of the access protocols of the two systems, and the suitability
of the programming language chosen for implementing the wrapper.

As most of the data sources are flat files, the complexity of the access protocol for
them is low. In systems such as Kleisli that are based on a nested relational data model,
the data model impedance is also low. In systems such as Kleisli that has a simple
data exchange format—which also conforms to the nested relational data model—the
complexity of the protocol required for conveying replies to them is low. These two
advantages for wrapper development in the Kleisli system can be attributed to its strong
query language theory foundation [39]. Its nested relational data model is motivated by
orthogonality considerations in query language design and its exchange format follows
from type inference considerations in query language design.



In contrast, writing wrappers for a system like IBM’s DiscoveryLink [16] requires
more effort. DiscoveryLink relies on the flat relational data model, which causes high
impedance mismatch with most of the biological data sources as these sources generally
have nested structures. DiscoveryLink also lacks a simple data exchange format, which
causes high complexity to get replies into the system. DiscoveryLink also insists on
wrappers being written in C or C++, which are not convenient for parsers.

2.6 High-level query language

Kleisli supports two high-level query languages: CPL [39] and sSQL [6]. Both are
nested relational query languages and have the same expressive power. The former was
the original query language of the Kleisli system and was inspired by research on the
connection between comprehension and monads [37, 4]. The latter was added to the
Kleisli system more recently by popular demand and was based on SQL. Let us show
the advantage of using a high level language like sSQL with the following query in
sSQL: select title from DATA. All of the following low-level details that a
Perl programmer has to handle explicitly—if the same query is implemented in Perl—
are handled automatically by the Kleisli compiler for sSQL: input, lexical-logical map-
ping, type checking, termination, optimization, output, etc. These low-level details can
be handled automatically because the right compromises have been made in sSQL that
reduce its complexity and yet without hurting its ability to express queries important
for large-scale data manipulations.

The core of CPL and sSQL has their roots in ����� , a nested relational calculus. The
syntax of ����� is summarised below and its semantics is given in earlier papers [5, 38].

����
	����� � � 	��
� � 	�� ��� 	��� ��� ��� 	��

true 	�� false 	��
� 	�� � � 	�� ��� 	��

if � then � � else ��� 	��
� � 	�� � ��� 	�� �� � ��� ����� 	�� ��� � �

� 	�� ��� � �� � � 	�� �
� 	�� ��� � �� � � 	�� �

� 	��� � � 	 � � �
� � 	 � � � ��� 	 � � �� �"! ��� 	 � � � � � � 	 � � �

� � 	 � � � � ��� 	 � � � �# � � �%$ � �'&)( ��� � 	 � � � �
The design of ����� is such that for every data type that it supports, it provides con-
structs for building data of that type and constructs for taking apart data of that type in a
way that satisfies universality and orthogonality conditions. For the record or pair type:*,+.-�/0+�1�2

forms a pair; and 3 -4+ and 3 1)+ extracts the first and second component of the
pair

+
. For the set type: 576 , 5 + 6 , and

+7-98:+�1
form the empty set, the singleton set, and

the union of two sets respectively; and
# 5 +.-<;>=@?@+�1 6 is the big union of A *,B>-%2 , ...,

A *,B�CD2 if A *E="2GFH+.-
and 5 B7- , ...,

B�C 6 FH+�1
. Also, I stands for any additional functions

that ����� can be extended with later. We denote extension to ����� in brackets. For ex-
ample, ����� *0J , K , L , M , N , O , P J /QFR2 means ����� extended with rational numbers,
arithmetics, summation, and the linear order on rational numbers.

Theorem 1 (Cf. [5, 38, 24]).

1. ����� FTS"UDV�W�X�Y�Z<[]\'Y�^�UD_%`<Fbac^�UD_�deZfac^�UDV�ghg F�i]V�g j%k
.



2. ����� F���� * FR2�F��G_%g X�� \,V��"X�g �Gg 	>_�j%`0X
over flat relations.

