The Functional Guts of the Kleisli Query System

Limsoon Wong
Kent Ridge Digital Labs
21 Heng Mui Keng Terrace
Singapore 119613

limsoon@krdl.org.sg

ABSTRACT

Kleisli is a modern data integration system that has made a
significant impact on bioinformatics data integration. The
primary query language provided by Kleisli is called CPL,
which is a functional query language whose surface syntax
is based on the comprehension syntax. Kleisli is itself im-
plemented using the functional language SML. This paper
describes the influence of functional programming research
that benefits the Kleisli system, especially the less obvious
ones at the implementation level.

1. INTRODUCTION

The Kleisli system [14] is an advanced broad-scale integra-
tion technology that has proved useful in the bioinformatics
arena. Many bioinformatics problems require access to data
sources that are high in volume, highly heterogeneous and
complex, constantly evolving, and geographically dispersed.
Solutions to these problems usually involve multiple care-
fully sequenced steps and require information to be passed
smoothly between the steps. Kleisli is designed to handle
these requirements directly by providing a high-level query
language, CPL, that can be used to express complicated
transformation across multiple data sources in a clear and
simple way.

Many key ideas in the Kleisli system are influenced by func-
tional programming research, as well as database query lan-
guage research. Its high-level query language CPL is a func-
tional programming language that has a built-in notion of
“bulk” data types suitable for database programming and
has many built-in operations required for modern bioinfor-
matics. Kleisli is itself implemented on top of the func-
tional programming language Standard ML of New Jersey
(SML/NJ). Even the data format that Kleisli uses to ex-

change information with the external world is derived from
an idea in type inference.

This paper provides an overview of the Kleisli system; a
summary of its impact on query language theory; and a de-
scription of the influence of functional programming research
that benefits the Kleisli system, especially the less obvious
ones at the implementation level. The organization of the
paper is as follows. Section 2 has three subsections that
give an overview of the architecture, data model, and query
language (CPL) of Kleisli. Section 3 also has three sub-
sections that single out three areas in the implementation
of Kleisli and discuss how they are influenced by functional
programming research. In particular, how type inference
gives rise to Kleisli’s self-describing data exchange format,
how monad gives rise to Kleisli’s internal abstract repre-
sentation of queries and simple optimization rules, and how
higher-order functions give rise to a simple implementation
of Kleisli’s powerful optimizer. Section 4 discusses the im-
pact of Kleisli on bioinformatics data integration. In partic-
ular, the first Kleisli query written for this purpose is repro-
duced here to illustrate the smoothness of Kleisli’s interface
to relational and non-relational bioinformatics sources and
its optimizations.

This paper is largely extracted from a much longer and
detailed paper [37] in J. Funct. Prog. Additional topics
discussed in the longer paper include laziness, concurrency,
“dependency-like” typing, and optimizations for relational
databases.

2. QUICK TOUR OF KLEISLI

We begin with the data model of Kleisli that is based on
complex object types and with the high-level query language
supported by Kleisli called CPL, which stands for Collec-
tion Programming Language. Its architecture is presented
in Subsection 2.1, its data model in Subsection 2.2, and an
overview of CPL in Subsection 2.3.

2.1 Architecture

The Kleisli system[14] is written entirely in SML/NJ. The
architecture of the system is depicted in the figure below.
Kleisli is extensible in many ways: It can be used to sup-

port many other high-level query languages by replacing the
CPL module. Kleisli can also be used to support many dif-
ferent types of external data sources by adding new drivers,
which forward Kleisli’s requests to these sources and trans-
late their replies into Kleisli’s exchange format. The ver-
sion that forms the backbone of the ConnectivityEngine™
of KRIS Informatics Inc. (www.kris-inc.com) contains over
sixty drivers for all popular bioinformatics systems, includ-
ing Sybase, Oracle, Entrez [28], WU-BLAST2 [1], Gapped
BLAST [2], ACEDB [34], etc. Also, the optimizer of Kleisli
can be customized by different rules and strategies.

CPL-Kleisli Drivers Net
Remote
pipe Sybase Servers
Type Driver
Module Manager -
ASN.1
I I
Complex
CPL NRC i OoPM
Obiect GenBank
Library
I I ACeDB
shared
Optimi Primitive memory
plimizer Manager |
BLAST
NCBI-BLAST

When a query is submitted to Kleisli, it is first processed
by the CPL Module which translates it into an equivalent
expression in NRC. The abstract calculus NRC is based on
that described in [8], and is chosen as the internal query rep-
resentation because it is easy to manipulate and amenable
to machine analysis. The NRC expression is then analyzed
by the Type Module to infer the most general valid type
for the expression, and is passed to the Optimizer Module.
Once optimized, the NRC expression is then compiled by the
NRC Module into calls to the Complex Object Library. The
resulting compiled code is then executed, accessing drivers
and external primitives as needed through pipes or shared
memory. The Driver and Primitive Managers keep infor-
mation on external sources and primitives and the wrap-
per/interface codes to them. The Complex Object Library
contains routines for manipulating complex objects such as
codes for set intersection and codes for iterating over a set.

2.2 Complex Object Types

The data model underlying Kleisli is a complex object type
system that goes beyond the “sets of records” or “flat re-
lations” type system of relational databases [13]. It allows
arbitrarily nested records, sets, lists, bags, and variants. A
variant is also called a tagged union type and represents a
type that is “either this or that”. Our sets, bags, and lists
are homogeneous. In order to mix objects of different types
in a set, bag, or list, it is necessary to inject these objects
into a variant type.

The simultaneous availability of sets, bags, and lists in Kleisli
deserves some comments. In a relational database, the sole
“bulk” data type is the set. In a functional programming
language, the usual “bulk” data type is the list. Having
only one bulk data type presents at least two problems in
real life applications. Firstly, the particular bulk data type
may not be a natural model of real data. For example, if we
are modeling the author list of a paper and the ordering of
authors is important, it is conveniently modeled as a list. If
it is modeled as a set, then it is necessary to model it as a
set of author-position pairs, to avoid losing information on
the ordering of authors. Secondly, the particular bulk data
type may not be an efficient model of real data. For exam-
ple, if we are modeling the author list of a paper and the
ordering of authors is unimportant for the particular appli-
cation we have in mind, it is conveniently modeled as a set.
If it is modeled as a list, then well-known database query
optimizations such as re-ordering of joins [32] can no longer
be applied, as they normally do not preserve positional or-
dering.

