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With the rapid development of microarray chip technology, gene expression data
are being generated in large throughput. The imdispensable task of data mining,
as a result, is to effectively and efficiently extract useful biological information
discussed above from gene expression data. However, the high-dimensionality and
the complex relationships among genes impose great challenges for existing data
mining methods.

In this thesis, we systematically study the existing problems of the state-of-
the-art data mining algorithms for gene expression data in class association rule
mining, associative classification and subspace clustering of genes of nonlinear and
shifting-and-scaling correlation. Specifically, we propose the concept &K top-

ering rule groups for each gene expression sample, TopKRGs and design an row-



wise mining algorithm to discover the TopKRGs efficiently; we further develop a
new associative classifier by combining thierules consisted of the most signifi-
cant genes based on entropy test of the top k covering rule groups; to address the
nonlinear correlation problem and shifting-and-scaling correlation problem, we in-
troduce Curler and RegMiner algorithms respectively to identify the subset of genes
which exhibit non-linear or shifting-and-scaling correlation patterns across a subset
of conditions.

Extensive experimental studies are conducted on synthetic and real-life datasets.
The experimental results show the effectiveness and efficiency of our algorithms.
While we mainly use gene expression data in our study, our algorithms can also be

applied to high-dimensional data of other domains.
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CHAPTER 1

Introduction

Gene expression is the process of transcribing a gene’s DNA sequence into mRNA
sequences, which are later translated into amino acid sequences of proteins. The
number of copies of produced RNA is called the expression level of the gene. The
regulation of gene expression level is considered important for proper cell func-
tion. As an effective technology to study gene expression regulation, microarray
gene expression profiling uses arrays with immobilized cDNA or oligonucleotide
sequences to measure the quantity of mRNA based on hybridization. Microarray
technologies provide the opportunity to measure the expression levels of tens of
thousands of genes in cells simultaneously which are correlated with the corre-
sponding protein made either under different conditions or during different time

spots. Gene expression profiles generated by microarrays can help us understand



the cellular mechanism of biological process. For instance, it provides informa-
tion about the cancerous mutation of cells: which genes are most responsible for
the mutation, how they are regulated, and how experimental conditions can affect
cellular function. With these advantages, microarray technology has been widely
used in post-genome cancer research studies. With the rapid advance of microarray
technology, gene expression data are being generated in large throughput so that an
imposing data mining task is to effectively and efficiently extract useful biological
information discussed above from the huge and fast-growing gene expression data.
Essentially, data mining methods can be partitioned into two big categories:
supervisedandunsupervised Supervised data mining methods assume each gene
expression profile has a certain class label, i.e., the expression profile of each pa-
tient is associated with the specific disease the patient has, and supervised methods
make use of the class information in the learning process. On the contrary, unsu-
pervised data mining methods have no assumption about the class information of
each gene expression profile. Specifically, for gene expression analysis, supervised
data mining methods include class association rule mining and classification, while
unsupervised data mining methods mainly refer to the various clustering methods.
Class association rule mining is one of the most famous traditional data
mining methods. Each row of the expression data matrix involved in class asso-
ciation rule mining corresponds to a samples or a condition, while each column
corresponds to a gene. Current class association rule mining methods like [11]
follow the item-wise searching strategy of traditional association mining methods

[5, 37,60, 66]. After discretizing the expression levels of the genes correlated with



class label into two or more intervals, the class association rule mining algorithm
searches the combinations of gene expression intervals of high statistical signifi-
cance w.r.t. a certain class label. The simple class association rule in the form of
geneqfal, bl] genes[a2,b2] — cancer is not only easy for understanding but also
useful in practice. By focusing on the subset of most discriminating genes involved
in the rules, hergene; andgene,, biologists can design the following experiments

to understand the cancer mutation scheme. Going beyond this, the class associ-
ation rule is also a reference to drug discovery. And, a considerable amount of
research has demonstrated that accurate and inexpensive diagnosis can be achieved
with class association rules [52-54] because of their informativeness and succinct-
ness.

Classification is yet another important supervised data mining method for
gene expression analysis. Many classification approaches, such as decision tree
[71], KNN [29], SVM [50], neural network [33], have been applied on gene ex-
pression data. During the classification subroutine, the classifier is first trained on
training samples, and then tested on test samples. After having been accessed to
have enough correctness, the classifier could be classify samples of unknown class
label. All these approaches have limitations when applied to gene expression data.
The decision tree approaches like C4.5 (single tree [71], bagging [16] and boosting
[30]) derive rules that are exclusive with each other and cover the training samples
just once. These decision tree methods search class association rules by selecting
the genes that contribute most for distinguishing a certain partitioned training sam-

ples, NOT genes that contribute most for distinguishing samples of different classes



globally. Therefore, some biased rules may be generated by decision tree methods.
Meanwhile the information contained in the limited decision tree rules is far from
sufficient for biological research. KNN, too, provides little information about the
disease scheme. Other classification methods like SVM and Neural network have
demonstrated effectiveness in classifying test samples, however, their classifica-
tion scheme is rather difficult to understand. A better alternative is the associative
classification [55, 56], which makes the decision with the most significant class
association rules. These class association rules, as we discussed above, are both
informative and easy for understanding. PCL [52] is a representative associative
classification method for gene expression data, which combines the discriminating
powers of the emerging patterns of each class.

Unsupervised data mining methods mainly refer to the clustering method.
The clustering subroutine typically groups the correlated genes or samples (con-
ditions) together to find co-regulated and functionally similar genes or similarly
expressed samples (conditions). Gene clustering and sample (conditions) cluster-
ing can also be combined to find the most important genes or samples (conditions).
The most popular clustering algorithms adopted for gene expression data include
the hierarchical clustering (iteratively joining the two closest clusters beginning
with singleton clusters), K-mean (typically using the Euclidean distances to parti-
tion the space into K parts) [8], SOM (a neural network algorithm) [49] and graph
theoretic approaches such as HCS [38]. However, these methods require the in-
put parameter of cluster number which is difficult to determine in advance; and the

clustering results are not steady in most cases. Besides, these algorithms are all



full-space clustering algorithms which evaluate the similarity of gene expression
profiles under all the samples (conditions). Other traditional full-space clustering
methods include GDR (global dimension reduction) [77] and PCA (principle com-
ponent analysis) [46].

This is actually wrong for gene expression data, since a group of genes can
be correlated only in a subset of samples (conditions) rather than the whole space.
In recent years, a number of subspace clustering algorithms have been proposed,
such as CLIQUE [4], OptiGrid [39], ENCLUS [41], PROCLUS [3], DOC [68],
ORCLUS [2] and 4C [14].

However, as we will discuss in the next Section, these state-of-the-art data
mining methods in class association rule mining, classification and clustering are

still problematic for gene expression data.

1.1 Motivation

The extremely high dimensionality and the complex correlations among the genes
pose great challenges for successful application of existing class association rule
mining [11], class associative classification [52, 55, 56] and the subspace clustering
algorithms [2—4, 14, 39, 41, 68] to gene expression analysis.

¢ Challenge for Class Association Rule Miningefficiency and Huge Rule
Number

Traditional association mining methods are not able to work well on gene

expression data for class association rule discovery due to their inefficiency. These



item-wise association mining methods [5, 11, 37,60, 66] which enumerate gene-
intervals (items) iteratively may fail to finish running in days or even weeks when
extended to search class association rules. The main cause of the inefficiency is
the huge item-wise search space resulting from the thousands or tens of thousands
of gene-intervals after discretization. Note that the item-wise searching space is as
high as2”, exponential with the gene-interval (item) numlerAs another draw-
back of item-wise methods, extremely large of class association rules will be output,
owing to explosive item combinations.

e Challenge for Associative ClassificatioRule Selection

The inefficiency in rule mining together with the huge rule number make
the conventional associative classification methods like CBA [56] and CMAR [55]
impractical. CBA and CMAR are built on class association rules discovered by the
inefficient item-wise rule mining algorithms discussed above. It's rather difficult to
select the significant rules for classifier building with these inefficient rule mining
algorithms. Another recent associative classification method, PCL, avoids the prob-
lems of inefficiency and huge rule number by simply choosing a limited number of
top-ranked genes based on the chi-square test to generate rules and ignoring those of
lower ranks. However, the globally significant rules sometimes contain low-ranked
genes. Furthermore, some genes of lower chi-square rank may also play a big role
in cancer pathogenesis. For instance, MRG1 of rank 671 in the prostate cancer
data may function as a coactivator through its recruitment of p300/CBP in prostate
cancer cell [32,47]. Eliminating such important genes during classification is not

reasonable.



e Challenges for Subspace Clusterifdpnlinear Correlationand Shifting-
and-Scaling Correlation

For high-dimensional data like gene expression data, a subset of data ob-
jects (genes) is probably strongly correlated only in a subset of conditions, while
not correlated at all in the remaining ones. Besides, the orientation of these lo-
cal correlation clusters can be arbitrarily oriented. The above problems have been
addressed by several subspace clustering algorithms such as LDR [17], ORCLUS
[2], and 4C [14] are proposed to identify local correlation clusters with arbitrary
orientations, assuming each cluster has its own fixed orientation. However, they
could only identify linear dependency among certain subset of conditions, i.e., the
linear dependency of gene expressions in a time series gene expression data. To
our knowledge, correlation between two or more genes (or other data objects) may
be more complex than just a linear one. As one example reported in [34], gene
mGluR1 and gené&s Ra2 have obvious nonlinear correlation pattern. Thus, finding
nonlinear correlation clusters (clusters with varying orientations instead of a fixed
orientation) in different subspaces is a necessary task for high-dimensional data
such as gene expression data.

Both the linear correlation and the nonlinear correlation subspace cluster-
ing methods are density-based, requiring gene members to be close to each other
in correlated subspace. However, correlated genes don't need to be close in cor-
related subspaces at all: positive-correlated genes and negative-correlated genes
exhibit no spatial proximity; genes co-regulated together may exhibit pure shifting

or pure scaling patterns across the subset of the correlated samples, as addressed in



pCluster [80] and TRICLUSTER [85]. However, the shifting-and-scaling pattern,
which includes both positive correlation and negative correlation, has received little
attention.

In summary, the inefficiency of traditional rule discovery algorithms together
with the resulting inappropriate rule selection strategy seriously limit the applica-
tion of association rule mining and association classification on gene expression
data; the diversified correlations among genes, nonlinear correlation and shifting-
and-scaling correlation, have been disregarded by current clustering algorithms.

These are the imposing problems of the state-of-the-art data mining methods.

1.2 Contributions

In this thesis, we systematically study and solve the existing problems of the state-
of-the-art data mining algorithms when applying on gene expression data. We pro-
pose the concept of TopKRGs to handle the problems of inefficiency and huge rule
number in class association rule mining; to address the problem of rule selection in
associative classification, we present classifier RCBT based on TopKRGs; we de-
sign two algorithms, CURLER and Reg-Cluster, for finding nonlinear correlation

clusters and shifting-and-scaling correlation clusters in subspace respectively. In

particular, we make the following contributions.

TopKRGs: To cope with extremely large rule number, we propose the concept of
topk covering rule groups (TopKRGSs) for each row of a gene expression

dataset and have designed a row-wise mining algorithm to discover the top-

8



covering rule groups for each row. In this way, numerous rules have been
clustered into a limited number of rule groups, bounded:byn, wheren

is the number of rows of gene expression dataset/argithe user speci-

fied parameter. Our algorithm is specially efficient for gene expression data
with extremely large number of genes but relatively small number of sam-
ples. Extensive experiments on real-life gene expression datasets show that
our algorithm can be several order of magnitudes better than FARMER [20],

CLOSET+ [81] and CHARM [84] which uses diff-sets.

RCBT: TopKRGs also facilitates rule selection for associative classification. Based
on that, we combine thel rules generated by the most significant genes
from each discovered TopKRGs and further develop a new associative classi-
fier called RCBT. Essentially, our RCBT classifier works in a committee-like
way. Each test data is first classified by the main classifier built on rules
of the top one covering rule groups for each class; if unclassified, the test
data is further passed on to the subsequent ordered classifiers built on the
rules from the top 2, 3, ...j covering rule groups until it is classified or
j == k. The committee-like scheme avoids many default class assignment
cases. Extensive experimental studies show that our classifier is competitive
with the state-of-the-art classifiers: C4.5 (single tree, bagging and boosting),
CBA [56], IRG classifier [20] and even SVM [55]. To help biologists under-
stand our rule selection scheme, we also implemented a demo to visualize the

discovered rule groups effectively. Biologists can interactively explore and



select the most significant rule groups with the demo.

CURLER: Detecting nonlinear correlation clusters is quite challenging. Unlike
the detection of linear correlation in which clusters are of unique orientations,
finding nonlinear correlation clusters of varying orientations requires merg-
ing clusters of possibly very different orientations. Combined with the fact
that spatial proximity must be judged based on a subset of features that are not
originally known, deciding which clusters to be merged during the clustering
process becomes a challenge. To avoid the problems discussed above, we
propose a novel concept called-sharing levelvhich captures both spatial
proximity and cluster orientation when judging similarity between clusters.
Based on this concept, we design an algorithm, Curler, for finding and vi-
sualizing such nonlinear correlation clusters in subspace. Our algorithm can
also be applied to other high-dimensional database besides gene expression
data. Experiments on synthetic data, gene expression data and benchmark

biological data are done to show the effectiveness of our method.

Reg-Cluster: We propose a new model for coherent clustering of gene expres-
sion data calledeg-cluster. The proposed model allows (1) the expression
profiles of genes in a cluster to follow any shifting-and-scaling patterns in a
certain subspace, where the scaling can be either positive or negative, and (2)
the expression value changes across any two conditions of the cluster to be
significant, when measured by a user-specified regulation threshold. We also

develop a novel pattern-based biclustering algorithm for identifying shifting-

10



and-scaling co-regulation patterns, satisfying both regulation constraint and
coherence constraint. Our experimental results show: (1) the reg-cluster al-
gorithm is able to detect a significant amount of gene clusters missed by
previous model, and these gene clusters are potentially of high biological
significance; and (2) the reg-cluster algorithm can easily be extended to 3D

gene X sample x time dataset for identifying 3D reg-clusters.

While we focus on gene expression data mainly in this study, our methods
can also be applied on other complex high-dimensional data in bioinformatics, in-
dustry, finance and so on. For instance, our reg-cluster algorithm can be adopted
for identifying metabolites demonstrating complex shifting-and-scaling correlation

patterns in a subset of conditions as well.

1.3 Organization of the Thesis

The remaining thesis is organized as follows: we introduce the conc&ppdf RG's

and theTopK RGs discovery algorithm in details in Chapter 2; the associative
classifier built uporil’op K RG's will be presented in Chapter 3; In Chapter 4, we
describe the concept of co-sharing level and then propose our nonlinear correla-
tion clustering algorithnCurler; we propose our recluster model of shifting-and-
scaling patterns and reg-cluster discovery algorithm in Chapter 5; we summarize

and conclude our work in Chapter 6.
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CHAPTER 2

TopKRGs: Efficient Mining of Top K

Covering Rule Groups

High-dimensional gene expression data requires powerful computational analysis
tools to extract the most significant and reliable correlation between gene expression
patterns and disease outcomes and to translate the complex raw data into relevant
and clinically useful diagnostic knowledge. Class association rule is the solution
for the above requirements.

We define a class association rule as a set of items, or specifically a set
of conjunctive gene expression level intervastecedentwith a single class la-
bel (consequent Thegeneralform of a class associatiamle is: gene;[ay, b1, ...,

geneylan, b, — class, wheregene; is the name of the gene afd, b;] is its expres-

12



sion interval. For exampleX95735_at[—o0,994] — ALL is one rule discovered

from the gene expression profiles of ALL/AML tissues.

2.1 Background

Association rule mining has attracted considerable interest since a rule provides a
concise and intuitive description of knowledge. It has already been applied to bio-
logical data analysis, such as [22, 25, 67]. The unlabelled association rules can help
discover the relationship between different genes, so that we can infer the function
of an individual gene based on its relationship with others [22] and build the gene
network. In this thesis, we discuss about class association rule, the consequent of
which is a class label. Class association rules can relate gene expressions to their
cellular environments or categories indicated by the class, thus they can be used to
build accurate classifiers on gene expression datasets as in [26, 53].

Many association rule mining algorithms have been proposed to find the
complete set of association rules satisfying user-specified constraints by discover-
ing frequent (closed) patterns as the key step, such as [5, 36, 37,62, 64, 65, 81, 84].
The basic approach of most existing algorithms is item enumeration in which com-
binations of items are tested systematically to search for association rules. Such an
approach is usually unsuitable for class association rule mining on gene expression
datasets, since the maximal enumeration space can be as l&ga/hbsre; is the
number of items and is in the range of tens of thousands for gene expression data.

The high-dimensional gene expression data renders most of the existing algorithms

13



impractical. On the other hand, the number of rows in such dataset is typically very
small and the maximum row enumeration spaée(m is the number of rows) is
significantly smaller.

There are also many proposals about mining interesting rules with various
interestingness measures. Some of them do a post-processing to remove those un-
interesting rules, such as [57]. Such methods cannot work on gene expression data
since it is usually too computationally expensive to mine the huge association rules
from gene expression data. Other works [10, 72] try to mine interesting rules di-
rectly. The proposed algorithm in [10] adopts item enumeration method and usu-
ally cannot work on gene expression data as shown in the experiments of [20].
FARMER [20] is designed to mine interesting rule groups from gene expression
data by row enumeration. Butitis still very time-consuming on some entropy-based
discretized gene expression datasets. Although we also adopt the row enumeration
strategy, our algorithm is different from FARMER: (1) we discover different kinds
of rule groups; (2) we use top-k pruning; (3) we use a compact prefix-tree to im-
prove efficiency while FARMER adopts in-memory pointer.

Two main challenges remain for mining class association rules from gene
expression data.

First, it has been shown in [20, 22] that huge number of rules will be dis-
covered from the high-dimensional gene expression dataset even with rather high
minimum support and confidence thresholds. This makes it difficult for the biolo-
gists to filter out rules that can encapsulate very useful diagnostic and prognostic

knowledge discovered from raw datasets. Although recent row-wise enumeration

14



algorithms like FARMER [20] can greatly reduce the number of rules by cluster-
ing similar rules into rule groups, it is still common to find tens of thousands and
even hundreds of thousands of rule groups from gene expression dataset, which are
rather hard to interpret.