3. ����� *�J , K , L , M , N , O , P J /QF 2 over flat relations is “entry-level” SQL. ��

These results say that ����� and its various extensions or restrictions, as the case may
be, are equivalent to various classical query languages. They also bring out three im-
portant points. Firstly, ����� has enough expressive power for large-scale data manip-
ulations commonly expected in database systems. Secondly, ����� can be straightfor-
wardly extended by any number of functions I�
����� of any input-output type as
shown in its syntax, whereas the classical query languages above are lacking in orthog-
onality in their design and cannot accomodate such extensions so easily. This ease of
extension is a crucial when handling the integration of biomedical data sources that
often include a lot of specialized access and analysis functions. Lastly, the proofs of
these results all rely on a rewrite system based on the equation of monads. This rewrite
system is also used as the starting point of Kleisli’s query optimizer [39].

While ����� is amenable to automated analysis and optimization, it is not as amend-
able for a human to read. For example, the cartesian product of two sets is expressed
in ����� as

# 5 # 575 *E= /��D2 6 ;�� ?�� 6 ;e=H?�� 6 . This is clumsy. Hence, we need an
alternative surface syntax to be for users of the Kleisli system. A popular choice is
sSQL, which is based on SQL and is very human readable. E.g., the same cartesian
product is expressed as: select (x,y) from R x, S y. Queries in sSQL are
converted into ����� via the Wadler equalities [37] linking monads and comprehen-
sions. We present now the sSQL solution to Example 1.

Example 4. sybase-add (#name:"GDB", ...);
create view L from locus_cyto_location using GDB;
create view E from object_genbank_eref using GDB;
select #accn: g.#genbank_ref, #nonhuman-homologs: H
from L c, E g,
{select u
from g.#genbank_ref.na-get-homolog-summary u
where not(u.#title string-islike "%Human%"),

not(u.#title string-islike "%H.sapien%")} H
where c.#chrom_num = "22" andalso g.#object_id = c.#locus_id
andalso not (H = { });

The first three lines connect to GDB and map two tables in GDB to Kleisli. These two
tables could then be referenced within Kleisli as if they were two locally defined sets,
locus and eref. The next few lines extract from these tables the accession numbers
of genes on Chromosome 22, use the Entrez function aa-get-homolog-summary
to get their homologs, and filter these homologs for non-human ones. ��

We see that the integration of GDB and Entrez is smooth, and the handling of input,
output, and lexical-logical mapping are fully taken care of. It is also very efficient. The
Kleisli optimizer is able to migrate the join, selection, and projections on the two GDB
tables into a single efficient access to GDB. The accesses to Entrez are also automati-
cally made concurrent. These are just some advantages that a well-implemented system
with a high-level query language can bring over a poor man’s Perl library.



3 From Emerging Patterns to Biological Datamining

3.1 Prediction: What are the problems?

Microarrays are now being used to measure the expression level of thousands of genes
simultaneously [14]. We can expect reasonably that gene expression data measured by
microarrays or other means will soon be part of a patient’s medical records. The analy-
sis of medical records is aimed mainly at diagnosis, prognosis, and treatment planning.
Here we are looking for patterns that are (a) valid: they are also observed in new data
with high certainty; (b) novel: they are not obvious to experts and provide new insights;
(c) useful: they enable reliable predictions; and (d) understandable: they pose no obsta-
cle in their interpretation. In short, a classification technique that is both highly accurate
and highly understandable is more desirable.

Gene expression profiles and medical records represent the spectrum of biomedi-
cal data that possess explicit signals or features—such as expression level of individual
genes—where traditional machine learning and datamining techniques appear to be di-
rectly useable. However, these techniques have performance limitation in terms of the
number of signals or features that they can handle in their input. A modern microarray
such as the Affymetrix U95A GeneChip can produce a gene expression profile consist-
ing over the expression levels of over 12000 genes. Such a large number of features is
beyond what can be comfortably handled by most of these techniques. So techniques
for dimension reduction or feature selection are also needed.

Not all biomedical data contain explicit signals or features. DNA sequences, pro-
tein sequences, and so on represent the spectrum of biomedical data that possess no
explicit features. E.g., a genomic sequence is typically just a string consisting of the
letters “A”, “C”, “G”, and “T” in an apparently random order. And yet a genomic se-
quence possesses biologically meaningful structure points such as transcription start
site, translation initiation site, and so on that are associated with the primary structure
of genes. Recognition of these biological structure points in a genomic sequence is
an important bioinformatics application. Traditional machine learning and datamining
techniques cannot be directly apply to this type of recognition problems. So there is a
need to adapt these existing techniques to this type of problems and a need for good
techniques for generating explicit features underlying such structure points.