EXAMPLE 2.1. The GenPept report is the format chosen
by the US National Centre for Biotechnology Information to
present amino acid sequence information. While an amino
acid sequence s a string of letters, certain regions and posi-
tions of the string are of special biological interest, such as
binding sites, domains, and so on. The feature table of a
GenPept report is the part of the GenPept report that docu-
ments the positions of these regions of special biological in-
terest, as well as annotations or comments on these regions.
The following type represents the feature table of a GenPept
report from Entrez [28].

(#uid:num, #title:string,
#accession:string, #feature:{(
#name:string, #start:num, #end:num,
#anno: [(#anno_name:string, #descr:string)]l)})

It is an interesting type because it is a record of set of lists
of records. Here is the detail. It is a record of four fields
#uid, #title, #accession, and #feature. The first three of
these store values of types num, string, and string respec-
tively. The #uid field uniquely identifies the GenPept report.
The #feature field is a set of records, which together form
the feature table of the corresponding GenPept report. Each
of these records has four fields #name, #start, #end, and
#anno. The first three of these have types string, num, and
num respectively. They represent respectively the name, start
position, and end position of a particular feature in the fea-
ture table. The #anno field is a list of records. Each of these
records has two fields #anno_name and #descr, both of type
string. These records together represent all annotations on
the corresponding feature. m|

In general, the types are freely formed by the syntax:

t ::= num | string | bool
| {3 | {1t1} | [t]
| (l1 :tl, ey ln . tn)
| <lpitiy ey by 1 t0>

Here num, string, and bool are the base types. The other
types are constructors and build new types from existing
types. The types {t}, {It1}, and [t] respectively construct
set, bag, and list types from type t. The type (l1 : t1,
.y In : ty) comstructs record types from types t1, ..., tn.
The type <l1 : t1, ..., ln : t,> constructs variant types from
types ti, ..., tn. The flat relations of relational databases are
basically sets of records, where each field of the records is a
base type; in other words, relational databases have no bags,
no lists, no variants, no nested sets, and no nested records.
Values of these types can be explicitly constructed in CPL
as follows, assuming the e’s are values of appropriate types:
(1 : ety -, ln : epn) for records; <l : e> for variants; {e1,
..., en} for sets; {lei, ..., en |} for bags; and [ey, ..., e,] for
lists.

EXAMPLE 2.2. Here is the feature table of GenPept report
181470, a tyrosine phosphatase 1C sequence.

(#uid:131470, #accession:"131470",
#title:"... (PTP-1C)...", #feature:{(
#name:"source", #start:0, #end:594, #anno:[
(#anno_name:"organism", #descr:"Mus musculus"),
(#anno_name:"db_xref", #descr:"taxon:10090")]1),

.B

The particular feature displayed above is from amino acid
0 to amino acid 594, which is actually the entire sequence.
The feature entry displayed above has two annotations. The
first indicates that this amino acid sequence is derived from
mouse DNA sequence. The second is a cross reference to
the US National Center for Biotechnology Information taz-
onomy database. O

The schemas and structures of all popular bicinformatics
databases, flat files, and softwares are easily mapped into
this data model. At the extreme of data structure complex-
ity are Entrez [28] and ACEDB [34], which contain deeply
nested mixtures of sets, bags, lists, records, and variants.
At the other extreme of data structure complexity are the
relational database systems [13] such as Sybase and Ora-
cle, which contain flat sets of records. Currently, Kleisli
gives access to over sixty of these and other bioinformatics
sources. The reason for this ease of mapping bioinformatics
sources to Kleisli’s data model is that they are all inherently
composed of combinations of sets, bags, lists, records, and
variants. So we can directly and naturally map sets to sets,
bags to bags, lists to lists, records to records, and variants to
variants into Kleisli’s data model, without having to make
any (type) declaration before hand.

It would not be possible to map these sources so easily onto a
relational database system or a deductive database system,
as all relational and deductive database systems impose the
first normal form requirement. The first normal form is an
important concept of relational databases and is the basis of
their practical implementation. It is also a key ingredient in
guaranteeing termination of queries in deductive databases.
A value is in first normal form if it is “flat”, that is, it con-
tains no nested records, nested sets, or other “bulk” types.
Relational database systems and their deductive extensions
are designed to only manipulate data in first normal form
or its further restrictions and their implementations exploit
this first normal form assumption to achieve great efficiency.

The number of type constructors may seem spartan com-
pared to those of popular functional programming languages,
where arbitrary number of fresh types and type constructors
can be introduced by a programmer. There seems to be
a different attitude towards types between the two worlds.
In a database query language, it is not necessary to intro-
duce a new relation type explicitly. Almost every query in
a database query language results in a “new” type. For ex-
ample, a projection query that extracts two fields from an
existing relation having three fields in principle introduces
a “new” record type having only those two named fields.
In a functional programming language such as Haskell, new
record types cannot be created easily, as they must be ex-
plicitly introduced before hand. So to implement the same
query, the Haskell programmer would have to first intro-
duce a new type with a type constructor having the two
named fields. Even in a functional programming language
like SML/NJ, where new record types can be used without
prior type declaration, it is often the case that variant types
must be declared before hand.

The difference is that the richness of types in database pro-
gramming is hidden by their being implicit, while the rich-
ness of types in functional programming is highlighted by
their being explicit. The fact that almost all database queries
introduce “new” types makes a compelling reason for data-
base programming languages to favour more flexible type
constructors and types that are completely, conveniently,
and anonymously defined in terms of their structures. In-
terestingly, more experimental or theoretical investigations
of functional programming languages such as [25], also ex-
plored these ideas and favoured similar spartan but more
flexible type constructions.