Second, the high dimensionality together with the huge number of rules re-
sults in extremely long mining process. Rule mining algorithms using item enu-
meration (combinations of items are tested systematically to search for rules), such
as CHARM [84] and CLOSET+ [81], are usually unsuitable for gene expression
datasets because searching in huge item enumeration space results in extremely
long running time. Although FARMER efficiently clusters rules into rule groups
and adopts an anti-monotone confidence pruning with a delicate row ordering strat-
egy, itis still very slow when the number of rule groups is huge.

These two challenges greatly limit the application of rules to analyze gene
expression data. It will be ideal to discover only a small set of the most significant

rules instead of generating a huge number of rules.

2.2 Problem Statement and Preliminary

To address the problems we discussed in the above section, we propose to discover
the most significant topk covering rule groups (TopkRGS) for each row of a

gene expression datasewVe will illustrate this with an example.

Example 2.2.1 TopkRGS

For the running example shown in Figure 2.1(a), givemnsup = 2, the top-1

15
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Figure 2.1: Running Example

covering rule group for rows; andr; is {abc — C'} with confidence 100%, the
top-1 covering rule group for row; is {cde — C'} with confidence 66.7%, and
the top-1 covering rule group for rows andr; is { fge — —C'} with confidence
66.7%. The support values of the above top-1 covering rule groups are all 2, which

is equal tominsup.

While formal definition will be given later, we summarize the task of finding

top-k covering rule groups as essentially doing the following:

16



¢ Define an interestingness criterion for rule group ranking.

e Based on the ranking, f@achrow r in the dataset, find thie highest ranked

low:

rule groups of the same classrasuch that the antecedent of theule groups

are all found in- (i.e. r is covered by thesk rule groups).

The top# covering rule groups are beneficial in several ways, as listed be-

TopkRGS can provide a more complete description for each row. This is
unlike previous proposals of interestingness measures like confidence which
may fail to discover any interesting rules to cover some of the rows if the
mining threshold is set too high. Correspondingly, information in those rows
that are not covered will not be captured in the set of rules found. This may
result in loss of important knowledge since gene expression datasets have

small number of rows;

Finding TopkRGS helps us to discover the complete set of useful rules for
building a classifier while avoiding the excessive computation adopted by al-
gorithms like the popular CBA classifier [56]. These algorithms first discover
a large number of redundant rules from gene expression data most of which
will be pruned in the later rule selection phase. We will prove later that the set

of top-1 covering rule group for each row contains the complete set of rules
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required to build the CBA classifier while avoiding the generation of huge

redundant rules;

e We do not require users to specify the minimum confidence threshold. In-
stead only the minimum support threshold and the number of top covering
rule groupsk, are required. Such an improvement is useful since it is not
easy for users to set an appropriate confidence threshold (we do not claim
that specifying minimum support is easy here) while the choick isf se-
mantically clear. In fact, the ability to contrélallows us to balance between
two extremes. While rule induction algorithms like decision tree typically
induce only 1 rule from each row and thus could miss interesting rules, asso-
ciation rule mining algorithms are criticized for finding too many redundant
rules covering the same rows. Allowing users to spekifyves them control

over the number of rules to be generated.

e The number of discovered top-k covering rule groups is bounded by the prod-

uct ofk and the number of gene expression data, which is usually quite small.

TopkRGS runs on discretized gene expression data.
Dataset the gene expression dataset (or talidedonsists of a set of rowg={r,
ooy . LetI={iy, iy, ..., i,, } be the complete set of items bf(each item represents
some interval of gene expression level), &ne- {C1, (s, ..., Ci} be the complete
set of class labels db, then each row; € R consists of one or more items from

and a class label from'.

18



As an example, Figure 2.1(a) shows a dataset with 5 rowss,, ..., 75, the
first three of which are labelled while the other two are labelledC'. To simplify
the notation, we use threw id setto represent a set of rows and tibem id setto
represent a set of items. For instanc&34” denotes the row sdt, 3,4}, and
“cde” denotes the itemsét:, d, e}.

As a mapping between rows and items, given a set of itBras/, we define
the item support set denotedR (/') C R, as the largest set of rows that contain
I'. Likewise, given a set of row®’ C R, we definerow support set, denoted

Z(R') C I, as the largest set of items common among the rows.in

Example 2.2.2R(I") and Z(R')
Consider again the table in Figure 2.1(a). Lét be the itemse{c,d, e}, then
R(I') = {ri,rs,rs}. Let R’ be the row sefr,,r3}, thenZ(R')={c,d, e} since

this is the largest itemset that appears in betlandrs.

Based on our definition of item support set and row support set, we can
redefine the association rule.
Association Rule an association rule~, or justrule for short, from dataseb
takes the form oA — C', whereA C [ is the antecedent ard is the consequent
(here, it is a class label). Thaupport of ~ is defined as théR(A U C)|, and
its confidenceis |R(A U C)|/|R(A)|. We denote the antecedentphis~.A, the
consequent ag.C', the support as.sup, and the confidence asconf.

As discussed in the introduction, in real biological applications, biologists

are often interested in rules with a specified conseqaemthich usually indicates
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the cancer outcomes or cancer status.
The rule group is a concept which helps reduce the number of rules discov-
ered by identifying rules that come from the same set of rows and clustering them

conceptually into rule groups.

Definition 2.2.1 Rule Group
Let D be the dataset with itemsétand C be the specified class labél.= {A4; —
C|A; C I} is arule group with antecedent support set R and consequent C, iff (1)
VA, — C € G, R(4;) = R,and (2JVR(4;) = R, A, — C € G. Ruley, € G
(v Ay — C)is anupper bound of G iff there exists ne’ € G (7": A" — C) such
that A’ O A,. Ruley, € G (y: A, — C) is alower bound of G iff there exists no

v e G (v: A — C)suchthatd’ C A;.

Lemma 2.2.1 Given a rule group& with the consequeri’ and the antecedent sup-

port setR, it has a unique upper bound(y: A — C).

Based on lemma 2.2.1, we use upper bound #yleo refer to a rule group

G in the rest of this paper.

Example 2.2.3 Rule Group
Given the table in Figure 2.1(a)R({a}) = R({b}) = R({ab}) = R({ac}) =
R({bc}) = R({abc}) = {ri,r2}. They make up a rule groupn — C,b —
C,...,abc — C'} of consequent C, with the upper boumd: — C' and the lower

boundses — C andb — C.
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It is obvious that all rules in the same rule group have the same support and
confidence since they are essentially derived from the same subset of rows. Based
on the upper bound and all the lower bounds of a rule group, it is easy to iden-
tify the remaining members. Besides, we evaluate the significance of rule groups

consistently with the individual rule ranking criterion.

Definition 2.2.2 Significant
Rule groupy; is moresignificant than v, if (y;.conf > ~s.conf) V (y1.sup >

Yo.Sup A yy.conf = yg.conf).

The top-k covering rule groups, as defined below, encapsulate the most sig-
nificant information of the dataset while enabling users to control the amount of

information in a significance-top-down manner.

Definition 2.2.3 Top-k covering Rule Groups (TopkRGS)
Given the databas® and a user-specified minimum supperinsup, the top-k
covering rule groups for a row; is the set of rule group$y,.; } (1 < j < k), where
Vrij-SUP > minsup, v.;-A C r; and there exists no rule group v ¢ {7}
such thaty’ is more significant thar, ;. For brevity, we will use the abbreviation

TopkRGSto refer to top-k covering rule groups for each row.

2.3 Efficient Discovery of TopkRGS

The first problem that we address is to efficiently discover the set of top-k covering

rule groups for each row (TopkRGS) of gene expression data given a user-specified
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minimum supporininsup.
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Figure 2.2: Row Enumeration Tree.

We first give a general review of homow enumeration takes place using
the (projected) transposed tablefirst proposed in [20] before proceeding to our
TopkRGS discovery strategies. Implementation details will then be discussed.

Figure 2.1(b) is a transposed versiofi’ of the table in Figure 2.1(a). In
TT, the items become the row ids while the row ids become the items. The rows
in the transposed tables are referredugesto distinguish from the so-calleadws
in the original table. LetX be a subset of rows. Given the transposed tdlie
a X -projected transposed table denoted ag'T| x, is a subset of tuples frofiT
such that: 1) For each tupten 77 which contains all the row ids ifX, there exists
a corresponding tuplg in TT|x. 2)t contains all rows irt with row ids larger
than any row inX. As an example, thé13}-projected transposed tablET |3, is
shown in Figure 2.1(d).

A completerow enumeration tree will then be built as shown in Figure

2.2. Each nod& of the enumeration tree corresponds to a combination of iws

22



and is labelled witlZ (') that is the antecedent of the upper bound of a rule group
identified at this node. For example, node™ corresponds to the row combina-
tion {ry,m} and “abc” indicates that the maximal itemset shared/hyandr; is
Z({r1,r2}) = {a,b,c}. An upper boundibc — C' can be discovered at node2”.

The correctness is proven by the following lemma in [20].

Lemma 2.3.1 Let X be a subset of rows from the original table, theaX) — C
must be the upper bound of the rule group G whose antecedent support set is

R(Z(X)) and consequent i§..

By imposing aclass dominant orderorderORD on the set of rows, FARMER
[20] performs a systematic search by enumerating the combinations of rows based
on the ordetlORD. For example, letl < 2 < 3 < 4 < 5” be the ORD order,
then the depth-first order of search in Figure 2.2 wil{be”, “ 12", “ 123", “ 1234”,
“12345", “1235",...,“45", “5" } in absence of any optimization strategies. Ordering
the rows in class dominant order is essential for FARMER to apply its confidence
and support pruning efficiently. Class dominant order is also essential for efficient

pruning based on the top-k dynamic minimum confidence, as we will discuss later.

Definition 2.3.1 Class Dominant Order
A class dominant order ORD of the rows in the dataset is an order in which all

rows of clasg” are ordered before all row of classC.

Given the row enumeration strategies introduced above, a naive method of

deriving the top-k covering rule groups is to first obtain the complete set of upper
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bound rules in the dataset by running the row-wise algorithm FARMER [20] with a
low minimum confidence threshold and then picking the top-k covering rule groups
for each row in the dataset. Obviously, this is not efficient. Instead, our algorithm
will maintain a list of top-k covering rule groups for each row during the depth-
first search and keep track of tiketh highest confidence of rule group at each
enumeration node dynamically. The dynamic minimum confidence will be used to
prune the search space. That is, whenever we discover that the rule groups to be
discovered in the subtree rooted at the current n&deill not contribute to the

top-k covering rule groups of any row, we immediately prune the search down node

X. The reasoning of our pruning strategies is based on the following lemma.

Lemma 2.3.2 Given a row enumeration trég, a minimum support threshotdin sup,
and anORD order based on specified class laldel suppose at the current node
X, R(Z(X)) = X, X, and X,, represent the set of rows i with consequent’
and —~C respectively, and?, and R,, are the set of rows ordered after rows in
with consequent’ and —C' respectively in the transposed table of nodeTT'|x.
Then, we can conclude that the maximal set of rows that the rule groups to be iden-
tified in the subtree rooted at nodé can cover isX, U R,,.
Proof: AsR(Z(X)) = X, the maximal antecedent support set of the rule groups to
be identified at the subtree rooted at nalés (X U R, U R,,). In addition, as the
rule groups are labelled”, the maximal set of rows covered by these rule groups is

(Xp U Ry).
Combined with Definition 2.2.2, we computeincon f andsup, the cutting
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points of the TopkRGS thresholds for the rowg.in, U R,,), wheremincon f is the
minimum confidence value of the discovered TopkRGS of all the rows, i R,
assuming the top-k covering rule groups of each rgware ranked in significance

such thaty,,1 < V2 < .. < Vriks

minconf = Tie(r)lgiBRp){%ik.conf}, (2.1)

andsup is the support value of the corresponding covering rule group with confi-

denceminconf,
SUP = Yy k-SUp, where v, g.conf = minconf. (2.2)

According to the definition of the top-k covering rule groups (Definition

2.2.3), we can further obtain Lemma 2.3.3 below.

Lemma 2.3.3 Given the current node&, minconf and sup computed according
to Equations 2.1 and 2.2, if the rule group identified inside the subtree rooted at
node X is less significant (according to Definition 2.2.2) than, (v,k.conf =
minconf and~, ,.sup = sup), then the rule group cannot become a rule group in

the top-k covering rule group list of any row.
Naturally ourtop-k pruning will proceed in the following way:

e If the upper bound of the confidence value of the rule groups to be identified
in the subtree rooted at node€ is below minconf which is dynamically

calculated at nodg(, then prune the search down nalie
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o If the upper bound of the confidence value of the rule groups to be identified
in the subtree rooted at nod¢ is equal tomincon f which is dynamically
calculated at nod& and the upper bound of the support value of the rule
groups to be identified in the subtree rooted at nades smaller tharsup,

then prune the search space down nade

The reasoning of our TOpkRGS discovery is clearly that the rule groups to
be discovered down nod& will not contribute to the TopkRGS of any row. The
top-k pruning strategy introduced above can be perfectly integrated with the back-
ward pruning, loose and tight upper bound pruning of confidence or support values
of FARMER, which further speeds up our mining process. The following is an

example.

Example 2.3.1 Discovery of Top-1 Covering Rule Groups
For the running example in Figure 2.1(a) whete= 1, specified class i§’, and
minsup = 2, when the depth-first traversal comes to ndde2}, the top-1 cover-
ing rule group for both-; andr, is dynamically updated tebc — C' (conf:100%,
sup:2). At node{l,3}, whenX, = {1,3} and R, = 0, as the identified top-1
covering rule group for; has confidenc&€00% while no top-1 covering rule group
of 3 has been discovered yet, we getnconf = 0 and sup = 0. Since the rule
group cde — C' identified at node{1,3} has confidenc&6.7% and support2,
which is above thenincon f andminsup thresholds, it is output to update the top-
1 covering rule group of;. The estimated upper bound of the confidence values of

the sub-level nodes down nodle 2} and {1, 3} are all below the corresponding
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minconf and are simply pruned. The consequent search down fi@gand {3}
is pruned using the backward pruning because of the rule groups down these nodes

are identified already in previous enumerations.

2.3.1 Algorithm

Our algorithm performs a depth-first traversal of the row enumeration tree, where
each nodeX will be associated withX -projected transposed table. As an example,
when visiting nodd in the enumeration tree, tHeprojected transposed table will

be formed as shown in Figure 2.1(c). Also, it is important to note that the projected
transposed table at a node can in fact be computed from the projected transposed
table of its parent node. To compute tieprojected transposed table as shown in
Figure 2.1(d), we can simply scdi’|; and extract those tuplesTril’|; that contain

r3. Since the enumeration order is such that parent node will always be visited
before the child node, this gives rise naturally to a recursive algorithm where each
parent node will call its children passing the relevant projected transposed table to
the children nodes.

Formally, the algorithm is shown in Figure 2.3. There are four input param-
eters of the algorithm, the original datadet class labelC, the minimum support
minsup andk. The algorithm will scan through the datagetto count the fre-
guency of each item and remove infrequent items from each raw i will then
be transformed into the corresponding transposed table. At the same time, the top-k

covering rule groups for each row with consequen€’ denoted as,.,=[;,1, Vr;2,
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..., Vr.k] Will be initialized. Then the procedure Depthfirst() is called to perform the
depth-first traversal of row enumeration tree.

The procedure Depthfirst() takes in six parameters at dod&'7”|x, X,
X, Ry, Ry, andminsup. TT'|x is the X-projected transposed table at nadle
X, and X, represent the the set of rows_k with consequent’ and—C' respec-
tively. R, is the set of candidate enumeration rows with conseqdiethiat appear
in TT'|x and R, is the set of enumeration candidate rows with’ appearing in
TT'|x. Among the steps in Depthfirst(), only steps 10, 12 and 14 are necessary
if no pruning strategies are adopted. Step 10 scans the projected ke and
computesfreq(r;), the frequency of occurrence of each revin T7'| x. Based on
freq(r;), rows that occur in all tuples (i.efreq(u) = Z(X)) of TT'|x are found.
These rows will appear in all descendant nodes(oénd are thus added directly
into X. CorrespondinglyX, and.X,, are updated based on the consequent of these
rows and they are removed either frdiy or R,, at step 12. Step 14 moves on into
the next level enumerations in the search tree by selecting each tbat is either
in R, or R, creating a newW X U{r;}}-projected transposed table and then passing
the updated information to another call of MineTopkRGS.

Note that Step 14 implicitly does some pruning since it is possible that there
is no row available for further enumeration, i.8, U R,, = (). It can be observed
from the enumeration tree that there exist some combinations of Poy&jch that

7(X) = 0.
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Algorithm MineTopkRGS ( D, C, minsup, k)

1.

2.

3.

10.

11.

12.

13.

14.

Scan databasP to find the set of frequent itemS and remove the infrequent items in each mvof D;
Let D,, be the set of rows itD with consequent’ and D,, be the set of rows it without consequent’;
Convert tableD into transposed tabl&T |;

Initiate a list of k dummy rule groups with both confidence and support values®f =[v:;1, ....,vr; ], for each
row r; in Dyp;

Call Depthfirst 'T'|g, @, O, Dp, Dy, minsup);

Return¢,, for Vr; € D).
Procedure: Depthfirst("T”’ | x, Xp, Xn, Rp, Rn, minsup)

Backward Pruning: If there is a row’ that appears in every tuple w.Z{X) and does not belong t&, Then
return.

Threshold Updating: Check thekth covering rule groupy,., for each rowr; € X, U R, to find the lowest
confidencenincon f and the corresponding suppetip.

Threshold Pruning: If prunable with the loose upper bounds of support or confidéften return.

ScanTT”|x and count the frequencyreq(r;), for each rowy; € Ry, U Ry,.

LetY, C R, be the set of rows such thfteq(u) = |Z(X)|,u € R, andY;,, C R, be the set of rows such that
freq(u) =|Z(X)|,u € Rn;
Xp=XpUYp, Xp = Xn UY, andX = X, U Xy;

Threshold Pruning: If prunable with the tight upper bounds of support or confidefben return.
R, =Rp—Yp, Rn =Ry — Y.