In the next subsections, we use the recognition of translation initiation site to illus-
trate the challenges above—feature generation, selection, and integration for prediction—
of knowledge discovery in biological data.

3.2 Recognition of Translation Initiation Sites

Proteins are synthesized from mRNAs by a process called translation. The region at
which the process initiates is called the Translation Initiation Site (TIS). The TIS recog-
nition problem is to correctly identify the TIS in an mRNA or cDNA sequence. In
Zien et al. [43] and Hatzigeorgiou [17], accurate TIS prediction is obtained by com-
plex methods: A careful engineering of kernel functions for a support vector machine
(SVM) and a multi-step integrated artificial neural network (ANN). Recently, one of
us (Wong) shows that good performance can be obtained by simple feature generation



and selection followed by a variety of standard machine learning methods [42]. In what
follows, we repeat this approach [42], but we use features generated from a transla-
tion of the mRNAs into the corresponding amino acids instead of the mRNAs directly,
and we use PCL as the classification algorithm instead of traditional machine learning
methods such as artificial neural network [32], Bayesian classifier [21], decision tree
induction [31], support vector machine [36].

We use the vertebrate dataset provided by Pedersen and Nielsen [30]. This dataset
was also used by Zien et al. [43]. These sequences are processed by removing possible
introns and joining the exons [30] to obtain the corresponding mRNA sequences. From
these sequences, only those with an annotated TIS, and with at least 100 upstream nu-
cleotides as well as 100 downstream nucleotides are selected. The sequences are filtered
to remove those belonging to same gene families, homologous genes from different or-
ganisms and sequences added multiple times to the database. Since the dataset is pro-
cessed DNA, the TIS site is ATG. In total there are 13375 ATG sites. Of these possible
ATG start sites, 3312 (24.76%) are the true start TIS, while the other 10063 (75.23%)
are non-TIS. At each of these ATG sites, we extract a sequence segment consisting of (a)
100 nucleotides up-stream or upto the first occurrence of an ATG up-stream, whichever
is shorter; and (b) 100 nucleotides down-stream. These 13375 sequence segments are
the inputs upon which we perform the recognition of TIS.

3.3 Feature Generation

The sequences are not suitable for direct application of machine learning techniques,
as these techniques rely on explicit signals of high quality. It is necessary to devise
various sensors for such signals, so that given a sequence segment, a score is produced
to indicate the possible presence of such a signal in that sequence segment. A general
technique for producing these sensors is the idea of k-grams frequency. A k-gram is
simply a pattern of k consecutive letters, which could be amino acid symbols or nucleic
acid symbols. K-grams can also be restricted those in-frame ones. Each k-gram and its
frequency in the said sequence fragment becomes a signal. Another general technique
for producing these sensors is the idea of position-specific k-gram. The sensor simply
reports what k-gram is seen in a particular position in the sequence fragment.

Example 5. For TIS prediction, we use a combination of the general techniques men-
tioned above. First, we divide each of our 13375 sequence segments into an up-stream
part, i.e., to the left of the ATG, and a down-stream part, i.e., to the right of the ATG.
Then we consider 3-grams that are in-frame, i.e., those 3-grams aligned to the ATG.
Those in-frame 3-grams that code for amino acids are converted into amino acid let-
ters. Those in-frame 3-grams that are stop codons are converted into a special letter
symbolizing a stop codon. Then we generate the follow numeric features: UP-X (resp.
DOWN-X), which counts the number of times the amino acid letter X appears in the
up-stream part (resp. down-stream), for X ranging over the standard 20 amino acid let-
ters. We also generate the following Boolean features: UP-ATG, which indicates an
in-frame ATG occurs in the up-stream part; DOWN-STOP (resp. UP-STOP), which in-
dicates a stop codon occurs in the down-stream part (resp. up-stream); and UP � -N
(resp. DOWN � -N), which indicates the nucleotide N occurs in position � up-stream