2.3 Collection Programming L anguage

The syntax of CPL is similar to that of the ODMG stan-
dard for object-oriented database languages [10]. An in-
teresting feature of the syntax of CPL is the heavy use
of the comprehension syntax, which showed up long ago
in functional programming languages and later formalized
by Wadler [33]. A typical comprehension in CPL syntax is
{x * x | \x <= S, odd(x)} which returns a set consisting
of the squares of all odd numbers in the set S. This is similar
to the notation found in functional languages, the main dif-

ference being that the binding occurrence of x is indicated
by preceding it with a backslash, and that the expression
returns a set rather than a list. As in functional languages,
\x <- Sis called a “generator”, and odd(x) is called a “fil-
ter.” Rather than giving the complete syntax, we illustrate
CPL by a few examples on a set of feature tables DB.

EXAMPLE 2.3. This query extracts the titles and features
of those elements of DB whose titles contain tyrosine as a
substring.

{ (#title: x.#title, #feature: x.#feature)
| \x <- DB, x.#title string-islike "Ytyrosinei" };

O

This query is a simple project-select query. A project-select
query is a query that operates on one (flat) relation or set.
Thus the transformation that such a query can perform is
limited to selecting some elements of the relation and ex-
tracting or projecting some fields from these elements. Ex-
cept for the fact that the source data and the result may not
be in first normal form, these queries can be expressed in a
relational query language. However, CPL can perform more
complex restructurings such as nesting and unnesting not
found in common relational database languages like SQL,
as shown in the following examples.

EXAMPLE 2.4. This query flattens DB completely. The
\a <--- f.#anno has similar meaning to \x <- DB, but it
works on list instead of set. Thus it binds a to each item in
the list £.#anno.

{(#title:x.#title, #feature:f.#name,
#istart:f.#start, #end:f.#end,
#anno-name:a.#anno_name, #anno-descr:a.#descr)

| \x <- DB, \f <- x.#feature, \a <—-- f.#anno};

EXAMPLE 2.5. This query demonstrates how to do nest-
ing in CPL. The subquery DB’ is the restructuring of DB
by pairing each entry with its source organism. The sub-
query ORG then extracts all organism names. The main query
groups entries in DB’ by organism names. It also sorts the
output list by alphabetical order of organism names, because
[u | \u <- ORG] converts the set ORG into a duplicate-free
sorted list.

let \DB’ == {(#entry:x, #organism:a.#descr)
| \x <- DB, \f <- x.#feature, \a <-—- f.#anno,
a.#anno_name = "organism"} in

let \ORG == {y.#organism | \y <- DB’}
in [(#organism:z, #entries: {v.#entry
| \v <- DB’, v.#organism = z})

| \z <——-= [u | \u <- ORG1];

The inspiration for CPL came primarily from [6] that pre-
sented structural recursion as a query language. However,
structural recursion has two difficulties. The first is that not
every syntactically acceptable structural recursion program
is logically well defined [7]. The second is that structural
recursion has too much expressive power because it can ex-
press queries that require exponential time and space.

While programming languages always take Turing complete-
ness for granted, the attitude in database programming is
radically different. In the context of querying databases,
due to their immense size, queries are restricted to those
which are practical in the sense that they should be within a
low complexity class such as LOGSPACE, PTIME, or TC°.
In fact, one may even want to prevent any query that has
worse than O(n - logn) complexity, unless one is confident
that the query optimizer has high probability of optimizing
the query to no more than O(n - logn) complexity. Thus
database query languages such as SQL are designed in such
a way that joins are easily recognized, as joins are the only
operations in a typical database query language that require
O(n?) complexity if evaluated naively.

Thus Tannen and Buneman suggested a natural restriction
on structural recursion to reduce its expressive power and to
guarantee its well-definedness. Their restriction cuts struc-
tural recursion down to homomorphisms on the commuta-
tive idempotent monoid of sets, revealing a telling correspon-
dence to monads [33]. A nested relational calculus, which
is denoted here by N'RC, was then designed around this re-
striction [8]. N'RC is essentially the simply-typed lambda
calculus extended by a construct for building records, a con-
struct for decomposing records by field selection, a construct
for building sets, a construct for decomposing sets by means
of the restriction on structural recursion. Specifically, the
construct for decomposing sets is [J{e1 | z € ez}, which
forms a set by taking the big union of ei[o/z] over each o
in the set ea. N'RC (suitably extended) is implemented by
the NRC Module of Kleisli and is the abstract counterpart
of CPL, a la Wadler’s equations relating monads and com-
prehensions[33].

In order to show that N'RC is a good basis for a query
language, its relationship to existing query languages must
be investigated. Furthermore, it has to enable solution to
existing open problems in query language theory, it has to
enable generalization of existing results in query language
theory, it has to facilitate practical implementation, it has
to allow for good query optimization, and it has to enable
new applications.

The expressive power of NRC and its extensions are stud-
ied in [30, 15, 18, 8, 31]. These papers presented solutions
to several open problems in query language theory. The
most important of these resultba.re directed at N'RC(=)
and NRC(Q, +, -,—, +, >, <%=). The former is N'RC
augmented with equality test. The latter is N'RC(=) fur-
ther augmented with rational numbers, linear order on ratio-
nal numbers, arithmetic operations, and a summation con-
struct. N'RC(=) was shown to have exactly the power as the
usdal nested relational algebra [8]. NRC(Q, +, -,—, +, >,
) was shown to capture the power of SQL, including
aggregate functions and group-by constructions [18]. These
languages are much easier to analyse than existing nested re-
lational algebras and SQL, and thereby are likely to be eas-
ier to implement and optimize. For example, Libkin and the
author[18] began (3 series of powerful analyses on N'RC(Q,
y =y sy 2oy <% =) that fruitfully resolved several open
questions on SQL, including the following long anticipated
results on unordered graphs: NRC(Q, +, -,—, +, >, <% =)
and thus SQL cannot test if a graph is a chain, nor test if a
graph is connected, nor test if a graph has an even number
of edges, nor compute the transitive closure of a graph.