¢=|Xp|/(|Xp| + | Xn|); /lcompute confidence
If (| Xp| > minsup) A (¢ > minconf)) V ((c = mincon f)A (| Xp| > sup)) Then
For eachr; € X, Do
If 3vr,5 € Griyvj < ksuch that
(Vryj-conf < c)or
(rsj-conf = ¢) A (v, .5up < | Xp])),
Then update(,; with Z(X) — C;

For eachr; € R, U R,, DO
If r; € Rp ThenRy, = Ry, — {r;}, Xp = Xp U{r; };
If r, € R, ThenR, = R,, — {7"1'}, Xn =X, U {Ti};
Depth first(TT'|xur;, Xp, Xn, Rp, Rn, minsup);

Figure 2.3:Algorithm MineTopkRGS
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2.3.2 Pruning Strategies

In MineTopkRGS, top-k pruning is the main pruning strategy, and other pruning
techniques first introduced in [20] are the supplementary pruning that we have
seamlessly combined with our top-k pruning.

We first briefly introduce how to estimate the support upper bounds at an
enumeration nod&'. At Step 9, it is obvious that the support of any rule groups
enumerated alond cannot be more tharX,,|+|R,|. The maximal number of rows
with consequenc’ in one row, denoted as,, (m, < R,), among all the branches
under nodeX can be obtained at Step 10. As a result, we can get a tighter support
upper bound at Step 11, i.eX,| + m,.

The estimation of confidence upper bounds is a bit complicated. For a rule
~ discovered in the subtree rootedJgt its confidence is computed #&(y.A U
ON/(IR(v.AUC)|+|R(y.AUu—C)|). This expression can be simplifieda4 = +
y), wherex = |R(y.AUC)| andy = |R(y.A U —C)|. This value is maximized
with the largestr: and the smallesy. The smallesy is |R,,| at nodeX and the
largestz can be|R,| or m, as we just discussed. Therefore, we can get a loose
confidence upper bound,|/(|R,| + | R.|) at Step 9 and a tight confidence upper

boundm,/(m, + |R,|) at Step 11.

Top-k Pruning

Step 8 is a very important step in our algorithm. In this steppitwecon f threshold

is dynamically set for enumeration dowx, which makes it possible to use the
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confidence threshold to prune the search space at steps 9 and 1inidde f
threshold is obtained according to Equation 2.1. Steps 9 and 11 perform pruning by
utilizing the user-specified minimum support threshoeldnsup and the dynamic
minimum confidence thresholdyincon f (generated dynamically at step 8). If the
estimated upper bound of either measur& as below eithetninsup or minconf,
we stop searching down nodé. At Step 9, we will perform pruning using the
two loose upper bounds of support and confidence that can be calculated without
scanningl'T’|x. At Step 11, we compute the tight upper bounds of support and
confidence after scannifgl”| x.

The corresponding suppartp information is also recorded for computation
at Step 13. Note thatup > minsup. Whenever a new rule group(X) — C
is discovered at nod&, a check is made to see whether the new rule is more
significant than one or more rule groups in the list of top-k covering rule group
for some rows inX,,, the top-k covering rule groups of such rows will be updated
dynamically. This is done at Step 13.

Two additional optimization methods are utilized in our top-k pruning.

e First, because we can easily know the confidence of the rule whose antecedent
is a single item at Step 1 of algorithm MineTopkRGS, we use these confi-
dence values to initiate the confidence and support values of the list of Top-
kKRGS at Step 4 instead of initiating them with zero. Such an optimization
may cause a problem. That is, if a single item is a lower bound of an upper
bound rule, the result set will not include the upper bound rule because they

have the same support and confidence. We need to update the single item
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with the upper bound rule by adapting step 13 of algorithm MineTopkRGS.
Another technical detail here is that we need to ensure that any two single
items to be used to initiate the top-k rule groups for one row cannot be the

lower bounds of the same upper bound rules.

e Second, we dynamically increase the user-specifiédsup threshold if we
find that all TopkRGS have 100% confidence and the lowest support value of

thek rule groups is larger than the user-specified one.

MineTopkRGS outputs the most significant information for each row, as well
as dramatically improving the efficiency and reducing the memory usage, compared

to FARMER.

Backward Pruning

Step 7 implements thieackward prunindirst introduced in [20]. If there exists a
rowr’ that appears in each prefix path w.r.t the set of nodes contributifightop and
does not belong to row séf, the rule groupg (X) — C and all rule groups below
X must have already been discovered below some enumeration node containing
as proved in [20]. The principle is the same but our integration with the prefix tree
makes TopkRGS more efficient. For example, at ngtdein Figure 2.4 (b), we just
need to do a back scan along the corresponding pointer list of {fdand can
quickly find that there exists no such

In addition, inORD, the rows from the same class are sorted in the ascend-

ing order of the number of frequent items contained in each row. This will improve
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the efficiency of algorithm MineTopkRGS.

2.3.3 Implementation

Next, we will illustrate how to represent (projected) transposed tables with prefix
trees. The transposed table in Figure 2.1(b) is represented with the prefix tree shown
in Figure 2.4 (a) (corresponding to the root node). The left head table in the figure
records the list of rows in the transposed table and their frequencies. At each node
of the prefix tree, we record the row id and the frequency of a row in the prefix path
(separated by “:” in Figure 2.4 (a)). Additional information recorded at each node
but not shown in the figure is the set of items represented at the node, such as items
a, b, ¢, d ande at node “1:5”. Such information will help to determine quickly the

rule group w.r.t. a projected transposed table.

Example 2.3.2 Projected Prefix Tree
The part of nodes enclosed by dotted line in Figure 2.4(a) is the 1-projected prefix
tree, PT'|;. Note that there are pointers linking the child nodes of the root with the
corresponding rows in the head table. By following the pointer starting from row 1
of the header table, we can get th’|,. After PT'|; has been mined recursively,
the child paths of the node with label 1 will be assigned to other rows of the header
table after row 1 (i.e. rows 2, 3, 4 and 5) and we get the 2-projected prefix tree,
PT|,. In Figure 2.4(b), the part enclosed by dotted lineA%|,. By following the

pointer from row 2 in the header table, we can g&f|,.
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(a) PT|1

(C) PT|12

Figure 2.4: Projected Prefix Trees

2.4 Experimental Studies

Dataset # Genes| # Genes after Discretization Class 1| Class 0 # Training # Test
ALL/AML (ALL) 7129 866 ALL AML 38(27:11) 34
Lung Cancer (LC) 12533 2173 MPM ADCA 32(16: 16) 149

Ovarian Cancer (OC) 15154 5769 tumor | normal | 210(133:77)| 43
Prostate Cancer (PC) 12600 1554 tumor | normal | 102 (52 : 50) 34

We evaluate the efficiency of our algorithm in discovering TopkRGS on four
real-life gene expression datasets. All our experiments were performed on a PC

with a Pentium IV 2.4 Ghz CPU, 1GB RAM and a 80GB hard disk. Algorithms

Table 2.1: Gene Expression Datasets

were coded in Standard C.

Datasets: We use 4 popular gene expression datasets for experimental studies.
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The 4 datasets are the clinical data on ALL-AML leukemia (AL, )lung can-

cer (LCY, ovarian cancer(OC), and prostate cancer (P&)In such datasets, the

rows represent clinical samples while the columns represent the activity levels of
genes/proteins in the samples. There are two categories of samples in these datasets.

We adopt the entropy-minimized partitionto discretize gene expression
datasets. The entropy discretization algorithm also performs feature selection as
part of its process. Table 2.1 shows the characteristics of the four discretized
datasets: the number of original genes, the number of genes after discretization,
the two class labels (class 1 and class 0), and the number of rows for training and
test data. All experiments presented here use the class 1 as the consequent; we
have found that using the other consequent consistently yields qualitatively similar
results.

We compare algorithm MineTopkRGS with FARMER, CLOSET+ and CHARM
(which uses diff-sets). But CLOSET+ is usually unable to run to completion within
reasonable time (for several hours without results) and CHARM will report errors
after using up memory on the entropy discretized datasets. Therefore, we only re-
port the runtime of MineTopkRGS and FARMER in discovering the upper bounds
of discovered rule groups. The reported time here includes the 1/0 time. We should
point out that MineTopkRGS discovers different kinds of rules from all these exist-

ing methods.

Ihttp://www-genome.wi.mit.edu/cgi-bin/cancer
2http://www.chestsurg.org
Shttp://clinicalproteomics.steem.com/
*http://lwww-genome.wi.mit.edu/mpr/prostate

5the code is available at http://iwww.sgi.com/tech/mic/
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Figure 2.5: Comparisons of Runtime on Gene Expression Datasets

Figure 2.5 (a-d) shows the effect of varying minimum support threshold
minsup. The graphs plot the runtime for the two algorithms at various settings of
minimum support. Note that the y-axes in Figure 2.5 are in logarithmic scale. We
run algorithm MineTopkRGS by setting the paramétet 1 and 100 respectively
on all the datasets. For FARMER algorithm, we run it by setting minimum confi-
dencemincon f at 0.9 and 0 (which disables the pruning with confidence threshold)
on datasets ALL, and LC. Due to the relatively large number of rows in the other
two datasets, FARMER is slow even when wersgtcon f at 0.9 and 0.95 respec-
tively. For dataset PC, the runtime curve of FARMER»athconf =0.9 is at the

upper right corner. We do not show the runtime of FARMER on dataset OC because
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it cannot finish in several hours evenmaincon f =0.95. To further show the effect

of prefix tree structure on the runtime and thus the improvement of top-k prunning
alone on the runtime, we also implemented FARMER with prefix tree structure and
the runtime curve is labelled as “FARMER+prefix”. Note that the minimum sup-
ports shown in Figure 2.5 are absolute values. We usually vary minimum support
from 95% to 60% when measured with a relative value. We begin with a high
minimum support in order to allow FARMER to finish in reasonable time.

Figure 2.5 (a-d) shows that MineTopkRGS is usually 2 to 3 orders of mag-
nitude faster than FARMER. Especially at low minimum support, MineTopkRGS
outperforms both FARMER+Prefix and FARMER substantially. This is because
FARMER discovers a large number of rule groups at lower minimum support while
the number of rule groups discovered by MineTopkRGS is bounded. This also
explains why MineTopkRGS is not sensitive to the change of minimum support
threshold as shown in Figure 2.5. Besides, Figure 2.5 (a-d) demonstrates that the
combination of row enumeration and the prefix tree technique speeds up the min-
ing process successfully, by which, FARMER+prefix can improve the efficiency of
FARMER by about one order of magnitude.

Figure 2.5 (e) shows the effect of varyikgon runtime. We observe similar
tendencies on all datasets and report results on datasets ALL and PC only. Itis quite
reasonable that runtime of MineTopkRGS is monotonously increasingkwith

The impressive performance of MineTopkRGS can be contributed to four
main factors. First, TopkRGS bounds the number of discovered rule groups. Sec-

ond, the row enumeration strategy fits the problem of mining TopkRGS very well.
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Third, the prefix tree structure speeds up frequency computation. Fourth, the dy-
namically generated minimum confidence helps in pruning search space although

MineTopkRGS does not require users to specify minimum confidence.

2.5 Summary

In this chapter, we proposed the concept of top-k covering rule groups for each row
of gene expression data and an algorithm called MineTopkRGS to find the Top-
kRGS. Experiments showed that MineTopkRGS outperforms existing algorithms
like CHARM, CLOSET+ and FARMER by a large order of magnitude on gene
expression datasets.

Although it is true that current gene expression datasets have small number
of rows, we may extend TopkRGS to other large datasets that are characteristic of
both long columns and a large number of rows by utilizing column-wise mining
first, then switching to row-wise enumeration in later levels to mine top-k covering
rules in the partitions, and finally aggregating the top-k covering rules in all parti-
tions. It is well known that some item-wise mining algorithms have linear scalabil-
ity with dataset size. Another method for MineTopkRGS to deal with the memory
limitation problem is to utilize the database projection (disk-based) techniques as

suggested in [36].

38



CHAPTER 3

RCBT: Classification with Top K

Covering Rule Groups

The pioneering associative classification method is CBA [56]. However, CBA is

unable to adapt to gene expression data not only because of its inefficiency in rule
mining and excessively huge rule number but also its rule selection scheme. CBA
always selects a single one rule of highest significance for each training data. When
the generated CBA classifier does not cover a test data, CBA simply outputs the
default class. Such case happens quite often for CBA when applying on gene ex-
pression data. In fact, discussion with biologists revealed that they are usually re-
luctant to believe in the classification made by selecting a default class which is

done without giving any deciding factors.
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IRG classifier in [20] is the first classifier to classify with rule groups. The
rule groups selected by IRG classifier are the interesting ones such that no subset
rule group of higher significance exists. During the rule selection step, IRG classi-
fier simply chooses the longest rule, the upper bound rule, of each interesting rule
group for classifier building. However, according to our experiments, the number
of interesting rule groups (IRGs) are still too huge to handle, especially when the
confidence and support thresholds are low.

Inspired by CBA and IRG classifier, we propose a new classifier, RCBT,
built on the rules delicately selected from top covering k rule groups. We sig-
nificantly reduce the default class decision cases by building a series of standby
classifiers apart from the main one. We also improve the classification accuracy by
aggregating the discriminating powers of carefully selected rules. As another bene-
fit of RCBT, CBA classifier can be easily built with the top-1 covering rule groups
of RCBT, as we will prove later.

Experiments on benchmark gene expression datasets show that RCBT out-
performs or is competitive with CBA [56], IRG classifier [20], SVM [45], and C4.5
family algorithms [70] (single tree, bagging and boosting). Furthermore, we show

that our method does provide knowledge of biological significance.

3.1 Background

Recent studies have shown that class association rules are very useful in classifica-

tion. Due to their relative simplicity, they can be easily interpreted by biologists,
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providing great help in the search for gene predictors (especially those still unknown
to biologists) of the data categories (classes). Moreover, it is shown in [20, 26, 53]
that classifiers built from association rules are rather accurate in identifying cancer-
ous cell. RCBT is one novel associative classifier built on class association rules.

Traditional statistical and machine learning methods typically rely on the
feature selection (ranked according to measures such as gain ratio, chi-square and
etc.) to reduce the number of dimensions for computational efficiency. So does a
recent associative classification method PCL [52]. However, the feature selection
is problematic: first, it is difficult to determine how many top-ranked genes to be
used for classification model; second, as observed in [53] and our experiments, low-
ranked genes are often contained in significant rules that are sometimes necessary
for perfect classification accuracy.

Our work is closely related with previous associative classification methods
[20, 26, 56]. These algorithms first try to mine all rules satisfying minimum support
and minimum confidence thresholds, and then sort and prune the discovered rules
to get the classification rules. The high-dimensional gene expression data renders
these algorithms impractical because of the huge number of discovered rules.

Another related rule-based classification method is decision tree, such as
C4.5. The rules generated by C4.5 are exclusive to each other and cover the train-
ing data just once. As a result, C4.5 only produces a small set of classification
rules, some of which may be biased, and C4.5 may miss global significant rules
for perfect prediction. Decision tree method C4.5 has also been criticized for frag-

mentation problem [63]: many locally important but globally unimportant rules are
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generated in the process of building decision tree. Committee decision tree tech-
nigues of bagging [16] and boosting [30] have been proposed to alleviate the above
problems by applying a base C4.5 classifier multiple times using bootstrapped data
to generate a committee of classifiers. However, the rules produced by bagging
or boosting methods may not be correct for the original training data since they
are generated from pseudo training data, and thus may deteriorate classification ac-
curacy. Instead, our method generates a set of globally significant classification
rules and aggregates their discriminating powers for classification, thus avoiding

the above problems.

3.2 Comparison of RCBT with CBA and IRG Clas-
sifier

The pioneering associative classification method CBA suffers serious computa-

tional efficiency problem on gene expression data. Comparatively, the recent IRG

classifier is adapted much better to gene expression day by systematically grouping
class association rules into interesting rule groups. However, IRG classifier con-

ducts the classification with the upper bound rules of interesting rules, the number

of which may still be huge. RCBT further improves over the two methods. In this

section, we discuss the relationships between RCBT and these two methods.
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3.2.1 RCBT and CBA Classifier

We first prove that the set of top-1 covering rule groups for each row contain the set
of rules required to build CBA classifier. The basic idea of CBA can be summarized

as the following steps:

Step 1: Generate the complete set of class association €ule$or each class that

satisfy the user-specified minimum support and minimum confideénce.

Step 2: Sort the set of generated rulésk according to the relations<”. Given
two rules,r; andr;, r; < r; if and only if one of the following three conditions
is satisfied (1);.conf > rj.conf; (2) ri.conf = rj.conf Ar;.sup > r;.sup;
or (3) rj.conf = rj.conf A ri.sup = rj.sup andr; is discovered before
r;. Because CBA discovers rules in breadth-first manner, CBA will always
assign the shortest rule a higher rank when several rules have the same values

of support and confidence.

Step 3: Select rules from sorted rule sétk. For each rule- in C'R, if it can
correctly classify some training data in, CBA puts it into classifielC’,
removes those training data coveredrignd continues to test the rules after
rin CR. Meanwhile, CBA selects the majority class in the remaining data as
default class and computes the errors made by cuéféand default class.

This process continues until there are no rules or no training data left.

INote that CBA algorithm employs an Apriori-like algorithm for this task and will fail at this
step on gene expression data. Likewise, newly proposed column enumeration algorithms, such as
CHARM and CLOSET+ also failed.
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As can be seen, in CBA, the rule generation scheme using fixed support and
confidence thresholds at Step 1 and the rule selection scheme based on coverage
test at Step 3 are simply NOT compatible with each other. Because of the extremely
high dimensionality of gene expression data, even when the confidence threshold
is set as high a85%, CBA cannot finish running at Step 1 in several days. It
is even more ridiculous that most of the time spent is used to generate redundant
rules which will eventually be pruned away at Step 3. The following lemma proves
that the rules selected by CBA for classification are actually a subset of rules of

TopkRGS withk = 1.

Lemma 3.2.1 Given a minimum support. L&t be the set of discovered top-1 cover-
ing rule groups for each training datal, be the set of shortest lower boundslof
and "’ be the set of rules selected at Step 3 of CBA method. We getl,.

Proof: For each ruler € C’, it must correctly classify some training data. Because
of the sorting at step 2 of CBA methadnust be the top-1 covering rule of a train-
ing data if it correctly classifies the training data. This means thatust be inv,.

We get the proof.

Note that mining top-1 covering rule group does not requir@r@amum con-
fidencethreshold while CBA algorithm needs one when generating rules at Step 1.
Setting too high a confidence threshold will result in some rows not being covered
by the discovered rule while lowering the confidence threshold will result in sub-
stantial increase in running time. This is unlike our approach which will still find

the most significant top-1 covering rule for each training data without specifying an
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appropriate confidence threshold in advance.