(resp. down-stream), for N ranging over the 4 standard nucleotide letters (A, C, G, T)
and 6 generalizations (AorC, AorG, AorT, CorG, CorT, CorG), and for � ranging over
the 10 up-stream (resp. down-stream) positions closest to the ATG. Thus for each of our
13375 sequence segments, we have

*��������72 K�� K � K * � ��� � ���	�72cF
����
features. ��

3.4 Feature Selection

As can be seen, the techniques described above can generate a large number of features
for each sequence segment. Clearly, not every feature is important. Using only the more
important features has the advantage of avoiding noise and speeding up subsequent con-
struction of the recognition model. It is thus often desirable to discard weaker features.
A number of general techniques can be used for this purpose [25, 13].

Here, let us use the entropy method [13]. The basic idea of this method is to filter
out those features whose value distributions are relatively random. For the remaining
features, this method can automatically find some cut points in these features’ value
ranges such that the resulting value intervals of every feature can be maximally dis-
tinguished. If each value interval induced by the cut points of a feature contains only
the same class of samples, then this partitioning by the cut points of this feature has an
entropy value of zero. The smaller a feature’s entropy is, the more discriminatory it is.
Formally, let � partition the set

�
of examples into the subsets

��-
and

�c1
. Let there be�

classes � -�/ L�L�L / ��� . Let � * ��� / ����2
be the proportion of examples in

���
that have class��� . The class entropy of a subset

���7/��<F � /�� is defined as:

�
� � * ����2]F M

��
� � - � * ��� / ����2 �,B A * � * ��� / ����2 2"!

Suppose the subsets
� -

and
�c1

are induced by partitioning a feature # at point � . Then,
the class information entropy of the partition, denoted

� * # / �%$ �]2 , is given by:

� * # / �%$ �]2]F
; � -7;
; � ; � � � * � -%2 K

; �c1>;
; � ; � � � * �c1�2"!

A binary discretization for # is determined by selecting the cut point �'& for which� * # / �%$ �]2 is minimal amongst all the candidate cut point. The same process can be
applied recursively to

� -
and

�c1
. The Minimal Description Length Principle is used to

stop partitioning. That is, recursive partitioning within a set of values
�

stops iff

(�)�*
�
* # / �%$ �]2,+ �,B A 17*.- M/� 2- K10

* # / �%$ �]2- /

where
-

is the number of values in the set
�

,
(�)�*

�
* # / �%$ �]2]F �

� � * �]2 M � * # / �%$ �]2 ,
0
* # / �%$ �]2]F2�,B A 17*. � M �72 M43 � L � � � * �]2 M � - L � � � * � -%2 M � 1 L � � � * �c1�2�5 , and

� � is the
number of class labels represented in the set

� � . We choose those features with lowest
entropy values.

Example 6. Applying the entropy method to the features generated in Example 5 for the
whole data set, the 10 features of lowest entropy are UP-ATG, DOWN-STOP, DOWN-A,



UP3-AorG, DOWN-V, UP-A, DOWN-E, DOWN-L, DOWN-D, and UP-G. We also per-
form three-fold cross validation. The data set is divided into three groups of the same
size, where the proportion of true TIS to non-TIS is kept the same as the original un-
divided data set. In each fold, one of the groups is held out as test cases and the other
two groups are used as training cases. In the training of each fold, we apply the entropy
method to each group of training cases to select the 10 features of lowest entropy for
that fold. It turns out that, for each fold, the same 10 features listed above are picked.
Some of these 10 features also make good biological sense. The UP-ATG feature makes
sense because it is uncommon for an in-frame up-stream ATG to be near a translation
initiation site, as this runs counter to the scanning model of eukaryotic protein trans-
lation [19]. The DOWN-STOP feature makes sense because it is uncommon for an in-
frame stop codon to be near a translation initiation site, as this implies an improbably
short protein product. The UP3-AorG feature makes sense because it is consistent with
the well-known Kozak consensus signature observed at translation initiation sites [19].