The impact of these and other theoretical results on the de-
sign of CI&; and Kleisli is that CPL adopts NRC(Q, +

=, >, <% =) as its core. NRC(Q, +, ,.—, =, >, SQ)
captures all standard nested relational queries in a high-
level manner that is easy for automated optimizer analysis
(a primary reason that we were able to use it to prove many
difficult theorems on SQL.) It is also easy to translate more
user-friendly surface syntax such as the comprehension syn-

tax or the S select-from-where syntax into NRC(Q, +,

Y=, =, >, <9 =). It is thus a very suitable core.

3. INFLUENCE OF FUNCTIONAL PROG-
RAMMING

Functional programming has a significant influence on Kleisli
and CPL. This influence is most visible at the language level
of CPL. CPL has higher-order functions and a ML-style
polymorphic type system. Its type system is further aug-
mented with another invention from the functional program-
ming community: parametric record polymorphism [21, 25].
Although CPL’s view of record type variables is closer to
that in Machiavelli [21], than the row variables of Remy [25],
the implementation [36] of polymorphic records in Kleisli is
based on a clever idea of Remy [26]. The most noticeable
feature of CPL, the comprehension syntax, made its appear-
ance many years ago in the programming language world in
languages such as Miranda. It was also discussed earlier and
elsewhere [8] that the core of CPL is founded on structural
recursion [6] and monad [33].

It is more interesting to discuss the influence of functional
programming on components of the Kleisli system that are
less visible. In particular, we discuss the self-describing ex-
change format of Kleisli in Subsection 3.1, the abstract in-
ternal representation of queries in Subsection 3.2, and the
optimizer in Subsection 3.3.

3.1 Type Inference and Self-Describing Ex-
change For mat

Of the many discoveries by the functional programming com-
munity, our favourite is parametric polymorphism and type
inference. CPL uses such a type system and Kleisli’s self-
describing data exchange format is also a direct derivative
of such a type system. The benefits are discussed in this
subsection.

In a dynamic heterogeneous environment such as that of
bioinformatics, many databases and softwares are used.
Worse still, they often do not have any thing that can be
thought of as an explicit database schema. Further com-
pounding the probem is that research biologists demand
flexible access and queries in very ad-hoc combinations. Thus,
a query system that aims to be a general integration mech-
anism in such an environment, must satisfy four conditions.
First, it must not count on the availability of schemas. It
must be able to compile any query submitted based com-
pletely on the structure of that query. Second, it must have
a data model that these external databases and softwares
can easily translate to, without doing a lot of type decla-
rations and so on. Third, it must shield existing queries
from evolution of these external databases and softwares as
much as possible. For example, an extra field appearing in
an external database table must not make it necessary to
recompile/rewrite an existing query. Fourth, it must have a
data exchange format that is straightforward to use, so that
it does not demand too much programming effort or con-
tortion to capture the variety of structures of output from
from external databases and softwares.

Three of these requirements are addressed by features of
CPL’s type system. CPL has polymorphic record types that
allow, for example,

\R => {x.#name | \x <- R, x.#salary > 1000}

which defines a function that returns names of people in R
earning more than a thousand dollars. This function is ap-
plicable to any R that has at least the #name and the #salary
fields, thus allowing the input source some freedom to evolve.
CPL also has variant types that allow, for example,

{ <#name: "John">, <#zip-code: 119613> }

which is a set containing objects of very different structures;
in this case, a string carrying a #name tag and a number
carrying a #zip-code tag. This feature is particularly use-
ful in handling ASN.1-formatted [17] data from Entrez, one
of the most important and most complex sources of DNA
sequences, as it contains a profusion of variant types.

Note that functional programming languages like Haskell
and SML require variant types to be declared in advance,
and Haskell does not even have first class record types. In

contrast, CPL does not require any type to be declared at
all. The type and meaning of any CPL program can always
be completely inferred from its structure without the use of
any schema or type declaration. This makes it possible to
logically plug in any data source without doing any form of
schema, declaration, at a small acceptable risk of run-time
errors if the inferred type and the actual structure are not
compatible. This is an important feature because most of
our data sources do not have explicit schemas, while a few
have extremely big explicit schemas that run into tens of
pages—an example big complex schema is the ASN.1 schema
of Entrez [20]—making it impractical to have any form of
declaration.

We now come to the fourth requirement. A data exchange
format is an agreement on how to lay out data in a data
stream or message when the data is exchanged between
two systems. In our case, it is the format for exchang-
ing data between Kleisli and all the bioinformatics sources.
The data exchange format of Kleisli corresponds one-to-one
to Kleisli’s data model. It provides for records, variants,
sets, bags, and lists; and it allows these data types to be
freely composed. In fact, the data exchange format com-
pletely adopts the syntax of value construction in CPL, as
described in Subsection 2.2. Recall that CPL programs con-
tain no type declaration. A CPL compiler has to figure out
if a CPL program has a principle typing scheme. This kind
of type inference is possible because every construct in CPL
has an unambiguous most general type. In particular, the
value construction syntax is such that it is possible to in-
spect only the first several symbols to figure out local type
constraints on the corresponding value, as each value con-
structor is unambiguous. For example, if a {| bracket is
seen, it is immediately clear that it is a bag; and if a (
bracket is seen, it is immediately clear that it is a record.
Thus, by adopting the value construction syntax of CPL as
the data exchange format, the latter becomes self describing.

A self-describing exchange format is one in which there is
no need to define in advance the structure of the objects
being exchanged. In database terminology, it means there
is no fixed schema. In programming language terminology,
it means there is no type declaration. In a sense, each ob-
ject being exchanged carries its own description. A self-
describing format has the important property that, no mat-
ter how complex the object being exchanged is, it can be eas-
ily parsed and reconstructed without any schema informa-
tion. To understand this advantage, one should look at the
ISO ASN.1 standard [17] open systems interconnection. It
is not easy to exchange ASN.1 objects because before we can
parse any ASN.1 object, we need to parse the schema that
describes its structure first—making it necessary to write
two complicated parsers instead of a simple one.