In order to build CBA, we need to discover one of the shortest lower bounds
from each top-1 covering rule group. [20] proposed a method to discover all lower
bounds of a rule group. However, in entropy-based discretized gene expression
datasets, a rule group may contain tens of thousands of lower bounds and discov-
ering all these lower bounds is not only unnecessary but also computationally ex-
pensive. Instead of discovering all the lower bounds, we propose a straightforward

method to search only a given number of lower bounds for classification purpose.

Lemma 3.2.2 Rule~' is alower bound ruleof rule groupG with upper bound rule
iff (1) v.A C~.A, 2)|R(+.A)| = |R(y.A)| and (3) there is no other rule member
~" of G such thaty’. A D ~+".A.

With Lemma 3.2.2, we derive the algorithm FindLB() in Figure 3.1. It takes
in four parameters: training dafa, the upper bound rule, the set of rows cov-
ered byy (denoted asowset and can be recorded when generating algorithm
MineTopKRGS), and the number of required shortest lower bouwids/=1 for
CBA classifier). At Step 1, we first rank genes based on their discriminant ability
in classification measured by entropy score [9], and then rank the items in an upper
bound rule based on the rankings of their corresponding genes (one gene may be
discretized into several intervals, each represented by an item). In this way, we dis-
cover the shortest lower bound rules that contain items from the most discriminant
genes to build CBA classifier. At step 2, for a candidate lower bound combination

e, We first test the condition (3) in Lemma 3.2.2; if condition (3) is satisfied, we
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continue to test condition (2), which is satisfied only if there does not exist a row
r € D Ar ¢ rowset thatcy, is contained irr. If both (2) and (3) are satisfiedy, is

a lower bound. This process continues until we getthiewer bound rules.

Algorithm FIndLB( D, ~, rowset, nl)

1. Rank the items iny. A according to the descending order of the entropy scores
of the corresponding genes;

2. Perform a breadth-first search in the search space formed by the list of items
~.A until we getnl lower bound rules;

Figure 3.1: Algorithm FindLB

Both datasetD and candidate lower bound combinations are represented
with bitmap to speed up the containment test. The discovered lower bounds usually
contain 1-5 items while the upper bounds usually contain hundreds of items in
the data we tested. We use one heuristic rule to speed-up the algorithm FindLB.
Consider two upper bound rules, andy,. Let A’ = y1.A N 1. A. The lower
bound rules ofy, will contain at least one item ig,. A — A’ if 7,.A — A’ # (), and
the lower bound rules of; will contain at least one item iy, A — A" if . A — A’

# (). We can prune the unpromising search space with this strategy.

With the set of lower bound rules, we can build CBA classifier using the
method presented in Section 2.2. Note that a minimum confidence threshold can be
imposed on the set of lower bounds to filter out rules that do not satisfy the threshold
to be consistent with CBA method in [56]. According to our experiments, for some
training data, all the covering rules are beneath the specified confidence threshold

and will be pruned off totally. This will certainly cause information loss. Compar-
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atively, RCBT requires no specified confidence threshold and is more flexible for

use.

3.2.2 RCBT and IRG Classifier

Association rules can reveal biological relevant relationships between genes and
environments / categories. However, most existing association rule mining algo-
rithms are rendered impractical on gene expression data, which typically contains
thousands or tens of thousands of columns (gene expression levels), but only tens of
rows (samples). The main problem is that these algorithms have an exponential de-
pendence on the number of discretized items, which are approximately proportional
to the number of columns. Another shortcoming is evident that too many associa-
tions are generated from such kind of data. These problems result in extremely long
rule discovery runtime.

To address the two problems, the depth-first row-wise algorithm FARMER
[20] is specially designed to efficiently discover and cluster association rules into
interesting rule groupgIRG9 satisfying user-specified minimum support, confi-
dence and chi-square value thresholds on biological datasets as opposed to finding
association rules individually. Based on the IRGs discovered by FARMER, IRG
classifier is built by aggregating the discriminating power of upper bound rules for
gene expression data classification. IRG classifier is at present the classifier most
related to RCBT.

To have a rough idea of IRG classifier, let’s look at a simple example. Sup-
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Figure 3.2: Row Enumeration Tree

pose there is a two-row discretized datasgty, , g2, g3, 94, g5, g6, Cancer}, 2: {gz,

gs» 9os 10, 911, g12, "Cancer}, whereitem g; (i = 1, 2, ..., 12) is the discretized
value of the original gene expression level. We could generate 63 association rules
in the form of “A — Cancer” from the same row seft1 }, whereA is any combina-

tion of ¢1, ¢o, ..., gs, and 63 association rules in the form @ “— =Cancer” from

the same row sef2}, where B is any combination ofj7, gs, ..., g12. Obviously,

many of them are redundant.

IRG classifier utilizes the following three main core techniques.

e Interesting Rule GroupdAll the above 126 rules of the running example belong to
two rule groups. Onerule groupis identified with a uniquantecedent support set

2 {1}, auniqueupper bound rulgy; g»g3919596 — Cancer, and 6lower bound rules

g; — Cancer,i =1, 2, ...,6. The otherule groupis identified with anothean-
tecedent support s€2}, a uniqueupper bound ruley;gsgog10911 912 — —Cancer,
and 6lower bound rules;;, — —~Cancer,i = 7, 8, ..., 12. The rules between the
upper bound ruleand theower bound rulesre the remaining members of the cor-

respondingule group In this way, we only need to generatei@per bound rules

2The antecedent support sef a rule is the complete set of rows that contain the antecedent of
the rule
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and 12lower bound rulesnstead of all the 126 rules. As can be seen, the rules

in the sameule groupshare the samantecedent support sahd the same conse-
guent, thus the same support, confidence and chi square values. From this point of
view, therule groupis a lossless compression of the association rules. FARMER
only outputdnteresting rule groups (IRGs). For tworule groupsof the same con-
sequentyg, andrgs, if rg;.upperbound C rgs.upperbound andrg; has a higher
confidence, then FARMER only outputg,, because ¢, is defined to be more in-

teresting.

e Row Enumeration Combined with Efficient Pruning Strateghesthe row enu-
meration space is orders smaller than the column enumeration space in gene expres-
sion data, FARMER performs search by a depth-first traversaraiveenumera-

tion tree. Each node corresponds to a certain row enumeration, wheaesposed

table is set up and a neWRG may be identified. For the simple example, thes
enumeration treavithout applying pruning strategies is shown in Figure 3.2. The
traversal starts from the root nodé, goes through nodé¢l} and node{1, 2} in
sequence, and ends at nddé. Figure 2.1 lists the corresponding three non-empty
transposed tables, wheRé g;) represents the complete set of rows that contain item
g;. In this way, theupper bound ruley; 9293919596 — Cancer is discovered at node

{1}, and theupper bound ruley;gsgog10911912 — —Cancer is discovered at node

{2}. To avoid redundancy and to comply with the minimum measure thresholds,
efficient pruning strategies of minimum confidence, support and chi-square are ap-

plied to further speed up the mining process.
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e Upper Bound RulesLike CBA classifier, after mining upper bound rules of in-
teresting rule groups, IRG classifier first ranks the upper bound rules in statistical
significance, then uses thpper bound rulesf the most significant interesting rule

groups to classify unknown test data.

There are still some problems with IRG classifier for gene expression data
classification. Although with the concept of interesting rule group, numerous rules
discovered from gene expression data are clustered into significantly smaller num-
ber of IRGs the number olRGs sometimes can still be quite huge, i.e., tens of
thousands especially when the minimum support or minimum confidence thresh-
olds are low. Another drawback is that the IRG classifier coarsely classifies the
test data with a single one upper bound rules. That would probably be biased in
some occasions. Our RCBT classifier performs a much more significant pruning
on the discovered rule groups with the top k covering constraint and combines the

discriminating powers of finely selected rules to build a committee of classifiers.

3.3 Rule Group Visualization

In this section, we introduce visualization technique to effectively interpret and
compare the semantics of rule groups. The graphic interface enables users to con-
duct semantic explorations over the rule groups and identify the most discriminating

rule groups rapidly. Besides, the visualization techniques can help understand our
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rule selection scheme in RCBT classifier.

Figures 3.3, 3.4, and 3.5 show our system interfaces of rule group visual-
ization. The rule groups are sorted based on their rank (descending) as evaluated
first by confidence (descending), next by support (descending), and last by # item
(ascending). The top rule groups RG; < RGy; < RG3 < RG4 < RG5) are
specified as theule group subset Meanwhile the order of the items in the spec-
ified rule group subset and the rows in the dataset are determined based on their
memberships in thikemsetd andantecedent support sat§the rule groups respec-
tively. An item: will be ranked higher than an iterif the highest ranked rule
group that contain is above the highest ranked rule group that confamthe rule
group ranking. Likewise, a rowwill have a higher rank than a rowif the highest
ranked rule group that is matched bys above the highest ranked rule group that
is matched by based on the rule group ranking.

For each rule group, we can visualizeatstecedent support sahd itsitem-
setwith a “barcode’ and a ‘flower” separately, or with arhatrix” jointly. A
“closed latticeé graph is also proposed to summarize the rule groups in the rule
group subset based on the subset/superset relationship oathegaedent support

sets

e Antecedent Support Set Visualizatiorhe “barcodée’ (left hand of Figures 3.3

and 3.4) is the identification number of the rule group. The “bar” consists of several

3the itemsetof a rule group is the complete set of items that appear in at least one of the an-
tecedents of the association rules in the rule group
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Figure 3.3: Semantic Visualization of the rule group Subset Using the Barcode
View and the Flower View

small grids, each mapping to one ordered row of the dataset. If the mapped row
is a member of the rule group&ntecedent support seéhe grid is dyed according

to the class label of the row (i.e., red for “negative”, blue for “positive”). In this
way, the semantics of the rule group, like support and confidence, can be obtained
by a snapshot. The overall “barcode” view (left hand of Figure 3.3) suggests that
theantecedent support sef RG, occupies only the “negative” tissue samples (all
red, no blue), while thantecedent support setf RG5 occupies only the “positive”
tissue samples (all blue, no red). They are the only two rule groups of confidence
100% in the rule group subset. Thelbsed lattic€ (right hand of Figures 3.3 and

3.4) is another summarization based on the superset/subset relationshiparof the
tecedent support setd rule group in the rule group subset. Each node in the lattice
except the root node maps to thaetecedent support sef one rule group in the

rule group subset. Thantecedent support sef the parent node includes that of

the child node. The root node corresponds to the set of all the 47 rows.
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Figure 3.5: Rule Group Comparisons Using the Matrix View

e Iltemset Visualization We visualize theitemsetof the rule group in the user-
specified rule group subset asfotver” (left hand of Figures 3.3 and 3.4). Each
“flower” corresponds to the same set of ordered items that appear in the rule group
subset and each item is represented by a “petal” of the “flower”. The “petal” is dyed

if the corresponding item appears in the current rule group, otherwise it is left blank.
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¢ Joined VisualizationThe x-dimension of the “matrix” represents the set of rows

in the dataset while the y-dimension of the “matrix” represents the set of items in
the rule group subset. The items and rows along each dimension are ordered. Given
a “matrix” representing a rule groupG;, a cell valued z, y) in the “matrix” will be
colored red if itemy is in the antecedent of thgpper bound ruldor RG; and row

x matches thepper bound rulef RG;. Due to the ordering of the items and rows,

the red cells in the “matrix” of the highest ranked rule group (Ré:z,) will always

be clustered at the bottom left corner of the “matrix” as can be seen from Figure 3.5.

To compareRG; against other higher ranked rule groups, a cell in the “ma-
trix” for RG; will be colored dark grey if it has been colored red in any “matrix”
of higher ranked rule groups. For example, the dark grey patch in the “matrix” of
RG, indicates that these cells have been colored red in the “matrix@®@f. In
the case in which the cell also has to be painted red to repré&sentthe color of
dark red will be used to paint the cell. Finally, the top most cells in each “matrix”
are used to represent the class labels of the corresponding rows. By looking at the
highest cells in the “matrix” ofRG;, we can see thakG; has al00% confidence
prediction for a certain class. Overall, we can see @i and RG, are the most
discriminating rule groups with the largest number of non-overlapped red cells.

With the effective visualization techniques, we can identify the most dis-
criminating rule groups graphically. Intuitively, the most discriminating ones are
those with red cells in the matrix view which correspond to the top-1 covering rule

groups; the ones with gray red cells in the matrix view correspond to the, top-
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1 > 1, covering rule groups. By specifying the valuefofor top k covering rule
groups, we can flexibly make a trade-off between the number of rule groups and the
redundancy among them. This is our motivation of kagovering rule group selec-

tion scheme. Combined with the entropy rule selection measure, RCBT classifier

further identifies a small subset of most significant rules from selected rule groups.

3.4 RCBT Classifier

In this section, we present a refined classification method based on TopkRGS, called

RCBT. RCBT improves over CBA method in two aspects:
e RCBT reduces the chance that a test data is classified with default class;
e RCBT uses a subset of rules to make a collective decision.

As discussed earlier, RCBT tries to reduce the chance of classifying test data
with default class by building a series of stand-by classifiers apart from the main
classifier. Moreover, RCBT carefully combines a subset of lower bound rules to
make a collective decision instead of selecting only one shortest lower bound rule as
CBA does. The subset of lower bound rules are selected based on the discriminant
ability of genes. In this way, RCBT will not miss globally significantly rules which
are unable to be identified because of advance feature selection, while concentrate
on a small number of informative genes.

Building Classifier: RCBT has two input parameters, the number of covering

rule groups for each row and, the number of lower bound rules to be used.
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Let RG; denote thesetof rules groups, each of which is a tgpule group
for at least one training data of a certain class. We will thus Hasets of rule
groupsRG,, RGs, ..., RGy. Thesek sets of rule groups are used to bullctlas-
sifiersCLy, C'Ls, ...CL; with CL; being built fromRG ;. We callC'L; the main
classifier and’ L,, ..., C'L;, backup classifiers. For each rule groupity;, RCBT
finds itsnl shortest lower bound rules by calling algorithm FindLB(). The union
of the lower bound rules will be sorted and pruned (as in Step 3 of Section 2.2) to
form CL;.

Besides main and backup classifiers, we set a default class like in CBA, the

majority class of the remaining training data.

Prediction: Given a test data we will go throughC'L, to CL, to see whethet
can be classified and stop oncis classified. In the case thatannot be handled
by any of thek classifiers, the default class will be assigned.to

Instead of predicting a test data with the first matching rule as CBA does,
RCBT tries to match all rules with an individual classifier (the main classifier or
individual standby classifiers) and makes a decision by aggregating voting scores.
We design a new voting score for a rujé by considering both confidence and

support as
S(1) = % .conf * 2 .sup/de,,
whered,, is the number of training data of the clags’, i.e. ¢;. Note that0 <

S(~%) < 1. By summing up the scores of all rules in each clgssve get score

S for normalization. Given a test datawe suppose thatmatchesn; rules of

norm
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Dataset RCBT CBA IRG Classifier C4.5 family SVM
single tree| bagging | boosting

AML/ALL (ALL) 91.18% | 91.18% 64.71% 91.18% 91.18% | 91.18% | 97.06%
Lung Cancer(LC) | 97.99% | 81.88% 89.93% 81.88% 96.64% | 81.88% | 96.64%
Ovarian Cancer(OC) 97.67% | 93.02% - 97.67% 97.67% | 97.67% | 97.67%
Prostate Cancer(PC) 97.06% | 82.35% 88.24% 26.47% | 26.47% | 26.47% | 79.41%
Average Accuracy | 95.98% | 87.11% 80.96% 74.3% 77.99% 74.3% 92.70%

Table 3.1: Classification Results

classc;: (1)1, v(t)5', ...v(t)s. .. The classification score of classfor the test data

t is calculated as:
Score(t) = (> S(Y(t)5))/Shrm
=1

. We make a prediction farwith the highest classification score.

3.5 Experimental Studies

We evaluate the performance of RCBT on the four gene expression datasets shown
in Table 2.1. In term of classification accuracy, we compare the performance of
RCBT classifier with CBA, IRG classifier, C4.5 family algorithms (single tree,
bagging and boosting), and support vector machine (SVM). For the C4.5 family
algorithms, we use the open-source software Weka version 3.2. WelUEE9"t

5.0 for the SVM algorithm. To keep the comparisons fair, SVM and the C4.5 family
algorithms are run using the same genes selected by entropy discretization, but with
the original real values of the gene expression levels. Besides, we report the best ac-
curacy of SVM when varying between the linear and polynomial kernel functions.
The open-source-code CBA usually cannot finish after running several days. We

set the minimum support at 0.7 of the number of instances of the specified class to
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generate top-1 covering rule group of each row to build CBA classifier. The same
minimum support is set for IRG classifier and RCBT. We set minimum confidence
0.8 for IRG Classier (the same threshold is applied to CBA but we find all top-1
covering rule groups satisfy the threshold in our experiments). We set parameters
k = 10 (TopkRGS) andh/ = 20 (the number of lower bound rules) for RCBT.

Because the test data of all the benchmark datasets are not biased, the classi-
fication accuracy on the independent test data is used to evaluate these classification
methods. Table 3.1 lists the classification results on the five datasets.

We first look at the last row of Table 3.1 to have a rough idea of these clas-
sifiers on gene expression datasets by comparing their average accuracy on four
datasets. We see that the RCBT classifier has the highest average accuracy. Note
that the result of IRG classifier on OC is not available since FARMER cannot finish

in one day on OC and the average is computed on the other three data.

Comparison with SVM: RCBT outperforms the SVM significantly on dataset PC.
SVM achieves the best results on dataset ALL although RCBT is still compara-
ble to SVM on ALL. However, the complexity together with the distance model of
SVM is much more complicated than our RCBT classifier and it is hard to derive
understandable explanation of any diagnostic decision made by SVM. No doubt,
these problems limit the practical use of SVM in biological discovery and clinical

practice. In contrast, the RCBT classifier is very intuitive and easy to understand.

Comparison with C4.5 family algorithms: RCBT usually outperforms the C4.5
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family algorithms. The C4.5 family algorithms fail on the PC data while RCBT
classifier still performs well. This is because C4.5 always considers the top-ranked
genes first when generating the rules to construct the decision trees, and it misses
the globally significant rules on the PC data containing lower-ranked genes, as dis-

covered by RCBT.