��

3.5 Prediction: Solution

In the field of machine learning, there are many good prediction methods including
�

-
nearest neighbours (

�
-NN) [7], C4.5 [31], SVM [36], NB [21], etc. C4.5 induces from

training data rules that are easy to comprehend. However, it may not have good per-
formance if real decision boundary underlying the data is not linear. NB uses Bayesian
rules to compute a probabilistic summary for each class. A key assumption used in NB
is that the underlying features are statistically independent. However, this is not appro-
priate for gene expression data analysis as genes involved in an expression profile are
often closely related and appear not to be independent.

�
-NN assigns a testing sample

the class of its nearest training sample in terms of some non-linear distance functions.
Even though

�
-NN is intuitive and has good performance, it is not helpful for under-

standing complex cases in depth. SVM uses non-linear kernel functions to construct a
complicated mapping between samples and their class labels. SVM has good perfor-
mance, but it functions as a black box. Similarly, traditional datamining methods that
look for high frequency patterns are not useful on these data. E.g., if you use these
methods in the Singapore General Hospital, they will produce totally useless patterns
such as “everyone here has black hair and black eyes.”

We are therefore motivated to seek a classification method that enjoys the twin
advantages of high accuracy and high comprehensibility. We have been developing a
novel classification method called PCL [23, 22] for Prediction by Collective Likelihood
of emerging patterns. This method focuses on (a) fast techniques for identifying patterns
whose frequencies in two classes differ by a large ratio [11], which are the so-called
emerging patterns; and on (b) combining these patterns to make decision. For PCL, we
use only emerging patterns that are most general and have infinite ratio.

Basically, the PCL classifier has two phases. Given two training datasets ��� (in-
stances of class � ) and ��� (instances of class

-
) and a test sample � , PCL first

discovers two groups of most general emerging patterns from ��� and ��� . Denote the
most general emerging patterns of ��� as,

� ���- ,
� ���1 , L�L�L , � ���� / in descending order

of frequency. Denote the most general emerging patterns of ��� as
� ���- ,

� ���1 , L�L�L ,



� ���� , in descending order of frequency. Suppose the test sample � contains these most
general emerging patterns of ��� :

� ������ ,
� ���� & , L�L�L , � ������ ,

* - + * 1 + L�L�L + * � P *
,

and these most general emerging patterns of ��� :
� ���� � ,

� ���� & , L�L�L , � ���� � ,
��-%+/��1 +

L�L�L +2� � P �
. The next step is to calculate two scores for predicting the class label of� . Suppose we use

�
(
��� *

and
��� �

) top-ranked most general emerging patterns of
��� and ��� . Then we define the score of � in the ��� class as

�
	 B���+�* � / � � 2]F
��

 � -
I ��+����"+ ��	 �c* � � �� � 2
I ��+����"+ ��	 �c* � � � 2

/

and the score in the � � class is similarly defined in terms of
� � �� � and

� � � . If
�
	 B���+�* � / � � 2�� �
	 B���+�* � / � � 2 , then � is predicted as the class of � � . Otherwise it
is predicted as the class of ��� . We use the size of ��� and ��� to break tie. The PCL
classifier has proved to be a good tool for analysing gene expression data and proteomic
data [22, 41, 23]. Here we use it on recognizing translation initiation sites.

Example 7. We apply PCL, with
� F � � , in the same 3-fold cross validation using the

top 10 features selected in each fold as per Example 6. An accuracy of 87.7% is obtained
as shown in the table below. This accuracy of 87.7% is comparable to the 89.4% in our
earlier work [42] using a similar approach of feature generation and feature selection
followed by the application of a machine learning method, except that our earlier work
considered NB, SVM, and C4.5 on the same data set and used only nucleotide k-mers.
It also compares well with the 78% sensitivity on TIS, 87% sensitivity on non-TIS, and
85% accuracy reported by Pedersen and Nielsen [30] on the same data set. It also com-
pares favourably with the 69.9% sensitivity on TIS, 94.1% sensitivity on non-TIS, and
88.1% accuracy reported by Zien et al [43] on the same data set. Further improvement
can be obtained by incorporating a form of distance or scanning rule [17, 42].