It should be mentioned that self-describing data exchange
formats exist in several forms in earlier work [22, 19]. How-
ever, Kleisli’s is probably the first self-describing exchange
format that is consciously derived from type inference!

3.2 Kleidi Triplesand Abstract Syntax

Let us briefly recall the restricted form of structural recur-
sion which corresponds to the presentation of monads by
Kleisli [33, 8]. It is the combinator ext(-)(-) obeying these
three equations:

eat(H){} = {}
ext(f){o} = f(o)
ext(f)(AU B) = ecat(f)(A) U eat(f)(B)

Thus, ext(f)(R) is equal to the (J{f(z) | z € R} construct
of NRC. The direct correspondence in CPL is: ext{e; | \z
<- €3 }, which is interpreted as ext(f)(ez2), where f(z) = e1.
This combinator is a key operator in the Complex Object
Library of Kleisli and is at the heart of the NRC, the abstract
representation of queries in the implementation of CPL. It
earns its central position in the Kleisli system because it
offers tremendous practical and theoretical convenience.

Its practical convenience is best seen in the issue of abstract
syntax in the implementation of a database query language.
The abstract syntax is the internal representation of a query
and is usually manipulated by code generators; the better
abstract synax is the one that is easier to analyse. It must
not be confused with the surface syntax, which is what the
usual database programmer programs in; the better sur-
face syntax is the one that is easier to read. It is worth
contrasting the ext construct to the comprehension synax
here. With regard to surface syntax, CPL adopts the com-
prehension syntax because it is easier to read than the ext
construct. For example, the Cartesian product of two sets
is expressed using the comprehension syntax as

{(x, ¥ | \x <- R, \y <- s}
In contrast, it is expressed using the ext construct as
ext{ext{{(x,y)} | \y <- 8} | \x <- R}

which is more convoluted. However, the advantage of the
comprehension syntax more or less ends here. With regard
to abstract syntax, the situation is exactly the opposite!
Comprehensions are easy for the human programmer to read
and understand. However, they are in fact extremely incon-
venient for automatic analysis and is thus a poor candidate
as an abstract representation of queries. This difference is
illustrated below by a pair of contrasting examples in imple-
menting optimization rules.

A well-known optimization rule is vertical loop fusion [16],
which corresponds to the idea of getting rid of intermediate
data. Such an optimization on queries in the comprehension
syntax can be expressed informally as

{6 | G, ..., Gn, \.’l? <- {6’ | Hy, ..., Hm}, Ji, Jk} ~>
{ele'/z] | G1, .., Gn, H1, ...y Hp, J1]e’ /2], ..., Jil€'/x]}

Such a rule in comprehension form is very simple to grasp.
Basically the intermediate set built by the comprehension
{e' | Hi, ..., Hy} has been eliminated, in favour of generat-
ing the z on the fly. In practice it is quite messy to imple-
ment the rule above. In writing that rule, the informal “...”
denotes any number of generator-filters in a comprehension.
When it comes to actually implementing it, a nasty traver-
sal routine must be written to skip over the non-applicable
Gi in order to locate the applicable \z <- {¢’ | Hi, ..., Hn}
and Jl

Let us now consider the ext construct. As pointed out by
Wadler [33], any comprehension can be translated into this
contruct. Its effect on the optimization rule for vertical loop
fusion is dramatic. This optimization is now expressed as

ext{e; | \z <- ext{es | \y <- es}} ~
ext{ ext{e1 | \x <- e2} | \y <~ es}

The informal and troublesome “...” no longer appears. Such

a rule can be coded up straightforwardly in almost any im-
plementation language. A similar simplication is also ob-
served in proofs using structural induction. For comprehen-
sion syntax, when one comes to the case for comprehension,
one must introduce a secondary induction proof based on
the number of generators and filters in the comprehension,
whereas the ext construct does not give rise to such compli-
cation. A related saving is that comprehensions require two
kinds of terms, expressions and qualifiers, whereas the ext
formulation requires only one kind of terms, expressions.

In order to illustrate this point more concretely, it is neces-
sary to introduce some detail from the implementation of the
Kleisli system. The type SYN of ML objects that represent
queries in Kleisli is declared in the NRC Module mentioned
in Subsection 2.1. The data constructors that are relevant
to our discussion are:

datatype SYN = ...

| EmptySet

| SngSet of SYN

| UnionSet of SYN * SYN

| ExtSet of SYN * VAR * SYN

| IfThenElse of SYN * SYN * SYN

All ML objects that represent optimization rules in Kleisli
are functions and they have type RULE:

type RULE = SYN -> SYN option

If an optimization rule r can be successfully applied to rewrite
an expression e to an expression €', then r(e) = SOME(e). If
it cannot be successfully applied, then r(e) = NONE.

We now return to the optimization rule on vertical loop

fusion. As promised earlier, we are rewarded by a simple
implementation:

ExampLE 3.1. Vertical loop fusion.

fun Vertfusion(ExtSet(E1l,x,ExtSet(E2,y,E3)))
= SOME (ExtSet (ExtSet (E1l,x E2),y,E3))
| Vertfusion _ = NONE

O

The Kleisli optimizer also performs many other optimiza-
tions. These optimizations include a general form of code
motion; parallelism to exploit network latency; selective in-
troduction of laziness to reduce memory consumption and
to improve response time; migration of selection, projection,
and joins to external relational database servers; reordering
of joins across tables from distinct database servers; etc. See
[37] for more details.

3.3 Higher-Order Functionsand Optimization
There is another very pleasant experience in implementing
the optimizer for the Kleisli system that illustrates very well
the many advantages and conveniences of higher-order func-
tions, besides allowing the expression of better algorithms
as discussed in [31]. The optimizer consists of an extensible
number of phases. Each phase is associated with a rule-base
and a rule application strategy. A large number of rule appli-
cation strategies are supported. The more familiar include
BottomUpOnce, which applies rules to rewrite an expression
tree from leaves to root in a single pass; TopDownOnce, which
applies rules to rewrite an expression tree from root to leaves
in a single pass; MaxOnce, which applies rules to the largest
redices in a single pass; and so on, together with their multi-
pass versions.