Comparison with CBA, IRG Classifier and RCBT: RCBT performs better than

both CBA and IRG Classifier. Compared with CBA, RCBT classifies much fewer
test data using default class. CBA classifies 5 test data (2 errors) on OC and 16 test
data (5 errors) on PC using default class while RCBT classifies 1 test data (O error)
on OC, and 1 test data (0 error) on PC using default class. There is no test data

classified using default class on ALL and LC for both CBA and RCBT.

For SVM and C4.5, we also try to use only the top 10, 20, 30, or 40 entropy-
ranked genes when building the classifier. In both cases, the performances of SVM
and C4.5 often become worse. There are two main reasons that contribute to the
performance of RCBT classifier. The first is that we build a series of standby classi-
fiers besides the main classifier. The second is that we use a subset of lower bound
rules in building classifier. Next, we analyze the effect of both factors in detail and

explain how we can set the parameters for RCBT.

Usefulness of Standby Classifiers in RCBTIn our experiments, we sét= 10

for TopKRGS to build RCBT classifiers, which means that we build 9 standby clas-
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Figure 3.6: Effect of Varyingl on Classification Accuracy

sifiers besides a main classifier for each dataset. We find that the standby classifiers
classify 2 test data of OC (no error) and 2 test data of PC (no error). On datasets
ALL and LC, the main classifier makes all decision. This shows the usefulness of
standby classifiers. We would like to stress that these standby classifiers not only
improve the classification accuracy but also make the results more convincing to
biologists since most test data are not classified by default class.

We also find that only the first 4 standby classifiers are used to classify some
test data on all the four datasets. Therefore, RCBT is quite insensitive to the value

of k as long ag: is set to a sufficiently large value.

Sensitivity Analysis of nl for RCBT: We setn/ = 20 to build RCBT classifier.
Figure 3.6 shows the effect of varyimg on the classification accuracy on datasets
ALL and LC. Both curves are quite plain especially wheh > 15 ( changing

nl does not affect accuracy). We observe similar trend on other datasets and only
report results on ALL and LC. Again, as long asvalue is set reasonably large,

RCBT will not be affected by it.
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We also study the effect of varying minimum support thresholds from 0.6
to 0.8 on accuracy and find that the performance of both CBA and RCBT are not

affected for all datasets.

As can be seen, the discovered TopkRGS are shown to be useful for classi-
fication for both CBA and RCBT. RCBT is both accurate and easy to understand.
The parameters for RCBT are also easy for tuning. Besides, experimental results
show that some important genes used in RCBT are really responsible for cancer

pathogenesis.
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Figure 3.7: Chi-square based Gene Ranks and the Frequencies of Occurrence of the
415 Genes which Form the Top-1 Covering Rules of RCBT on the Prostate Cancer
Data. Genes whose Frequencies of Occurrence are Higher than 200 are Labelled.

Biological Meaning: As the lower bound rules RCBT selected from the Prostate
Cancer data contain genes of lower-ranks, it is interesting to have a further study of

the relationship between gene ranks and usefulness in the lower bound rules. We
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assume that the more important genes are more likely to be used in the globally
significant rules. Figure 3.7 illustrates the chi-square based gene ranks and the
frequencies of occurrence of 415 genes (which are involved in forming the top-1
rule groups) in the shortest lower bound rules of top-1 rule groups. As can be seen,
most of the genes that occur frequently in the rules are those that are ranked high in
the chi-square based ranking (most are rarikgd* and above).

This includes six genes which occur more than 200 times in the discovered
lower bound rules of the Prostate Cancer data: M61916 (408 times), W72186 (1775
times), Al635895 (887 times), X14487 (646 times), AB014519 (651 times), and
AF017418 (997 times). Among the lower ranked gene, only gene Y13323 occurs
for a large number of times (282).

This indicates that the genes of lower ranks generally serve as a certain
supplementary information provider for the genes of higher ranks. The large pro-
portion of lower-ranked genes also suggests their necessity for globally significant
rules. Based on the experiment, we suspect that the 7 most active genes, M61916,
W72186, Al635895, X14487, AB014519, AF017418, and Y13323, are most likely
to be correlated with the disease outcomes. Interestingly, gene AF017418 of rank
671 corresponds to MRG1 which has been reported to be useful in detecting gly-
cosphingolipid antigen present in normal epithelium and superficial bladder tumor
in patients with blood group A or AB, but absent in the invasive type of bladder (es-
sentially prostate) tumor [51]. Also stated in [6, 15, 32,47], MRG1 may function as
a coactivator through its recruitment of p300/CBP in prostate cancer cell lines and

stimulate glycoprotein hormone-subunit gene expression. Gene AB014519 is re-
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lated to Rock2 under certain cancer pathway known as the Wnt/planar cell polarity
pathway*. X14487 is also a cancer-related gene for acidic (type I) cytokeratin. As
reported in [61], X14487 shows consistently different expression levels in OSCC

tissues and is one of the potential biomarkers for lymph node metastasis.

3.6 Summary

Our RCBT method has addressed an open problem of default class of previous
associative classification methods [20, 26, 56] with the backup classifiers. RCBT
also improves classification accuracy over CBA and IRG classifier by aggregating
the discriminating powers of a subset of rules selected w.r.t. gene discriminant
ability from global significant rule groups.

This chapter also showed that the set of top-1 covering rule group for each
row makes it feasible to build CBA classifier. Our experiments showed RCBT has
the highest average accuracy compared with CBA, IRG classifier, SVM and C4.5
family. Moreover, RCBT classifier is more understandable for biologists than SVM
because rules themselves are intuitive.

In the future, we can investigate to mine top-k rule group for traditional
datasets with large number of rows and relatively small number of columns to avoid
wasting computation in generating a large number of useless rules. We also plan to

test the performance of RCBT on such datasets.

*http://www.csl.sony.co.jp/person/tetsuya/Pathway/
Cancer-related/cancer-related.html ,
http://www.csl.sony.co.jp/person/tetsuya/Pathway/Cancer-related/
Wnt/Wnt-planar
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CHAPTER 4

CURLER: Finding and Visualizing

Nonlinear Correlation Clusters

Like data objects in other high-dimensional data, genes are NOT globally correlated
in all conditions because of the inherent sparsity of high dimensionality. Instead, a
cluster of genes may be strongly correlated only in a subset of conditions. Further-
more, the nature of such correlation is usually local to a subset of the genes, and it
is possible for another subset of the genes to be correlated in a different subset of
conditions. Traditional clustering methods of detecting correlations like GDR [77]
and PCA [46] are not applicable in this case since they can detect only correlations
in whole databases.

To handle the above problem, several subspace clustering algorithms such as
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ORCLUS [2] and 4C [14] have been proposed to identify local correlation clusters
with arbitrary orientations, assuming each cluster has a fixed orientation. They
identify clusters of data objects which are linearly correlated in some subset of the
features.

Correlation between genes or other data objects in high-dimensional data
could however be nonlinear, depending on how the data is normalized and scaled
[35]. Physical studies have shown that the pressure, volume and temperature of
an ideal gas exhibit nonlinear relationships. In biology, it is also known that the
co-expression patterns of genes in a gene network can be nonlinear [34]. Without
any detailed domain knowledge of a dataset, it is difficult to scale and normalize
the dataset such that all nonlinear relationships become linear. It is even possible
that the scaling and normalization themselves cause linear relationships to become
nonlinear in some subset of features.

In this chapter, we focus on detecting and visualizing nonlinear correlation
clusters in subspace. Not restricted to gene expression data, our method can be
applied to other high-dimensional data with complex correlation as well.

Detecting nonlinear correlation clusters is challenging because the clusters
can have bothocal and global orientations, depending on the size of the neigh-
borhood being considered. As an example, consider Figure 4.1, which shows a 2D
sinusoidal curve oriented at 45 degrees to the two axes. Assuming the objects clus-
ter around the curve, we will be able to detect the global orientation of this cluster if
we consider a large neighborhood which is represented by the large circle centered

at pointp. However, if we take a smaller neighborhood at pginwe will only find
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Figure 4.1: Global vs Local Orientation

the local orientation which can be very different from the global one. Furthermore,
the local orientations of two points that are spatially close may not be similar at the
same time, as can be seen from the small neighborhoods agamnutt.

We next look at how the presence of local and global orientations may pose
problems for existing correlation clustering algorithms like ORCLUS [2] and 4C
[14]. These algorithms usually work in two steps. First, small clusters calied
croclusters[78, 79] are formed by grouping small number of objects that are near
each other. Second, microclusters that are close both in proximity and orientation
are merged in a bottom-up fashion to form bigger clusters. For nonlinear correla-

tion clusters, such approaches will encounter two problems:

1) Determination of Neighborhood
Given that the orientation of a microcluster is sensitive to the size of the neighbor-
hood from which its members are drawn, it is difficult to determine a neighborhood

size in advance such that both the local and global orientations of the clusters are
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captured. Combined with the fact that spatial proximity must be judged based on
a subset of the features that are not originally known, forming microclusters that

capture the orientation of their neighborhood becomes a major challenge.

2) Judging Similarity between Microclusters

Since the orientations of two microclusters in close proximity can be very differ-
ent, judging the similarity between two microclusters becomes non-trivial. Given
a pair of microclusters which have high proximityut very different orientations

and another pair with similar orientations but low proximity, the order of merging
for these two pairs cannot be easily determined. This in turn affects the final clus-
tering result. One way to avoid this problem is to assign different weights to the
importance of proximity and orientations, and then compute a combined similarity
measure. However, it is not guaranteed that there will always be a unique weight

assignment that gives a good global clustering result.

In this chapter, we aim to overcome the above problems in finding nonlinear

correlation clusters. Our contributions are as follows:

1. We highlight the existence of local and global orientations in nonlinear cor-
relation clusters and explain how they pose problems for existing subspace
clustering algorithms like ORCLUS [2] and 4C [14], which are designed to

find linear correlation clusters.

INote that as mentioned earlier, judging proximity by itself is a difficult task since the two mi-
croclusters could lie in different subspaces. We assume that the problem is solved here for ease of
discussion.
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2. We design an algorithm called CURLERfor finding and visualizing com-

plex nonlinear correlation clusters. Unlike many existing algorithms which
use a bottom-up approach, CURLER adopts an interactive top-down approach
for finding nonlinear correlation clusters so that both global and local orien-
tations can be detected. A fuzzy clustering algorithm based on expectation
maximization (EM) [43] is adopted to form microclusters so that neighbor-
hoods can be determined naturally and correctly. The algorithm also provides
a similarity measure callezb-sharing levelthat avoids the need to judge the

importance of proximity and orientation when merging microclusters.

3. We present extensive experiments to show the efficiency and effectiveness of

CURLER.

4.1 Background

Existing clustering algorithms can be grouped into two large categories: full space
clustering, to which most traditional clustering algorithms belong, and subspace
clustering.

The clustering strategies utilized by full space clustering algorithms mainly
includepartitioning-based clusteringvhich favors spherical clusters such as the k-
medoid [48] family and EM algorithm like [43]; andensity-based clusteringep-
resented by DBSCAN [28], DBCLASD [82], DENCLUE [1] and the more recent

OPTICS [7]. EM clustering algorithms such as [73] compute probabilities of cluster

2CURLER stands for CURve cLustERs detection.
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memberships for each data object according to certain probability distribution; the
aim is to maximize the overall probability of the data. For density-based algorithms,
OPTICS is the algorithm most related to our work. OPTICS creates an augmented
ordering of the database, thereby representing the density-based clustering structure
based on ‘core-distance’ and ‘reachability-distance’. However, OPTICS has little
concern for the subspace where clusters exist or the correlation among a subset of
features.

As large amounts of high-dimensional data have resulted from various ap-
plication domains, researchers argue that it is more meaningful to find clusters in a
subspace. Several algorithms for subspace clustering have been proposed in recent
years.

Some subspace clustering algorithms like CLIQUE [4], OptiGrid [39], EN-
CLUS [41], PROCLUS [3], and DOC [68] only find axis-parallel clusters. More
recent algorithms such as ORCLUS [2] and 4C [14] can find clusters with arbitrar-
ily oriented principle axes. However, none of them addresses our issue of finding
nonlinear correlation clusters. All these algorithms address clusters with linear ori-

entation only.

4.2 Algorithm

Our algorithm, CURLER, works in an interactive and top-down manner. It consists

of the following main components.

1. EM Clustering: A modified expectation-maximization subroutthe C'luster
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is applied to convert the original dataset into a sufficiently large number of
refined microclusters with varying orientations. Each microclustgeis rep-
resented by its mean valyg and covariance matrixX;. At the same time, a
similarity measure called co-sharing level between each pair of microclusters

is computed.

2. Cluster Expansion: Based on the co-sharing level between the microclusters,
a traversal through the microclusters is carried out by repeatedly choosing
the nearest microcluster in the co-shared neighborhood of a currently

processed cluster. We denote this subroutinE gsindCluster.

3. NNCO plot (Nearest Neighbor Co-sharing Level & Orientation plot): In this
step, nearest neighbor co-sharing levels and orientations of the microclusters
are visualized in cluster expansion order. This allows us to visually observe
the nonlinear correlation cluster structure and the orientations of the micro-

clusters from the NNCO plot.

4. According to the NNCO plot, users may specify clusters that they are inter-
ested in and further explore the local orientations of the clusters with regard

to their global orientation.

In the next subsections, we will explain the algorithm in details and the

reasoning behind it.
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4.2.1 EM-Clustering

Like k-means, the EM-clustering algorithm is an iterative k-partitioning algorithm
which improves the conformability of the data to the cluster model in each iteration
and typically converges in a few iterations. It has various attractive characteristics
that make it suitable for our purpose. This includesdhestering modelit uses,

the fact that it is a fuzzy clustering one with iterative refinement.

Clustering Model

In EM-clustering, we adopt a Gaussian mixture model where each microcldster

is represented by a probability distribution with density parametergs;, > .},

p; andy . being the mean vector and covariance matrix of the data objedts in

respectively. Such representation is sufficient for any arbitrarily oriented clusters.

Furthermore, the orientation of the represented cluster can be easily computed.
Banfield and Raftery [43] proposed a general framework for representing

the covariance matrix in terms of its eigenvalue decomposition:
¥ = MDA DT (4.1)

where D; is the orthogonal matrix of eigenvectots; is a diagonal matrix whose
elements are proportional to the eigenvaluesgfand); is a scalarD;, A; and);
together determine the geometric features (shape, volume, and orientation respec-

tively) of component;.
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Fuzzy Clustering

Unlike ORCLUS and 4C in which each data object either belongs or not belongs
to a microcluster, EM-clustering is a fuzzy clustering method in which each data
object has a certain probability of belonging to each microcluster.

Given a microcluster with density parametérswe compute the probability

of a data object’s occurrence givet, as follows:

) (S ), (@)

1
NP AN

wherexz and mean vectage; are column vectorsy;| is the determinant of};, and

PR(z|6;) =

($;)~!is its inverse matrix.
Assuming the number of microclusters is set@tthe probability ofr oc-

currence given thé, density distributions will be:

ko
PR(z) = Y W;PR(x6;), (4.3)
=1
The coefficientlV; (matrix weights) denotes the fraction of the database

given microclusterV/;. The probability ofr belonging to a microcluster with den-
sity parameters; can then be computed as:
_ WiPR(z|6:)

PR(0;|z) = ~PRG) (4.4)

There are two reasons for adopting fuzzy clustering to form microclusters.
First, fuzzy clustering allows an object to belong to multiple correlation clusters

when the microclusters are eventually merged. This is entirely possible in real life
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Figure 4.2: Co-sharing between Two Microclusters

datasets. For example, a hospital patient may suffer from two types of disease A
and B, and thus his/her clinical data will be similar to other patients of disease A
in one subset of features and also similar to patients of disease B in another subset
of features. Second, fuzzy clustering allows us to indirectly judge the similarity of
two microclusters by looking at the number of objects that are co-shared between

them. More specifically, we define the following similarity measure:

Definition 4.2.1 Co-sharing Level
The co-sharing level between microclustéfsand /; is:

coshare(M;, M;) = Z[PR(MAx) « PR(M;|z)], (4.5)

zeD

wherez is a data object in the datasél, PR(M,|x) and PR(M;|z) are the proba-
bilities of objectz belonging to microclustei/; and microcluster\/; respectively.

PR(M;|x) and PR(M;|z) are calculated according to Equations 4.4 and 4.2]

Given each data object in the database, we compute the probabilities of the

object belonging to both/; and\/; at the same time and sum up these probabilities
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over all the data objects. In this way, the co-sharing level takes both the orientation
and spatial distance of two microclusters into account without needing to explicitly

determine their importance in computing the similarity. A high co-sharing value be-

tween two microclusters indicates that they are very similar while a low co-sharing

value indicates otherwise. As an example, consider Figure 4.2 where two micro-
clusters,M; and M5, are used to capture the bend in a cubic curve. Siiceand

M, are neighboring microclusters, points that belong to both the Gaussian distribu-
tions will increase the co-sharing level between them.

Note that this similarity measure is important here simply because we are
handling nonlinear correlation clustétsFor linear correlation algorithms like OR-
CLUS and 4C, this measure is unnecessary as they can simply not merge two mi-
croclusters which are either too far apart or very dissimilar in orientation.

On the basis of our newo-sharing levelwe will define the co-shared—

neighborhood and nearest neighbor co-sharing level (NNC) for microclusters.

Definition 4.2.2 Co-shared: — neighborhood
For a microclusterM,, its co-sharede — neighborhood refers to all the micro-
clusters whose co-sharing level fral. is no smaller than some non-negative real

numbere: {VM;| coshare(., M;) > €}. O

We will explain how these definitions will be useful in the section on cluster

expansion later.

3As an analogy, consider how soft metals like iron, copper, etc., can be easily bended because
of their stretchable bond structures. Correspondingly, we can now ‘stretch’ data objects across
microclusters because of fuzzy clustering so that the merged microclusters can conform to the shape
of the nonlinear correlation clusters.