1st fold 2nd fold 3rd fold overall

no. of TIS (
)
) 1104 1104 1104 3312

correct predictions ( � ) 926 936 944 2806
wrong predictions ( 	 ) 178 168 160 506

sensitivity (
)�� � ) 83.9% 84.8% 85.5% 84.7%

no. of non-TIS ( � ) 3355 3354 3354 10063
correct predictions (

+
) 2998 2928 2996 8922

wrong predictions ( I ) 357 426 358 1141
sensitivity (

+ � � ) 89.4% 87.3% 89.3% 88.7%
accuracy ( 3 � K + 5 � 3 ) K�� 5 ) 88.0% 86.7% 88.4% 87.7% ��

Beyond good accuracy, PCL also has the advantage of producing comprehensi-
ble decision rules derived from the top emerging patterns. E.g., the emerging pattern
5����
M����! F#"�/%$'&)(!* M,+-� & � F#"�/%$'&)(!* M�� F � 6 has 10% support in our non-TIS
sequence segments and 0% support in our TIS sequence segments. Then a rule can be
derived from this emerging pattern as: If the sequence segment has an in-frame ATG
up-stream from the candidate TIS, and an in-frame stop codon down-stream from the
candidate TIS, and there is no occurrence of any codons for the amino acid A, then this
candidate TIS is a non-TIS with 10% probability and is a TIS with 0% probability.



3.6 A Practical Challenge

Given two datasets ��� and ��� , an emerging pattern—to be used by PCL—is a pattern
such that its frequency in ��� (or ��� ) is non-zero but in the other dataset is zero (i.e.,
infinite ratio between its support in ��� and ��� ), and none of its proper subpattern is
an emerging pattern (i.e., most general). If ��� and ��� have � Boolean attributes, then
there are

� C
possible patterns. Hence a naive method to extract emerging patterns re-

quires
� C

scans of the dataset. A more efficient method for extracting emerging patterns
is therefore crucial to the operation of PCL. Let us begin with a theoretical observation:

Theorem 2 (Cf. [12]). The emerging patterns from ��� to ��� —all of them together,
not just most general the ones—form a convex space. ��

It is known that a convex space � can be represented by a pair of borders ��� / ��� , so
that (a) � is anti-chain, (b)

�
is anti-chain, (c) each � ? � is more general than some� ? �

, (d) each
� ? �

is more specific than some � ? � , and (e) � F 5 " ;�� � ?
� /	� � ? �f/ ��
 " 
 � 6 . Actually, � are the most general patterns in � , and

�
the

most specific patterns in � . We can write 3 � / � 5
for � . Observe that

Proposition 1. Suppose ��� and ��� have no duplicate and no intersection and are
of the same dimension. Then the set of emerging patterns from ��� to ��� is given by3 5757676 / ��� 5 M 3 5757676 / ��� 5

. ��

Let ���
F 5 # -�/ ! ! !�/ # C 6 and ���

F 5� -�/ ! ! !�/ �  6 . Then 3 5757676 / ��� 5 M%3 5757676 / ��� 5
F 3 5757676 / 5 # -�/ ! ! !%/ # C 6 5 – 3 5757676 / 5� -�/ ! ! !%/ �  6 5 F 3 � / 5 # -�/ ! ! !%/ # C 6 5 , where � F
� *

�
* # C� 575 � -�/ ! ! !%/ �  6 ; � ��? # � M�� �

, � P � P � 6 2 . This definition of � is some-
thing we know how to optimize [11, 12] using datamining ideas from Max-Miner’s
look-ahead [3], Apriori’s candidate generation [1], and level-wise search [27].

4 Another Important Role of Databases: Laboratory Workflow

We have seen the role that database research has played in data integration and knowl-
edge discovery in modern molecular biology research. We have also described two tech-
nologies that were very original when they were first developed. The first is Kleisli,
introduced in 1994. It is the first broad-scale data integration system that employs the
nested relational data model, an explicit data exchange format, and a mediator-wrapper
architecture. These features greatly facilitated the incorporation of numerous biological
data sources and applications into Kleisli. The second is PCL—and the idea of emerg-
ing patterns, introduced in 1998—which is a machine learning method quite distinct
from traditional machine learning methods. It produces highly human-understandable
rules and also achieves very good accuracy.