By exploiting higher-order functions all of these rule appli-
cation strategies can be decomposed into a “traversal” com-
ponent that is common to all strategies and a very simple
“control” component that is special for each strategy. In
short, higher-order functions can generate all these strate-
gies extremely simply, resulting in a very small optimizer
core. To give some ideas on how this is done, some code
fragments from the optimizer module mentioned in Subsec-
tion 2.1 are presented below.

The “traversal” component is a higher-order function that
is shared by all strategies:

val Decompose: (SYN -> SYN) -> SYN -> SYN

Recall that SYN is the type of ML objects that represent
query expressions. The Decompose function accepts a rewrite
rule r and a query expression). Then it applies 7 to all im-
mediate subtrees of) to rewrite these immediate subtrees.

Note that it does not touch the root of @ and it does not
traverse ()—it just nonrecursively rewrites immediate sub-

trees using r. It is therefore very straightforward and looks
like this:

fun Decompose f (SngSet N) = SngSet(f N)

| Decompose f (UnionSet(N,M)) = UnionSet(f N,f M)
| Decompose f (ExtSet(N,x,M)) = ExtSet(f N,x,f M)
|

A rule application strategy S is a function having the fol-
lowing type

val S: RULEDB -> SYN -> SYN

The precise definition of the type RULEDB is not important to
our discussion at this point and is deferred until later. Such
a function takes in a rule base R and a query expression @)
and optimizes it to a new query expression Q' by applying
rules in R according to the strategy S.

Assume that Pick: RULEDB -> RULE is a ML function that
takes a rule base R and a query expression) and returns
NONE if no rule is applicable, and SOME(Q') if some rule in
R can be applied to rewrite Q to Q'. Then the “control”
components of all the strategies mentioned earlier can be
generated in a very simple way.

EXAMPLE 3.2. TheMax0Once strategy applies rules to maz-
imal subtrees. It starts trying the rules on the root of the
query expression. If no rule can be applied, it moves down
one level along all paths and tries again. But as soon as a
rule can be applied along a path, it stops at that level for that
path. In other words, it applies each rule at most once along
each path from the root to the leaves. Here is its “control”
component:

fun MaxOnce RDB Qry =
case Pick RDB Qry
of SOME ImprovedQry => ImprovedQry
| NONE => Decompose (MaxOnce RDB) (Qry

EXAMPLE 3.3. The BottomUpOnce strategy applies
rules in a leaves-to-root pass. It tries to rewrite each node
at most once as it moves towards the root of the query ez-
pression. Here is its “control” component:

fun BottomUpOnce RDB Qry =
let fun Pass SubQry =
let val BetterSubQry = Decompose Pass SubQry

in case Pick RDB BetterSubQry
of SOME EvenBetterSubQry => EvenBetterSubQry
| NONE => BetterSubQry end
in Pass Qry end

Let us now present an interesting class of rules that requires
the use of multiple rule application strategies. The scope of
rules like the vertical loop fusion in the previous subsection
is over the entire query. In contrast, this class of rules has
two parts. The inner part is “context sensitive” and its scope
is limited to certain component of the query. The outer part
scopes over the entire query to identify contexts where the
inner part can be applied. The two parts of the rule can be
applied using completely different strategies.

A rule base RDB is represented in our system as a ML
record of type

type RULEDB = {
DoTrace: bool ref,
Trace: (rulename -> SYN -> SYN -> unit) ref,
Rules: (rulename * RULE) list ref }

The Rules field of RDB stores the list of rules in RDB
together with their names. The Trace field of RDB stores a
function f that is to be used for tracing the usage of the rules
in RDB. The DoTrace field of RDB stores a flag to indicate
whether tracing is to be done. If tracing is indicated, then
whenever a rule of name N in RDB is applied successfully
to transform a query @ to @', the trace function is invoked
as f N Q Q' to record a trace. Normally, this simply means
a message like “Q is rewritten to Q' using the rule N” is
printed. However, the trace function f is allowed to carry
out considerably more complicated activities.

It is possible to exploit trace functions to achieve sophisti-
cated transformation in a simple way. An example is the
rule that rewrites if e; then ... e; ... else e3 to if e; then

. true ... else e3. The inner part of this rule rewrites e
to true. The outer part of this rule identifies the context
and scope of the inner part of this rule: limited to the then-
branch. This example is very intuitive to a human being.
In the then-branch of a conditional, all subexpressions that
are identical to the test predicate of the conditional must
eventually evaluate to true. However, such a rule is not
so straightforward to express to a machine. The informal
“..” are again in the way. Fortunately, rules of this kind
are straightforward to implement in our system.

EXAMPLE 3.4. The If-then-else absorption rule is
expressed by the AborbThen rule below. The rule has three
clauses. The first clause says that the rule should not be
applied to an IfThenElse whose test predicate is already a

Boolean constant, because it would lead to non-termination
otherwise. The second clause says that the rule should be
applied to all other forms of IfThenElse. The third clause
says that the rule is not applicable in any other situation.

fun AbsorbThen (IfThenElse(Bool _,_,_)) = NONE
| AbsorbThen (IfThenElse(E1,E2,E3)) =
let fun Then E =
if SyntaxTools.Equiv El1 E
then SOME(Bool true)
else NONE
in case ContextSensitive Then TopDownQOnce E2
of SOME E2’ => IfThenElse(E1,E2’,E3)
| NONE => NONE end
| AbsorbThen = NONE

The second clause is the meat of the implementation. The
inner part of the rewrite if e; then ... e; ... else e3 to
if e then ... true ... else e3 is captured by the function
Then which rewrites any e identical to e1 to true. This
function is then supplied as the rule to be applied using the
TopDownOnce strategy within the scope of the then-branch
... €1 ... using the ContextSensitive rule generator given
below.

fun ContextSensitive Rule Strategy Qry =
let (* This flag is set if Rule is applied *)
val Changed = ref false
(* Set up a context-sensitive rule base *)
val RDB = {
DoTrace = ref true,
Trace = ref (fn _ => fn _ => fn _ =>
(* Changed is true if Rule is used *)
Changed := true)
Rules = ref [("", Rule)l}
(* Apply Rule using Strategy. *)
val OptimizedQry = Strategy RDB Qry
in if !'Changed then SOME OptimizedQry else NONE end

This ContextSensitive rule generator is reused for many
other context-sensitive optimization rules, such as those used
for migrating selection, projections, and joins to external
relational database systems. |

Thus the use of higher-order functions greatly simplifies
the implementation of the current Kleisli optimizer, com-
pared to the original optimizer from [35]. The author is not
the first to discover this particular method of implementing
rewrite strategies; Paulson [23] and Spivey [29] presented
similar ideas.