74



Iterative Refinement

Like the well-known k-means algorithm, EM-clustering is an iterative refinement
algorithm which improves the quality of clustering iteratively towards a local opti-
mality. In our case, the quality of clustering is measured by the log likelihood for

the Gaussian mixture model as follows:

ko
E(6y,...,0k|D) =Y logy W;- PR(M;|x)] (4.6)

zeD =1
The EM-clustering algorithm can be divided into two steps: E-Step and M-

Step. In E-Step, the memberships of each data object in the microclusters are com-
puted. The density parameters for the microclusters are then updated in M-Step.
The algorithm iterates between these two steps until the change in the log likeli-
hood is smaller than a certain threshold between one iteration and another. Such
iterative change of memberships and parameters is necessary in order to break the

catch-22 cycle described below:

1. Without knowing the relevant correlated dimensions, it is not possible to deter-

mine the actual neighborhood of the microclusters.
2. Without knowing the neighborhood of the microclusters, it is not possible to

estimate their density parameters i.e., the mean vectors and the covariance matrixes

of the microclusters.
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By sampling the mean vectors from the data objects and setting the covari-
ance matrix to the identity matrix initially, the iterative nature of EM-clustering
conforms the microclusters to their neighborhood through the iterations. Again, we
note that our approach here is different from that of ORCLUS and 4C. ORCLUS
does not recompute the microcluster center until two microclusters are merged,
while 4C fixes its microclusters by gathering objects that are within a distance of
e of an object in full feature space. Our approach is necessary as we are finding
more complex correlations. Incidentally, both ORCLUS and 4C should encounter
the same catch-22 problem as us, but they are relatively unaffected by their approx-
imation of the neighborhood.

The EM Cluster subroutine is illustrated in Figure 4.3. First, the parameters
of each microcluste/; (M; € MCS) are initialized as followsiV; = 1/ky, 2(}”2_
is the identity matrix, and the microcluster centers are randomly sampled from the
dataset. The membership probabilities of each data objécte D), PR(M;|x),
are computed for each microclustéf;. Then the mixture model parameters are
updated based on the calculated membership probabilities of the data objects. The
membership probability computation and density parameter updating iterate until
the log likelihood of the mixture model converges, or if the maximum number of it-
erations, M ax LoopNum, is reached. The output of the EM clustering is the means
and covariance matrices of the microclusters, and also the membership probabil-
ities of each data object in the microclusters. These results are passed on to the

ExpandCluster subroutine.
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EMClusterD, MC'S, €ikerinood» MaxLoopNum)
1. Set the initial iteration Numj = 0,

initialize the mixture model parameters,

W, 19 and?, for each microclustets; € MCS.
2. (E-Step) For each data object D:

PRi(z)= Y W,PR(z|M)),

M;,eMCS )
PRI(M;|z) = WP M) v, e MCS,

W/ =3 ,cp PRI (M;|z).
3. (M-Step) Update mixture model parameters You/; €

MCS:
Z(x - PR(M;|z))
‘ug-‘rl _ zeD
Z PR(M;|x)
x€eD
> PR(Mj|a)(z — pl ™) (@ — pd "
Ej+1 _ zeD
' Z PR(M;|z)
zeD

W, =W/
4.if |B7 — B9 < €ipetinood O § > Max LoopNum
Decomposé&:; for VM; € MCS and return
elsesetj = j + 1 and go to 2.

Note:
EJ: the log likelihood of the  mix-
ture model at iteration j,  PRI(z|M;) =

el 3 = i) () @ )
Figure 4.3: EMCluster Subroutine

4.2.2 Cluster Expansion

Having formed the microclusters, our next step is to merge the microclusters in
a certain order so that the final nonlinear correlation clusters can be found and

visualized.

Definition 4.2.3 Co-sharing Level Matrix

The co-sharing level matrix isf& x kq matrix with its entry {, j) representing the
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co-sharing level between microclustevg and )M; (coshare(/;, M;)). O

We calculate the co-sharing level matrix at the beginning of the cluster ex-
pansion procedure based on the membership probabikiti&s\/;|x) for each data
objectx and each microclustev/;. To avoid the complexity of computing, x kg
entries for each data object we instead maintain for each a list of /,,, mi-
croclusters that: is most likely to belong to. This reduces the number of entries
update tolfop. We argue that has 0 or near O probability of belonging to most of
the microclusters and thus our approximation should be accurate.

As shown in Figure 4.4, the ExpandCluster subroutine first initializes the
current clusteC as{ M.}, where)/. is the first unprocessed microcluster in the set
of microclustersM C'S. It then merges all other microclusters that are in the co-
sharede-neighborhood ofV/,. into N through the function call to neighbors(,

e, MCS). M., is then output together with its co-sharing level value withFrom
among the unprocessed microclustership, the nextM, with the highest co-

sharing level is foundC,,.., is then formed by merging/. andC. We then update

the co-sharing level matrix according to Equation 4.7.

coshare(C, My) = Max(coshare(C, My), coshare(M., My)), 4.7)

whereM,, is any of the remaining unprocessed microclusters.
C'is then updated to becondg,.,, and unprocessed microclusters in the co-

shared-neighborhood of\/C' are added tdV. This process continues unfil: is
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ExpandClustef(/ C'S, ¢, OutputFile)
1. Calculate the co-sharing level matrix;
2. M =M CS.NextUnprocessedMicroCluster
C={M.};
3. N¢ = neighborsi/,, €, MCS);
M_.processed = True;
Output M, to OutputFile;
while |[N¢| > 0do
From N¢, remove nearest microclusterdg
and set it as\/,;
M..processed = True;
OutputM,. and cosharé(/..,C) to OutputFile;
MergeC and M, to form newC,,.,;
Update the co-sharing level matrix;
C:Cnew;
Ne=N¢ + neighborsi/,, e, MCS);
4. if there exist unprocessed microclusters goto 2;
End.

Figure 4.4: ExpandCluster Subroutine

empty and then &' is re-initialized to another unprocessed microcluster by going

to Step 2.

4.2.3 NNCO Plot

In the NNCO (Nearest Neighbor Co-sharing Level & Orientation) plot, we visu-
alize the nearest neighbor co-sharing levels together with the orientations of the
microclusters in cluster expansion order. The NNCO plot consists of a NNC plot

above and an orientation plot below, both sharing the same horizontal axis.

NNC Plot

The NNC plot is inspired by the reachability plot of OPTICS [7]. The horizontal

axis denotes the microcluster order in the cluster expansion, and the vertical axis
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above denotes the co-sharing level between the microcllistand the cluster be-

ing processed’ when M, is added toC'. We call this value the NNC (Nearest
Neighbor Co-sharing) value af/C'. Intuitively, the NNC plot represents a local
hill-climbing algorithm which moves towards the local region with the highest sim-
ilarity at every step. As such, in the NNC plot, a cluster will be represented with a
hill shape with the up-slope representing the movement towards the local high sim-
ilarity region and the down-slope representing the movement away from the high
similarity region after it has been visited. Note that an NNC level of zero or nearly
zero represents a complete separation between two clusters, i.e., the two clusters

are formed from two sets of microclusters that do not co-share any data objects.

Orientation Plot

Below the NNC plot is the orientation plot, a bar consisting of vertical black-and-
white lines. For each microcluster, there is a vertical lind segments wheré is
the dimensionality of the data space, and each provides one dimension value of the

microcluster’s orientation vector, as defined below.

Definition 4.2.4 Cluster Orientation
The cluster’s orientation is a vector along which the cluster obtains maximum vari-

ation, that is, the eigenvector with the largest eigenvalue. O

Each dimension valug of the microcluster orientation vector is normalized

to the range of [-127.5, 127.5] and mapped to a color ranging from black to white
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according to Equation 4.8.
Color(y) = [R(y + 127.5), G(y + 127.5), B(y + 127.5)] (4.8)

Therefore, the darkest colorK[0), G(0), B(0)], wheny = —127.5) indicates the
orientation parallel but opposite the corresponding dimension axis while the bright-
est color (R(255), G(255), B(255)], wheny = +127.5) indicates the orienta-
tion parallel and along the dimension axis. Grai(([27.5), G(127.5), B(127.5)],
wheny = 0) suggests no variation at all in the dimension. Obviously, similarly
oriented microclusters tend to have similar patterns in the orientation plot. In this

way, the clusters’ specific subspaces can be observed graphically.

Examples

two large subclusters

X2
2

100 98l-i%
< three large subclusters

10 15 5
X1 X1

(a) Quadratic Cluster (b) Cubic Cluster

Figure 4.5: Quadratic and Cubic Clusters

Figure 4.5 shows a quadratic cluster and a cubic cluster. The nonlinear clus-
ter structures are detected successfully, as shown in the NNCO plots in Figure 4.6.
According to Definition 4.2.1, the more similar in orientation the microclusters are,

the larger the co-sharing level value they have. As our microclusters are assumed to
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Figure 4.6: NNCO Plots

be evenly distributed, the microclusters which are similar in orientations and close
to each other have larger NNC values and tend to be grouped together. Here, the mi-
crocluster orientations are approximately the tangents along the curves. There are
two humps, indicating two large subclusters of similar orientations in the quadratic
NNC plot (Figure 4.6(a)). Likewise, there are three humps, indicating three large
subclusters of similar orientations in the cubic NNC plot (Figure 4.6(b)).

Generally, the tangent projection along the quadratic curv&drdimen-
sion increases from negative to positive while the tangent projection o tluk-
mension increases and decreases symmetrically. The simple mathematic reasoning

behind this is that, given the 2D quadratic curve
Ty =ax* (v, —b)? +ec,

wherea > 0, the changing ratio of the tangent slop, = 2 * a, is a positive
constant. The maximum tangent projection on edimension is achieved when
the tangent slope is 0. That is why we see in the orientation plot that as a whole,

the bar color in dimensioX; brightens continuously (tangent slope changes from
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CURLER®, ko, liop, €, €likelihoods M axLoopNum)
1.Randomly Samplg, number of seeds from
asMCS;
2.EMCluster(D, MCS, €iiketihoods MaxLoopNum);
3.Select one microcluster W C'S asc;
4.ExpandCluste/ C'S, €, Output F'ile);
5. For any interesting cluster;
TransformD% into D,,.., in the subspacelci;
CURLERD ews k§, Liop €, €likelihoods MazLoopNum)
End.

Figure 4.7: CURLER

negative to positive) while the bar color in dimensi&nbrightens first and darkens
mid-way.

For the cubic curve, = a x (x; — b)® + ¢, the tangent slope changes from
positive to zero, then back to positive again. Again, as the tangent projection on
dimensionX; increases and decreases symmetrically while the tangent projection
on dimensionX, decreases and increases symmetrically. For this reason, the bar
color in dimensionX; brightens and darkens symmetrically while the bar color of

dimensionX, darkens and brightens symmetrically in the orientation plot.

4.2.4 Top-down Clustering

Having identified interesting clusters from the orientation plot, it is possible to per-
form another round of clustering by focusing on each individual cluster. The reason
for doing so is that the orientation captured by the initial orientation plot could only
represent the global orientation of the clusters.

As we know, each data object is assumed to have membership probabilities

for several microclusters in CURLER. We define tte#da membersrepresented by
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a discovered clustet’ which consists of microcluster séfC'S as the set of data
objects whose highest membership probabilities are achieved in the microcluster
amongMC'S, {Vx|z € D and3M, € MCS such thatV ax,<;<p,{ PR(M;|x)} =
PR(M.|z)}. Based on the data members of clusteme can further compute the

cluster existance space ©f

Definition 4.2.5 Transformed Clustering Space
Given the specified clustér and/, we define théransformed clustering spaceof
C as a space spanned byectors, denoted a$’, in which the sum of the variances
along thel vectors is the least among all possible transformations. In other words,
the [ vectors of the transformed clustering spage are thel eigenvectors with
minimum eigenvalues, computed from the covariance matrix of the data members
of C. We denote thé vectors as, e,, ..., ande;, wherel may be much smaller

than the dimensionality of the original data spate O

Given the dimensionality of the original data spa¢ea correlation cluster
C;, andl, we can further project data members@f D¢, to the subspacelci of
[ vectors élci = {ei1, €2, ..., €5 }) by transforming each data member D% to
(v ei1, T« €i2, ... T+ €), Wherex ande;; (1 < j <) ared-dimensional vectors. In
this way, we obtain a new-dimensional dataset and can carry on another level of

clustering. Figure 4.7 shows the overview of our algorithm.

84



4.2.5 Time Complexity Analysis

In this section, we analyze the time complexity of CURLER. We focus our analysis
on the EM-clustering algorithm and the cluster expansion since these two are the
most expensive steps among the four.

e EM Clustering:

In the EM part, the algorithm runs iteratively to refine the microclusters. The bottle-
neck is Step 2, where the membership probability of each data abjeceach mi-
croclusterM; € MCS is calculated. The time complexity of matrix inversion, ma-
trix determinant, and matrix decomposition(%d?*); thus, the time complexity of
matrix operation fok, microclusters i) (ko - d*). Besides, the time complexity of
computingP R’ (z| M;) is O(d?) for each pair ofr and ;. For all data objects and

all microclusters, the total time complexity of EM clusteringi€ko - n-d?+kq - d®).

e Cluster Expansion:

The time complexity of computing the initial co-sharing level matrivig: x l,?op),

as explained in Section 4.2.2. As there is no index available for CURLER due to
our unique co-sharing level function, all the unprocessed microclusters have to be
checked to determine the co-shaked neighborhood of the current cluster. So

the time complexity of the nearest neighbor search for one clusteftis) and the

time complexity of the total nearest neighbor searctVig?). Also, as the time

complexity of each co-sharing level matrix update during cluster mergifgis),

and there is maximurk, updates, the time complexity of the entire correlation dis-

85



tance matrix update ©(k32). As a result, the time complexity of cluster expansion

isO(n - 17, + kj).

4.3 Experimental Studies

We tested CURLER on a 1600 MHz PVI PC with 256M memory to ascertain its
effectiveness and efficiency. We evaluated CURLER on a 9D synthetic dataset of
three helix clusters with different cluster existence spaces, the iris plant dataset
and the image segmentation dataset from the UCI Repository of Machine Learning
Databases and Domain Theories [13], and the lyer time series gene expression data

with ten well-known linear clusters [42].

4.3.1 Parameter Setting

As illustrated in Figure 4.7, CURLER generally requires five input parameters:
MaxLoopNum, log likelihood thresholck;ciinooa, mMicrocluster numbek, I,
and neighborhood co-sharing level threshold

In all our experiments, we séf ax Loop Num between 5 and 20, ar@xciinood
as 0.00001. The experiments show that it is quite reasonable to trade off a limited
amount of accuracy for efficiency by choosing a smalé&ix Loop Num, a larger
log likelihood threshold;xeiin00a @nd a smallet;,, ranging from 20 to 40.

The number of microclusters, is a core parameter of CURLER. According

to our experiments, there is no significant difference in performance when varying
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ko. Of course, the larger value &f, the more refined NNCO plots we got. Unlike
[2] where each data object is assigned to only one cluster, in CURLER, each data
object is assumed to have membership probabilitied,fpmicroclusters. As a
result, the performance of CURLER is not affected mucltdy

The neighborhood co-sharing level threshelthplicitly defines the quality
of merged clusters. The largemdicates more strict requirement on microclusters’
similarity in both orientation and spacial distance when expanding clusters; hence,
the higher cluster quality we obtained. In our experiments, we &e0. To get a
rough clustering result for any positive we simply moved the horizontal axis up
along the vertical axis by a co-sharing levelkah the NNCO plot. This is another

advantage of our algorithm.

4.3.2 Efficiency

In this Section, we evaluate the efficiency of our algorithm with a varying database
size (@) and a varying number of microclusterg) on the 9-dimensional (d=9)
synthetic dataset. In our experiments, we fixed the maximum number of loop time
MaxLoopNum at 10, the log likelihood threshold;;..;;1..« at 0.00001, the neigh-
borhood co-sharing level threshal@s 0, and the number of microcluster member-
ships for each data objekt, at 300. We varied eithet or ky. Whenn was varied,

we fixed ky to 300. Likewise, we set as 3000 when varying,. For the output
results, we averaged the execution times of five runs under the same parameter set-

ting. In general, CURLER performed approximately linearly with the database size

87



and the number of microclusters, as illustrated in Figure 4.8. The high scalability

of our algorithm shows much promise in clustering high-dimensional data.
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Figure 4.8: Runtime vs Dataset Sizeand # Microclusterg, on the 9D Synthetic
Dataset

4.3.3 Effectiveness
Synthetic Dataset

Because of the difficulty of getting a public high-dimensional dataset of well-known
nonlinear cluster structures, we compared the effectiveness of CURLER with 4C

on a 9D synthetic dataset of three helix clusters. The three helix clusters existed in
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Figure 4.9: Projected Views of Synthetic Data in both Original Space and Trans-
formed Clustering Spaces

dimensionsl — 3 (cluster 1),4 — 6 (cluster 2), and’ — 9 (cluster 3) respectively

and the remaining six dimensions of each cluster were occupied with large random
noise, approximately five times the data. Each cluster mapped a different color: red
for cluster 1, blue for cluster 2, and yellow for cluster 3, as shown in Figure 4.9.

Below is the basic generation function of helix, where [0, 67,

T1 =cx*t,
xo = 1% sin(t),

x3 =1 * cos(t).

The top-level NNC plot in Figure 4.10 shows that all the three clusters were

identified by CURLER in the sequence of cluster 1, cluster 3 and cluster 2, separated
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Figure 4.10: Top-level and Sub-level NNCO Plots of Synthetic Data

by two NNC-zero-gaps. The top-level orientation plot further indicates the cluster
existence subspace of each cluster, the gray dimensions. The noise dimensions are
marked with irregular dazzling darkening and brightening patterns.

For a close look at the nonlinear correlation patterns, we projected the data
member of each cluster into its cluster existence subspace of three vectors and per-
formed sub-level clustering. Note that the vectors of cluster existence subspace
were NOT subsets of the original vectors. Sineei(t)| and|cos(t)| had six cy-
cles, whent varied from 0 to6x, the sub-level NNCO plots show six cycles of
shading and brightening orientation patterns in subspace dimensiors,, and

e;3 for each clustei (i = 1, 2, and3).
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As expected, 4C found no clusters although we set the correlation threshold
parameteb as high a$).8. The changing orientation in the dataset does not exhibit
the linear correlation which 4C is looking for. In contrast, CURLER not only de-
tected the three clusters but also captured their cycling correlation patterns and the

subset of correlated features (Figure 4.10).