To wrap up this paper, we discuss a third area where database research has a key role
to play—the workflow of laboratory information management systems (LIMS). LIMS
are deployed in genomic laboratories right where the raw genomic data are generated.
The informatics challenge there is to control laboratory workflow, while keeping track
of the mountains of data being generated in a consistent and accountable fashion. A



LIMS is thus a specialized database management system that focuses on the manage-
ment of the two key aspects of a genome laboratory: Data and process.

Data have been a key achievement of the genome era—an era that has resulted
in a multitude of new technologies that enable researchers to, say, sequence entire
genomes [20] or scan tens of thousands of genes in a single chip experiment [15].
Such technological advancements have brought about challenging data management
requirements for LIMS: (a) Voluminous data management. LIMS databases should be
highly scalable as genome technologies have been designed to generate data en masse,
and typical data entries in genome laboratories are often large capacity data items such
as images and genetic sequences. (b) Heterogeneous data format handling. Laboratory
data are often captured in the LIMS in a processed form (e.g., normalized peak heights
instead of the entire electropherograms), requiring that the LIMS be able to access the
proprietary file formats of different laboratory equipment to perform the necessary data
extraction. A good LIMS should also capture useful data-associated user annotations,
usually descriptive in nature and is best represented as free text. (c) Persistent and secure
data archiving. The computerization of the laboratory and the emergence of bioinfor-
matics have resulted in more and more laboratory data residing on computer systems in
various digital formats. A file repository component must be included with a LIMS to
persist, secure, and organize data files captured in the laboratory procedures. The recent
FDA’s requirement on “21 CFR Part 11” compliance has made it urgently necessary for
drug companies to implement persistent and secure electronic archiving of laboratory
data. A LIMS must therefore have built-in mechanisms to ensure the authenticity and
integrity of the data.

Management of laboratory processes is the other focus of LIMS: (a) Sample track-
ing. Most laboratories implement a barcode system for tracking samples physically
(e.g., blood, tissue, DNA). “Logical” tracking of laboratory samples, on the other hand,
can be a complicated data management task in genome laboratories: A sample may be
duplicated into multiple copies, extracted into various smaller fragments, loaded with
others onto a single plate or array, reloaded with different groups of samples for another
experimental procedures, and so on. LIMS databases must model such complex trans-
formations of genomic objects. (b) Protocol tracking. Experimental protocols should
be recorded in the LIMS and associated with the data generated, so that what has been
done to a laboratory sample can be explained or redone. However, in an emerging field
such as genomics, experimental protocols are continuously being re-engineered. LIMS
databases must support an efficient versioning scheme for defining and updating proto-
cols and tracking the changes made. (c) Inventory tracking. To maintain high throughput
in laboratories, inventory tracking is an essential LIMS functionality so that the neces-
sary laboratory materials (e.g., reagents, test-tubes, plates) are in stock and valid (for
those with expiry dates). This means that all laboratory procedures must be modeled in
fine details in the LIMS so that the database can automatically estimate current inven-
tory based on usage.

Other LIMS-related operational database requirements include: (a) Instrument in-
tegration and interfacing. Integration is a key issue for LIMS, as it is not uncommon
to employ multiple systems to conduct experiments in genome laboratories, and the
LIMS is often expected to automate the operation of some of the laboratory processes



in addition to mere data extraction from the different machines. (b) User and project
management. A LIMS is often an enterprise solution in a genome institution, catering
to a mixed community of users from laboratory technicians to research scientists and
managers, each having his own use requirements in different experimental projects. The
LIMS must therefore satisfy the different user needs, and implement appropriate access
control schemes for the different categories of users and projects.

Database research has enabled the transition of traditional biology into data-intensive
genomics, by meeting the many challenging requirements in data generation, capture,
and annotation through technological development such as Kleisli and operationally
scalable implementation of LIMS. With the coming-of-age of bioinformatics in the
genome era, computer analysis has become an integral part of genome knowledge dis-
covery [34]. Post-genome LIMS not only impacts people within the wet laboratory but
also extends into many other areas of the new biological discovery process, including
bioinformaticists and biostatisticians in the “dry” labs. Traditional LIMS has focused
on tracking data and processes in the physical environment of the wet laboratories; the
post-genome database adventures in LIMS would be to also track the data and processes
in the virtual environment of the dry labs, and relating them with those in the wet labs
in one single consistent database system.
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