4. IMPACT ON BIOINFORMATICS

“Until recently, biological sequence databases were built by
biologists. When sequence databases were first created the
amount of data was small and it was important that the

database entries were human readable. Database entries
were constructed, therefore, as flat files, that is, text entries
with the information ordered in a specific way. Indeed, it is
probably more accurate to describe these databases as data
repositories. As new types of data were captured or created,
new data repositories were created using a variety of flat
file formats. The result of this effort has been to create a
large number of different databases, all in different formats,
typically using non-standard data query software, and only
really properly accessible to bioinformatics experts” [3].

It is a significant challenge if these pieces have to be used to-
gether in complex ways to answer new questions in biology.
Clearly, simple retrieval of data is not sufficient for modern
bioinformatics. The challenge is how to manipulate the re-
trieved data derived from various databases and re-structure
the data in such a way to investigate specific biological prob-
lems. This may require feeding the retrieved data into var-
ious application programs, such as multiple sequence align-
ment programs, 3D structure modeling programs, and so on,
which require specific input data sets and formats.

It is now widely agreed that Kleisli has significantly reduced
the difficulty of integrating biology data [5, 3]. To get a
sense of Kleisli’s impact on bioinformatics, let us describe
the very first bioinformatics query implemented in Kleisli in
1994 [14]. It was one of the so-called “impossible” queries of
a US Department of Energy Bioinformatics Summit Report
(www.gdb.org/Dan/DOE/whitepaper/contents.html.) That
query was to find for each gene located on a particular cy-
togenetic band of a particular human chromosome, as many
of its non-human homologs as possible. Basically, the query
means that for each gene in a particular position in the hu-
man genome, find DNA sequences from non-human organ-
isms that are similar to it.

In 1994, the main database containing cytogenetic band in-
formation was the GDB [24], which was a Sybase relational
database. In order to find homologs, the actual DNA se-
quences were needed and the ability to compare them was
also needed. Unfortunately, that database did not keep ac-
tual DNA sequences. The actual DNA sequences were kept
in another database called GenBank [9]. At the time, access
to GenBank was provided through the ASN.1 version of En-
trez [28], which was an extremely complicated retrieval sys-
tem. Entrez also kept precomputed homologs of GenBank
sequences.

So this query needed the integration of GDB (a relational
database located in Baltimore) and Entrez (a non-relational
“database” located in Bethesda) that first extracted names
of genes on the desired cytogenetic band and accessed En-
trez for homologs of these genes and finally filtered these
homologs to retain the non-human ones. This query was
considered “impossible” as there was at that time no system
that could work across the bioinformatics sources involved
due to their heterogeneity, complexity, and geographical lo-
cations. Given the complexity of this query, the CPL query

given in [14] was remarkably short. Since then Kleisli has
been used to power many bioinformatics applications [4; 12;
11, etc.]

EXAMPLE 4.1. The query mentioned is shown below.!

sybase-add (#name:"gdb", ...);
readfile locus from "locus_cyto_location" using gdb;
readfile eref from "object_genbank_eref" using gdb;
{(#accn: g.#genbank_ref, #nonhuman-homologs: H)
| \c¢ <- locus, c.#chrom_num = "22",
\g <- eref, g.#object_id = c.#locus_id,
\H =={nu
| \u <- na-get-homolog-summary(g.#genbank_ref),
not (u.#title string-islike "YHuman}"),
not (u.#title string-islike "}H.sapien)")},
not (H={ 1}

The first three lines connected to GDB and mapped two ta-
bles in GDB to Kleisli. After that, these two tables could be
referenced within Kleisli as if they were two locally defined
sets, locus and eref. The next 9 lines extracted from these
tables the accession numbers of those genes on Chromosome
22 and used the Entrez function na-get-homolog-summary
to obtain their homologs and filtered these homologs for non-
human ones.

Besides the obuious smoothness of integration of the two data
sources, this query was also remarkably efficient. On the
surface, it seemed to fetch the locus table in its entirety
once and the eref table in its entirety n times from GDB,
as a naive evaluation of the comprehension would be two
nested loops iterating over these two tables. Fortunately, in
reality, the Kleisli optimizer was able to migrate the join and
projections on these two tables into a single efficient access
to GDB. O

Since the query above, Kleisli and its components have been
used in a number of bioinformatics projects such as GAIA at
the University of Pennsylvania (www.cis.upenn.edu/gaia2),
TAMBIS at the University of Manchester [4], and FIMM at
Kent Ridge Digital Labs [27]. It has also been used in con-
structing some databases in pharmaceutical companies such
as SmithKline Beecham, Schering-Plough, and GlaxoWell-
come. Kleisli is also the backbone of KRIS Informatics Inc.
(www .kris-inc.com).

5. CONCLUSION

The Kleisli system and its high-level query language CPL
embody many advances made in database query languages
and in functional programming. It represents a significant

'Those who have read [14] would notice that the SQL flavor
in the original implementation [14] has completely vanished.
This is because the current version of Kleisli has made sig-
nificant advancement in interfacing relational databases.

deployment of functional programming in an industrial
strength prototype that has made significant impact on data
integration in bioinformatics. Indeed, since the early Kleisli
prototype was applied to bioinformatics, it has been used to
efficiently solve many real-life data integration problems in
bioinformatics. To date, thanks to the use of CPL, we do
not know of another system that can express general bioin-
formatics queries as succintly as Kleisli.