Real Case Studies

To have a rough idea of the potential of CURLER in practical applications, we
applied the algorithm to three real-life datasets in various domains. Our experi-
ments on the iris plant dataset, the image segmentation dataset, and the lyer time
series gene expression dataset show that CURLER is effective for discovering both
nonlinear and linear correlation clusters on all the datasets above. As the cluster
structures of the first two public datasets have not been described, we will begin our
discussion with the examination of their data distributions with the projected views.
We will only report the top-level clustering results of CURLER here due to space
constraint.

Based on our definition of the data members represented by clusier
Section 4.2.4, we can infer the class clustemainly belongs to. We denote the

inferred class label on the top of the cluster or subcluster in the NNCO plot.

Case 1: Iris Plant The iris plant dataset is one of the most popular datasets in pat-
tern recognition domain. It contains 150 instances from three classes: Iris-virginica

(class 1), Iris-versicolor (class 2) and Iris-setosa (class 3), 50 instances each. Each
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Figure 4.11: Projected Views
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Figure 4.12: Constructed Microclusters
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Figure 4.14: Cluster Structures Revealed by the NNCO Plots for the Image Dataset
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instance has four numeric attributes, denoteKasX,, X3 and X,. Figure 4.11

(a) shows the projected view of this data, where the blue points, green circle and
red squares represent instances from class 1, 2 and 3 respectively. We can see that
there are two large clusters: one consisting of instances of class 1 and the other
consisting of instances from class 2 and class 3. The second cluster can further be
divided into two subclusters, one composed of instances from class 2 and the other
from class 3.

The microclusters constructed by the EMCluster subroutine are shown in
Figure 4.12 (a). As can be seen clearly, the cluster expansion path traverses in-
stances from class 1, class 2 and class 3 in an orderly manner. The NNCO plot of
iris (Figure 4.13 (a)) visualizes two large clusters: one composed of 50 microclus-
ters representing instances from class 1 and the second cluster composed of 100
microclusters representing instances from the other two classes. It is also notice-
able that the second cluster is further divided into two subclusters (two humps) of 85
and 15 microclusters respectively. As illustrated in Figure 4.12 (a), the two subclus-
ters mainly represent instances from class 2 and class 3 respectively. The different
patterns of the clusters in the orientation plot suggest different cluster existence
subspaces. It is interesting that the microclusters in the same cluster or the same
subcluster are very similar in orientation (very similar color patterns). Thus we can
infer that the iris plant dataset has three approximately linear clusters, among which

two with very similar orientations are close to each other.
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Case 2: Image Segmentation The image segmentation dataset has 2310 in-
stances from seven outdoor images: grass (class 1), path (class 2), window (class
3), cement (class 4), foliage (class 5), sky (class 6), and brickface (class 7). Each
instance corresponds to a 3x3 region with 19 attributes. During dataset processing,
we removed the three redundant attributes (attributes 5, 7, and 9 were reported to
be repetitive with attributes 4, 6, and 8 respectively), and normalized the remaining
16 attributes to the range of [-5, 5]. The 16 attributes contained some statistical
measures of the images, denotedkas X, ..., Xi¢.

Figure 4.11 (b) shows the projected views on all dimensions. Figure 4.12
(b) is the projected view of our constructed microclusters on dimenstonsX 5
and X in cluster expansion order.

Figure 4.13 (b) is the NNCO plot of the image dataset, which reveals the
clustering structure accurately. Note that the image dataset is partitioned into three
large clusters separated by NNC-zero-gaps. This is confirmed in our data projection
views, Figure 4.11 (b.4) and (b.6), where we can see one large cluster composed of
instances from class 1, one composed of instances from class 6, and another large
cluster composed of mixed instances from the rest of the classes. The last cluster
is nonlinear (Figures 4.11 (b.5) and (b.6)). The NNCO plot indicates that instances
from the seven classes are well separated and fairly clustered.

The orientation plot further indicates that the clusters have their own sub-
spaces; this is reflected in the different color patterns. However, some common
subspaces also exist. For instance, we observe that the orientation plot on dimen-

sions X, Xg, Xy, and Xy has synchronous color patterns, indicating synchronous
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linear correlations of the four attributes. As validated in Figures 4.11 (b.3) and (b.4),
the three clusters approximately reside in the diagonal regions of dimensions
X3z, X9 and Xyo. Another interesting phenomenon is that likig is strongly high-
lighted (indicating large variation itX;), line X5 is partly highlighted (indicating
positive orientation) and partly darkened (indicating negative orientation) while line
X3 is globally gray (indicating no variation at all in dimensiéf). With a closer

look at Figure 4.11 (b.1), we see the answer: the three clusters distribute almost
parallel with axisX; and have little variation in dimensiaok;. The approximate
gray of linesXy, X5, and X also indicates little variation in the three dimensions.
As a result of the nonlinear patterns in dimensiofs to X4 (Figure 4.11 (b)),
there are irregular color patterns in dimensighs to X5.

Figure 4.14 depicts three interesting cluster structures discovered in the NNCO
plot of the image dataset (Figure 4.13 (b)). First, the black-and-white cycling color
pattern of microclusters 1-48 in dimensioAS,-X5 of the orientation plot is a
vivid visualization of the nonlinear cluster structure of the corresponding instances
of class 3 (Figure 4.14 (a)). Second, the synchronous three-vertical-bar pattern
of microcluster 397-429 in both the NNC plot and the orientation plot, especially
dimensionsX;- X, reveals three linear correlation clusters with diagonal orienta-
tions (Figure 4.14 (b)). The NNCO plot also indicates that the instances of class 7
can be partitioned into two big subclusters of consecutive microclusters, one repre-
sented by microclusters 49-82 and the other represented by microclusters 280-321
respectively. The plot also indicates that the later subcluster has a larger variation

in dimensionsX;, Xi,, and X3 (microclusters 280-321 have brighter colors in
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dimensionsX;; and X, of the orientation plot than microclusters 49-82). Again,

this is verified in Figure 4.14 (c).
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Figure 4.15: NNCO Plot of lyer

Case 3: Human Serum Data To verify the effectiveness of our algorithm, we

also applied CURLER to a benchmark time series gene expression dataset in re-
sponse of human fibroblasts to serum, the lyer dataset [42]. The lyer dataset con-
sists of gene expression patterns of 517 genes across 18 time slots. [42] describes
10 linear correlation clusters of genes, denoted as ‘A, ‘B’, ..., and ‘J’. CURLER
identified nine out of the reported ten clusters successfully among the 517 genes
(Figure 4.15); cluster ‘G’, consisting of 13 genes, was the exception. As can be
seen, CURLER partitions the reported genes of cluster ‘D’ into two consecutive
subclusters, represented by microclusters 63-76 and 77-95 respectively. Likewise,

CURLER partitions the genes of cluster ‘H’ into three disjointed big subclusters
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of consecutive microclusters: 206-232, 287-307 and 317-349. The latter two big
subclusters can be further partitioned at the sub-level as observed in the NNCO
plot.

Figures 4.16 and 4.17 illustrate the temporal gene expression patterns across
the 18 time slots in the above discovered subclusters. Apparently, the expression
patterns in each subcluster are quite cohesive. Note that the expression patterns
of genes in the two subclusters of cluster ‘D’ are different at time slbtnd¢3:
those represented by microclusters 63-76 are negatively expressed while those rep-
resented by microclusters 77-95 are positively expressed. Besides, their variation at
the two time slots are different, as detected by the NNCO plot. As for genes of the
three subclusters of cluster ‘H’, their expression patterns are delicately different in

time slots t9, t10, t11, and t12, as shown in Figure 4.15 and verified in Figure 4.17.

4.4 Summary

In this chapter, we have presented a novel clustering algorithm for identifying and

visualizing nonlinear correlation clusters together with the specific subspaces of
their existence in high-dimensional space. Almost no work has addressed the is-
sue of nonlinear correlation clusters, let alone the visualization of these clusters.
Our work is a first attempt, and it combines the advantage of density-based algo-
rithms represented by OPTICS [7] for arbitrary cluster shape and the advantage of
subspace clustering algorithms represented by ORCLUS [2] for subspace detecting.

As shown in our experiments on a wide range of datasets, CURLER suc-
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cessfully captures the subspaces where the clusters exist and the nonlinear cluster
structures, even when a large number of noise dimensions are introduced. More-
over, CURLER allows users to interactively select the cluster of their interest, have
a close look at its data members in the space where the cluster exists, and perform
sub-level clustering when necessary.

We plan to consider other variants to further improve the efficiency of CURLER,
I.e., constructing some index structures to accelerate nearest neighbor queries based

on the mixture model.
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CHAPTER 5

Reg-Cluster

Table 5.1 shows a mini example dataset that we are studying in this chapter. Each
row of the table corresponds to a gene (denoted,a@/hile each column corre-
sponds to a certain condition (denoted-gsunder which gene expression is mea-
sured. For example, biologists might in one experiment artificially suppress the
expression of a certain gene and look at how other genes are affected under such
a condition. A subset of genes showing correlated co-expression patterns across a
subset of conditions are expected to be functionally related and involved in the same
cellular pathway [40]. By grouping together genes that exhibit similar behaviors,
biologists hope to discover new functional groups and ultimately gain more insight
into the genetic behavior of life.

One well-known characteristic of high-dimensional data is that data objects
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(genes) are not correlated in full dimensional space but correlated only in a subset
of dimensions (subspace). To handle this problem, density-bmadespace clus-
tering algorithms [2—4, 14, 39, 41, 68] assume data objects of the same cluster are
close with each other in cluster existance subspace. These algorithms also assign
each data object to only one cluster. Yet in high-dimensional gene expression data,
the situation is much more complex. A gene or a condition may be involved in
multiple pathways. To allow overlap between gene clusters, pioneering bicluster-
ing algorithms such as [19] have been proposed; these algorithms allow one gene
to be assigned to several clusters.

A later advancement, pattern-based biclustering algorithms [80, 83, 85] take
into consideration the fact that genes with strong correlation do not have to be spa-
tially close in correlated subspace. More recently, tendency-based biclustering al-
gorithms such as OP-Cluster [58] and TP-Cluster [59] adopt sequence and tendency
models respectively for efficient discovery of genes whose expression levels rise
and fall synchronously in a subspace. However, such tendency-based biclustering
algorithms have no guarantee level of coherency.

In this chapter, we focus on the more general shifting-and-scaling co-regulation

patterns with coherence constraint, which have received little attention so far.

5.1 Background

Gene expression clustering algorithms may be classified into two big categories:

full space clusteringlgorithms which evaluate the expression profile similarity of
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genes in all conditions, arslibspace clusteringlgorithms which evaluate similar-
ity in a subset of conditions.

The most commonly applied full space clustering algorithms on gene ex-
pression profiles are hierarchical clustering algorithms [27], self-organizing maps
[75], and K-means clustering algorithms [76]. Hierarchical algorithms merge genes
with the most similar expression profiles iteratively in a bottom-up manner. Self-
organizing maps and K-means algorithms partition genes into user-spécdi@d
timal clusters. Other full space clustering algorithms applied on gene expression
data include Bayesian network [31] and neural network.

Density-based subspace clustering algorithms, [2—4, 14, 39, 41, 68] and our
CURLER algorithm too, would assign each data object (gene) to just one cluster.
Biclustering algorithms such as [19] provide an answer to this problem which allow
overlapping clusters. These algorithms require genes of the same cluster to be dense
and close to each other in correlated subspace.

The more recent pattern-based and tendency-based biclustering algorithms,
[12,58, 59, 80, 83, 85] overcome the conventional constraint of spatial proximity
and are able to identify pure shifting patterns, pure scaling patterns and synchronous-
tendency patterns.

Non existing pattern-based algorithms are able to discover the more com-
plicated shifting-and-scaling patterns. Another unaddressed issue of previous work
is negative correlation, which is still confined to full space clustering at present

[24, 44, 69].
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5.1.1 Motivation

Existing pattern-based biclustering algorithms are only able to address shifting pat-
terns and scaling patterns separately: as shown in Figure 5.1. After a single shifting
or scaling, a pattern may coincide with another pattern. In Figure 5.1, the six pat-
terns are of the relationship®1 = P2 — 5 = P3 — 15 = P4 = P5/1.5 = P6/3.
PCluster [80] and-cluster [83] assume that scaling patterns can be transformed
to shifting patterns after a logarithm transformation on the whole dafasend
focuses on shifting patterns only. Tricluster [85] focuses on scaling patterns only,
assuming that after a global exponential transformatiol ahifting patterns will

all be transformed into scaling patterns. Assufeandd;. are expression lev-

els of geney; andg, on conditione, s; ands, are the scaling and shifting factors

respectively; their mathematical relationships are given as follows:
dic = 51 * dj. = logd,. = logd,. + logs; [80, 83] (5.1)

die = dje + 89 = e%ic = e%ic . ¢*2 [85]. (5.2)

No existing pattern-based algorithms can handle dataset with shifting-and-scaling
patterns of the form,. = s, * d;. + s2, by which the six cohesive patterns in Figure

5.1 can be grouped together with ease.

’ gene‘ C1 ‘ C2 ‘ C3 ‘ Cy ‘ Cs ‘ Cg ‘ Cr ‘ Cs ‘ Co ‘ C10 ‘
g. |10]-145(15|105| 0 {145|-15| 0 |-5| -5
go |20 15 [ 15|435|30| 44 | 45|43 |35]| 20
g3 6-38/8|62|2 78] -4|2]0]|O0

Table 5.1: Running Dataset
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There are three problems the pattern-based algorithms and other existing
biclustering algorithms have ignored:

e Regulation Test Cheng and Church [19] state that the utmost important
goal of gene expression data analysis is to find a set of genes showing strikingly sim-
ilar up-regulationanddown-regulatiorunder a set of conditions, rather than simply
to find a bicluster to perfectly cover the data. The pattern-based and tendency-
based algorithms blindly assume any positive increase in expression levels as valid
up-regulation and any positive decrease from one condition to the other as valid
down-regulation. In fact, those patterns with smaller variations in expression val-
ues are probably of little biological meaning. One extreme case is a horizontal-line
bicluster in which each gene has a fixed expression level value in the subset of con-
ditions. Methods in [80, 85] view it as a perfect bicluster (pScore =0 and ratio range
= 0), although no regulation occurs.

e Pattern Universality: Co-regulated genes may respond to environmen-
tal stimuli or conditions coherently, forming certain shifting-and-scaling patterns
due to varying individual sensitivities. For instance, expression profilgs ahd
g3 of the running example (Table 5.1) in Figure 5.2 are shifting-and-scaling pat-
terns:d, (51,3073 = 2.5*ds 51,3971 — 5. Current pattern-based models [80, 83, 85]
only validate a partial correlation, either a pure shifting pattern or a pure scaling
pattern, which are just two special cases of the shifting-and-scaling pattern. Also,
they may fail to detect biclusters composed of a mixture of shifting patterns and
scaling patterns, such as the ones in Figure 5.1. Note that the assumptions of ex-

isting pattern-based biclustering algorithms [80, 83, 85] of either shifting-to-scaling
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transformation (Equation 5.2) or scaling-to-shifting transformation (Equation 5.1)
do not hold for the more general shifting-and-scaling patterns. Therefore, many
co-regulation patterns would be missed by existing pattern-based algorithms.

e Negative Correlation: The complex biological system exhibits an even
greater diversity in gene correlations than any existing subspace clustering and
biclustering algorithms can capture. One is negative-correlation, i.e., when one
gene has a high expression level, the expression level of the other gene is low and
vice versa. Both positive-correlated genes and negative-correlated genes should
be grouped together because genes that are functionally related may demonstrate
strong anti-correlation in their expression levels, i.e., a gene may be strongly sup-
pressed to allow another to be expressed [74], and both positive-correlated genes
and negative-correlated genes could be involved in the same biological pathway
[24]. It is therefore desirable to group together genes whose expression profiles are
either positively correlated or negatively correlated on a subset of conditions. Al-
though a wealth of work in subspace clustering and biclustering has been done on
expression data, none has addressed the issue of negative correlation in a systematic
way. The existing work on clustering negative-correlated genes is still confined to
full dimensional space [24, 44, 69]. Moreover, from a broader view, negative corre-
lation in subspace also pertains to the shifting-and-scaling pattern with a negative
scaling factor, such as the relationship betwgeand the other two genes in Figure

5.2,dy 513073 = —2.5xd3 51307 + 35 = —di (51397 + 30.
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5.1.2 Goal

To address the various problems that we have just discussed, we propose a new
model calledreg-cluster. The proposed model can better accommodate the regu-
lation constraint and various correlation measures on gene expression profiles em-
ployed previously, including both positive and negative co-regulations. The pro-
posed model also allows for shifting-and-scaling co-regulation as well as pure shift-
ing and scaling one. Table 5.1 illustrates the expression levels of three genes under
10 conditions. As Figure 5.2 showsg, andgs are strongly positively co-regulated,

but ¢, is strongly negatively co-regulated with and g; on conditionscs, ¢, cs,

co andc;. The three genes form a candidate 5 reg-cluster before the regulation
constraint is applied. A reg-cluster exhibits the following characteristics which are

suitable for expression data analysis:

e increase or decrease of gene expression levels across any two conditions of a

reg-cluster is significant with regard to the regulation threshold

e increase or decrease of gene expression levels across any two conditions of
a reg-cluster is in proportion, allowing small variations defined by the coher-

ence threshold.

e genes of a reg-cluster can be either positively correlated or negatively corre-

lated.
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5.1.3 Challenges

In correlated subspace, positive-correlated genes and negative-correlated genes ex-
hibit no spatial proximity at all. This makes it impractical to apply density-based
subspace clustering algorithms [2—4, 14, 39, 41, 68] and the mean-squared-residue-
score based biclustering algorithm [19].

For pattern-based and tendency-based biclustering algorithms, there are three
main challenges for reg-cluster discovery.

Naturally, the biggest challenge is the need of a novel coherent cluster model
that can capture the more general shifting-and-scaling co-regulation patterns. For
instance, the shifting-and-scaling patterns in Figure 5.2 are coherent, but they sat-
isfy neither the pattern coherence measure of pScore [80] nor that of the valid ex-
pression level ratio range [85].