There are several key ideas behind the success of the sys-
tem. The first is its use of complex object data model
where sets, bags, lists, records, and variants can be flexi-
bly combined. The second is its use of a high-level query
language CPL which allows these objects to be manipulated
easily. The third is its use a self-describing data exchange
format, which serves as a simple conduit to external data
sources. The fourth is its query optimizer, which is capable
of many powerful optimizations. The influence of functional
programming research on these ideas was already described.

There is one last reason behind the success of the system.
In spite of the sophistication of the Kleisli system, it has
a remarkably compact implementation, consisting of about
45000 of codes in Standard ML of New Jersey. This com-
pares well to the 1000000 lines of C codes for a typical full-
blown commercial database system such as Oracle, even af-
ter taking into consideration that a large proportion of these
1000000 lines are devoted to transaction control, disk man-
agement, and user interfaces. The implementor (this au-
thor) has no doubt that without this robust platform of func-
tional programming, it would have demanded much more
effort in implementing Kleisli.

6. ACKNOWLEDGEMENTS

Peter Buneman, Val Tannen, and Leonid Libkin—for many
years of fruitful collaboration.

7. REFERENCES
[1] S. F. Altschul and W. Gish. Local alignment statistics.
Methods Enzymology, 266:460-480, 1996.

[2] S. F. Altschul et. al. Gapped BLAST and PSI-BLAST:
A new generation of protein database search programs.
NAR, 25(17):3389-3402, 1997.

[3] P. G. Baker and A. Brass. Recent development in bio-
logical sequence databases. Curr. Op. Biotech., 9:54-58,
1998.

[4] P. G. Baker et al. TAMBIS—transparent access to mul-
tiple bioinformatics information sources. ISMB, 6:25—
34, 1998.

[6] D. Benton. Bioinformatics — principles and potential
of a new multidisciplinary tool. TIBTECH, 14:261-272,
1996.

[6] V.Breazu-Tannen et. al. Structural recursion as a query
language. DBPL, 3:9-19, 1991.

[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

V. Breazu-Tannen and R. Subrahmanyam. Logi-
cal and computational aspects of programming with
Sets/Bags/Lists. ICALP, 18:60-75, 1991.

P. Buneman et. al. Principles of programming with
complex objects and collection types. T'CS, 149(1):3—
48, 1995.

C. Burks et. al. GenBank. NAR, 20 Supplement:2065-9,
1992.

R. G. G. Cattell, editor. The Object Database Standard:
ODMG-93. Morgan Kaufmann, 1996.

J. Chen et. al. Using Kleisli to bring out features
in BLASTP results. Genome Informatics, 9:102-111,
1998.

J. Chen et. al. A protein patent query system powered
by Kleisli. ACM SIGMOD Record, 27(2):593-595, 1998.

E. F. Codd. A relational model for large shared data
bank. CACM, 13(6):377-387, 1970.

S. Davidson et. al. BioKleisli: A digital library
for biomedical researchers. Int. J. Digital Libraries,
1(1):36-53, 1997.

G. Dong et. al. Local properties of query languages.
ICDT, 6:140-154, 1997.

A. Goldberg and R. Paige. Stream processing. In Proc.
ACM Symposium on LISP and Functional Program-
ming, pages 53—62, 1984.

ISO. Standard 8824. Information Processing Systems.
Open Systems Interconnection. Specification of Abstrac-
tion Syntaz Notation One (ASN.1), 1987.

L. Libkin and L. Wong. Query languages for bags and
aggregate functions. JCSS, 55(2):241-272, 1997.

W. Litwin et. al
autonomous databases.
22(3):267-293, 1990.

Interoperability of multiple
ACM Comput. Surveys,

National Center for Biotechnology Information, Na-
tional Library of Medicine, Bethesda, MD. NCBI
ASN.1 Specification, 1992. Revision 2.0.

A. Ohori et. al. Database programming in Machiavelli,
a polymorphic language with static type inference.
ACM SIGMOD Record, 18(2):46-57, 1989.

Y. Papakonstantinou et. al. Object exchange across
heterogenous information sources. ICDE, 11:251-260,
1995.

L. C. Paulson. A higher-order implementation of rewrit-
ing. Sci. Comput. Prog., 3:119-49, 1983.

P. Pearson et. al. The GDB human genome data base
anno 1992. NAR, 20:2201-2206, 1992.

[25]

[26]

27]

28]

[29]

(30]

[31]

32]

[33]

[34]

[35]

[36]

37]

D. Remy. Typechecking records and variants in a nat-
ural extension of ML. POPL, 16:77-88, 1989.

D. Remy. Efficient representation of extensible records.
In Proc. of ACM SIGPLAN Workshop on ML and its
Applications, pages 12-16, 1992.

C. Schoenbach et. al. FIMM, a database of functional
molecular immunology. NAR, 28(1):222-224, 2000.

G. D. Schuler et. al. Entrez: Molecular biology database
and retrieval system. Methods Enzymology, 266:141-
162, 1996.

M. Spivey. A functional theory of exceptions. Sei. Com-
put. Prog., 14:25-42, 1990.

D. Suciu. Bounded fixpoints for complex objects. T'CS,
176(1-2):283-328, 1997.

D. Suciu and L. Wong. On two forms of structural re-
cursion. ICDT, 5:111-124, 1995.

J. D. Ullman. Principles of Database and Knowledge-
base Systems II: The New Technologies. Computer Sci-
ence Press, 1989.

P. Wadler. Comprehending monads. Math. Struct.
Comput. Sci., 2:461-493, 1992.

S. Walsh et. al. ACEDB: A database for genome infor-
mation. Methods Biochem. Anal., 39:299-318, 1998.

L. Wong. Querying Nested Collections. PhD thesis, De-
partment of Computer and Information Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104, Au-
gust 1994.

L. Wong. An introduction to Remy’s fast polymorphic
projection. ACM SIGMOD Record, 24(3):34-39, 1995.

L. Wong. Kleisli, a functional query system. J. Funct.
Prog., 10(1):19-56, 2000.