Another challenge is how to apply a non-negative regulation threshold. Tendency-
based models of [12, 58, 59] are not suitable for adopting a regulation threghold
For example, [58] adopts a sequence model to translate the expression profiles of
each gene; into a sequence by first sorting the conditions in non-descending order
and later grouping the conditions whose expression values are equivalent according
to v. Assuming the user-specified regulation thresholdjfas 0.8, we are unable
to find an appropriate sequence modeldgin the running example on conditions
2, C10, C3, ¢4 @Ndeg With expression level§l15, 20, 43, 43.5, 44} such that both non-
regulated condition-pairs — ¢, andcy — cg are grouped together but the regulated

condition-paircg — cg is not.
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The third challenge is negative co-regulation. Note that our scaling coeffi-
cient can be a negative real number. One approach to handle negative correlation
is the PearsonR model [23]. A large positive PearsonR value indicates a strong
positive correlation while a large negative one indicates a strong negative correla-
tion. However, without knowing the subset of correlated conditions in advance,
we are unable to apply the PearsonR approach appropriately. Nor can existing
pattern-based biclustering algorithms efficiently handle the negative co-regulation
problem. Coexistence of positively and negatively correlated genes would lead to a

rather large pScore [80] or expression ratio range [85].

5.2 Reg-Cluster Model

5.2.1 Regulation Measurement

Supposel;., andd,., are the expression levels of gepainder conditions, andc,
respectively. We could then say is up-regulated from conditionc, to condition

cq, denoted afReq(i, cq, ¢) = Up, if the increase in expression level exceeds its
regulation threshold;, as described in Equation 5.3. Alternatively, we gays
down-regulated from conditionc, to ¢,, denoted askey(i, ¢y, c,) = Down. In

this case, we calt, the regulation predecessorof ¢,, denoted as, - ¢,, and

¢, as theregulation successowf ¢, for g;, denoted as, ~ ¢, (the arrow always
points from bigger value to smaller value). Otherwise there is no regulation between

¢, ande, for g;.
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Reg(i,cq,cp) = Up T dhics = iy > (5.3)
Douwn if dic, — dic, < Vi

In this chapter, for ease of understanding, we assume the regulation thresh-
old of g¢;, i, as a pre-defined percentage of the expression rangerEquation
5.4, wheren is the dimensionality of the expression dataset-amgla user-defined
parameter ranging from O to 1.0. We consider imposing a regulation threshold
important for pattern validation, as it will help to distinguish useful patterns from
noise. In practice, other regulation thresholds, such as the average difference be-

tween every pair of conditions whose values are closest [58], normalized threshold

[44], average expression value [18], etc., can be used where appropriate.
Vi =7 X (MAXi<jcn(dic;) — MIN1<j<n(dic;)), (5.4)

The intuition behind using a local regulation threshold for different genes
instead of a global one is that individual genes have different sensitivities to envi-
ronmental stimulations. For instance, studies in [21] reveal that the magnitudes of
the rise or fall in the expression levels of a group of genes inducible or repressible
by hormone E2 can differ by several orders of magnitude.

Current pattern-based and tendency-based models [12, 58, 59] can only cope
with the extreme and probably biased case whete 0, and is constrained to the
positive correlation. Ify > 0, these models become problematic.

To support this general concept of regulation, a naive approach is to record

the regulation relationships between all possible pair§‘ptonditions. Instead,
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we propose a new model, callédV ave” 1, which only keeps the regulation in-
formation ofbordering condition-pairdor the genes in a wave-boosting manner
with respect toy. Figure 5.3 illustrates th&1V ave® !> model ¢, = v, = 4.5 and

~v3 = 1.8) for the running example (Table 5.1) — ¢, is one bordering condition-
pair for g; since it represents the smallest interval abgve= 4.5. Consequently,

any conditionc; that lies on the left hand side of will guarantee to have a bigger
difference thany,; when compared to any conditian that lies on the right hand
side ofc;. As can be seen, there is no need to keep the regulation information of

non-bordering pairs. The formal definition of tf&1 ave” model is given below.

vy e e |

21 &7 2 10 L] Cg 053 Cl C4 Cq [
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(13 3 20 2y @FH 33 @3 @35 @ @4y
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Figure 5.3:RWave® !> Models

Definition 5.2.1 RW ave?
Given the regulation threshotd the RWW ave” model of gengy; on the set of condi-
tionscy, ¢, ..., @andc, is a non-descending ordering) of the set according to their
expression values with regulation pointers marking all the bordering regulation re-
lationships such that for each regulation pointer pointing frgio c,, we have, (1)

Ve, = ¢, andVe, = ¢, Reg(i, ¢y, cq) = Up, denoted as,  ¢,; and (2) there is

L RW ave stands for regulation wave
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no other embedded pointer pointing fragto ¢, such that,, = ¢, andcy =< ¢,

Vep = oy andVey < ¢pr, We haveReg (i, c;, c;) = Up, denoted as, ¢, . O

Note that ifc, < ¢, in g/'s RWave” model, indicatingd;,, < d,,, then
c, may not bec,’s regulation predecessor. Herg,and > indicate the ordering
of the conditions while~ and ~ indicate the upward and downward regulation
relationships of a condition-pair with respecttoGiven the regulation threshotd
the regulation relationship of any condition-pairgettan be easily inferred from its
RWave” model by simply checking whether there is a regulation pointer between
the two conditions and what the pointer direction is. The conditions of a reg-cluster
whose pairwise differences in expression levels are either upward or downward
defined byy must be separated by at least ONE regulation pointer irkRi&ve”

(1:1]

model of its genes, thus forming a” or “ ~” linked regulation chain.
Besides, Lemma 5.2.1 ensures that of a geneg;, we can locate all the
regulation predecessors and regulation successarsfof g; efficiently by using

the RW ave” model.

Lemma 5.2.1 Given the regulation thresholg, a geneg; and a conditior,, let
¢y N ¢4 be the nearest regulation pointer thabefore ¢, with respect tag;. All
conditionsc, such that;, < ¢, are all regulation predecessorsefwith respect to
g;. Likewise, ifc, ~ ¢, is the nearest regulation pointer thatifter c,, then all
conditionsc, such that, < ¢, are definitely the regulation successors-pfvith
respect tay;.

Proof: Since the conditions are sorted in non-descending order of their expression
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levels,c, = ¢, < ¢4 =X ¢, if ¢, »™ ¢, represents the nearest regulation pointer before
cqe- Since the difference between the expression levetg ahdc, is greater than

~ based on the definition of regulation pointer, we can also see that the difference
between the expression levels@fandc, is greater than. Thusc, is considered

to be the regulation predecessotcpf For the case in which, ¢, is the nearest

regulation pointer after,, the same argument applies. O

Given theRW ave®1® models in Figure 5.3, assume we want to find the reg-
ulation predecessors of for g;, we simply follow the closest regulation pointer
before it, which points frona; to cs. ¢z, ¢, 10, ¢9, cs @andcs are exactly the regula-
tion predecessors @f. We can also infer that there are no regulation successors of
c¢ @s no regulation pointer exists afigr Interested readers may refer to Table 5.1

for a more detailed analysis.

5.2.2 Coherence Measurement

Besides the regulation thresholdreg-cluster should be validated with the shifting-
and-scaling coherency constraintAssumed,y andd;y, are two perfect shifting-
and-scaling co-regulation patterns gfand g, on condition set’, then we there

should exist$; ands, such that,
diy = s1 % djy + s, (5.5)

wheres; ands, are the scaling and shifting factors respectively. The valug c&n

be either positiveq; > 0), indicatingd;, andd,y arepositively correlatedonY’,
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or negative §,; < 0), indicatingd,y andd;y arenegatively correlatedonY. Note
that any subsequent shifting or scaling transformationg,;prwill not affect the
general form given in Equation 5.5. Formally speakingl/if = d;y * s3 (further
scaling), therns} = s; * s ands, = sq * s3; If diy, = d;y + s4 (further shifting),
thens| = s; ands, = s, + s4. Likewise, subsequent shifting and scalingdn
will not change the general form. Only the scaling and shifting factors may change
values. As we can observe, the shifting patterns and scaling patterns addressed in
[80, 83, 85] correspond to the two special casegpf= d;y +s2 andd;y = s1*d;y
respectively.

Based on Equation 5.5, we can further infer the necessary and sufficient
condition for the existence of shifting-and-scaling pattern, where the scaling factor

s1 can be either positive or negative, as proposed in Lemma 5.2.2.

Lemma 5.2.2 Supposel;,y and d;y are the expression profiles of gengsand g,
on subspace’, Y = {ci, ¢z, ...... oty diey < diey < e < d,,, and assume
we choose:; andc; as the baseline condition-pair, thely- andd,y are shifting-
and-scaling patterns, either shifting-and-positive scaling or shifting-and-negative
scaling, in subspac¥ if and only ifVey, c(py1), 1 <k <n,

dick+1 - dick — djck+1 _ d]Ck . (56)

dicz - dic1 djcz - djcl

Proof:
(1) If d;y andd,y are two shifting-and-scaling patterns, thés, ands,, d;y = s *

djy +sy. Furthermoreyvcg.,1y andeg, 1 < k < n, we havel,., ., = s1*djc,,, +s2

—d d

dic ic dje —de¢
o 4 e S e N L e
anddlck = S % djck + 52, SO dicg_diq deQ _djcl '
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dj djcy,

(2) On the other hand, Wcy, c41), 1 < k < n such thatdz;m:dwk _ Giepia —

icy —dicy djcg—djey '

thenVc,, ¢, € Y, p # ¢, we have

dic,, — die,
dicy — dic,
_ (dic, = dic,_) + (dic,_y — dic, ) 4+ oo + (dicyy, — dic,)
dicy — dicy
_ (djcp — djcp_l) + (djcp_l — djcp_g) + ...+ (djcq+1 — djcq)
dj02 - del
_ dje, — dje,
djey — djey

dic _dic H
Therefore,m is a constant fory; and g;, says;. ThenVc,, ¢, € Y,

p # q, we havel;,, = s * djc, — s1 * djc, + d;,, suggestingl;., — s; * d;., being

a constant as well, say;. So we can conclude thdfy = d;y * s + so. O

Given Lemma 5.2.2, we need not check the coherence of reg-cluster on all
combinations of pair-wise conditions, which was necessary in previous work. In-
stead, we simply check all adjacent condition-pajr&indc;,; with regard to the

baseline condition-pair; andc,, according to a coherence thresheld

dick+1 - dick

H(i7017627ck70k+1) = d —d .
iCo ic1

(5.7)

We can conclude that the expression profiles of the three genes in Figure 5.2
are shifting-and-scaling patterns on conditienscy, ¢, ¢; andcs with each other
because these three genes share exactly the same coherencevggares;:, g2,

g3}, H(i,C'y,Cg,C'y,Cg) = 10, H(i,C7,Cg,Cg7C5> = 05, H(i,C7,Cg,C5,Cl) =1.0
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and H (i, c7, co, c1, c3) = 0.5, with an order of either; < cg < ¢5 < ¢1 < ¢3 (91
andgs) Orc; = cg > ¢5 = ¢1 = c3 (go).
We impose the coherence thresheltb flexibly control the coherence of
the clusters. In this way, we can ensure the variations in coherence scores, given in
Equation 5.7, are withiafor genes in the same cluster. Perfect shifting-and-scaling

patterns correspond to the case whete(.

5.2.3 Model Definition and Comparison

By combining both the regulation constraint and the shifting-and-scaling coherence

constraint, we now propose the definition of a reg-cluster.

Definition 5.2.2 Reg-Cluster
Given the regulation thresholgl and coherence threshold a biclusterCx .y,
whereX is a subset of genes atd= {cy, cs, ...,c, } is the subset of correlated con-
ditions such thatg; € X, eitherd,., < di, < ... < dic, O dic; > dicy > ... > dic,,
is a reg-cluster if and only if:

(1) Vg; € X, based on itfRW ave” model, we have either

or €1 M Cy My ...... N Cp,

and (Z)VQZ,QJ e X,VEk, 1 <Ek<n,

|H(ia01,02, Ck70k+1) - H<j7 C1, C2, Cg, Ck+1)| <€ (5-8)
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In this way, with the reg-cluster model, we are able to identify all the signif-
icant shifting-and-scaling co-regulation patterns with regarg amde. Two genes
of a reg-cluster can be positively co-regulated if complying with the same regulation

chain and negatively co-regulated if complying with inverted regulation chains.

50

401
301

201 /'/ "

gene expression values

- genel
-10p - gene2 (outlier)
£1- gene3

c2 c4 . c8 clo
conditions

Figure 5.4: An Ouitlier

For a brief comparison between our reg-cluster model and previous mod-
els, we shall consider the projection of the three genes in the running example on
conditionsc,, ¢4, cs andc;y as shown in Figure 5.4, wher 15 4510y = 0.4 *

di {2,4,8,107 + 2 and there is no shifting-and-scaling relationship betwgesnd the
other two genes. Given the regulation threshpld 0.15 and coherence threshold

e = 0.1, our reg-cluster model can easily identify the outlier gendecause (1)

the RWave®'® model of g, indicates there are no regulation betwegrand cs;

and (2)g; andgs have exactly the same coherence score along the four conditions
while g, does not, i.e.H (1, ca, ¢19, 10, c8) = H(3, ca, C10, C10,c8) = 0.5263 but

H(2, ¢y, c10,c10,c8) = 4.6, far beyond the allowed variationin coherence mea-

sure. In contrast, the pattern-based models discover no patterns, as there are no
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pure shifting or pure scaling relationships while the tendency-based models always
cluster the three genes together because the three genes have exactly the same sub-

sequence and tendency on the four conditions.

5.3 Algorithm

The essential idea of our algorithm is to systematically identify the representative
regulation chain for each validated reg-clusterefiresentative regulation chain

CY = ¢ v o 0 ... Ny (@ series of conditions connected by regulation
pointers) represents genes that are correlated or anti-correlated with the chain. We
refer to them as thp-membersC.pX (gene complying witlC.Y’) andn-members

C.nX of the reg-cluster, respectively. We can conveniently obtajnX by search-

ing along the RWave” model andC.nX by searching in th@pposite direction.

Note that there are two regulation chains that a reg-cluster may safisfy:and
invert(C.Y) = {cp1 ™ Cra ™ ooc N Chn }-

To avoid redundancy and overlap of the output clusters, we assume that the
representativeegulation chain always captures the pattern of the majority of genes
in a reg-cluster: the number of p-members is greater than or equal to the number
of n-members. If the number of p-members is equal to that of the n-members, we
assume the regulation chain starting with a predecessor of larger condition ID as
the “representative”. For instance, the representative regulation chain for the reg-
cluster in Figure 5.2 i8; \ cg v ¢5 v ¢1 N ¢z With its p-memberg ¢, g3} and

n-members{g,}. The inverted:; ~ c9 ~ ¢5 ™~ ¢; ™~ ¢3 IS not a representative
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Input: D = G x C: 2D dataset,MinG: minimum number of genes)MinC: minimum number of conditionsy:
regulation threshold and coherence threshold.

Output: all validated reg-clusters w.ri;, e, MinG andMinC: {C|C = X x Y} such thaC.X is the maximal gene set
for the representative regulation chaify”.

\ * RWave” model constructior
for each geng; € G do
sort the conditiong; € C' in non-descending
order ofd;;.
for eachc; in sorted ordedo
find c;'s closest regulation predecess@rw.r.t. .
if no regulation pointer exists betweepandcy, then
insert a new pointet;, .~ c; in g;'s RWave” model.

\* reg-cluster mininge\
CpX =CnX =G.
CY =0.

C2Set = ().
MineC?(C, C2Set).

Subroutine: MineC?(C, C?Set).
Parameters:

e (.Y the current representative regulation chain;

e (.X: the corresponding genes fétY’;

o (C?Set: the set of discovered validated reg-clusters.
Method:

1. apply pruning (1): if |C.X| < MinG, thenreturn.

2. apply pruning (3).(a): if |C.pX| < MinG/2, then return.

3. assume&’.Y = cg1 A Cgo... ¥ Chm
if |C.Y| > MinC and|C.X| > MinG and (C.pX| > |C.nX|or (|C.pX| == |C.nX| andkl < k2)) then
apply pruning (3).(b): if C is already inC?2 Set then returnelseoutputC' to C2 Set.

4. Scan theRW aveY models ofC.pX whenapplying pruning (2) and store the condition candidatestandiSet.

5. for each candidate conditian € CandiSet do
find the subset of genes i C C.X which match
eitherC. Y+~ ¢;” orinvert(C.Y +*~ ¢;”
whenapplying pruning (2);
sort X ¢ on coherence score discrepancy
H (7, ck1, k2, Chm, ¢;) Whereg; € X i,
apply sliding window with minimum length
MinG and threshold on sortedX ¢ ;
apply pruning (4): if no validated gene interval”’ then continue;
for each validated(” after slidingdo

C'Y =CY+'~n¢g" O X = X",
MineC?(C’, C?Set)

Figure 5.5: reg-cluster Mining Algorithm
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Figure 5.6: Enumeration Tree of Representative Regulation Chainsy+.0.15,
e=0.1, MinG = 3andMinC =5
regulation chain.

In summary, our reg-cluster algorithm illustrated in Figure 5.5 perforbis a
directional depth-firssearch on thé&2Wave” models for representative regulation
chains (C.Y") satisfying the user specified minimum number of gehesG, min-
imum number of conditiond/inC', regulation threshold, and coherence thresh-
old e. At any step, the candidate regulation successors for the partially enumer-
ated representative regulation chéirt” are held inC'andiSet. For each candidate
¢; € CandiSet, we locate the subset of gen&s: C C..X which satisfyC.Y  ¢;
and sort them in non-descending order of the coherence seqte €1, ¢k, Crm.,
¢), g; € X%). Then we use a sliding window of the minimum lengthinG and

coherence thresholdto partition X“ into a set of validated maximal subset of
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genesX”, which may overlap. The same procet&neC?() is applied to each
partitionC’ (C".Y = C.Y «~ ¢; andC’. X = X”) recursively.

Figure 5.6 shows an example of representative regulation chain enumeration
process. We apply the following pruning strategies:

(1) MinG pruning: Whenever the total number of p-members and n-members
of the current enumerated representative regulation chain is below-, we prune
the search after this node, as further extension of the representative regulation chain
will only reduce the number of genes.

(2) MinC pruning: Whenever the estimated maximal length of the current
enumerated representative regulation chain of a gene falls bdlow’, we remove
the gene from further consideration.

(3) Redundant pruning: (a) Whenever the number of p-members is below
MinG/2 (|C.pX| < MinG/2), we prune the candidate reg-cluster because the
number of p-members would be smaller than the number of n-members. (Any val-
idated reg-cluster contains at leagtinG members.) (b) Whenever a validated
reg-cluster is found to be repetitive (as a result of overlapping gene sets after apply-
ing the sliding window techniques), we prune the search because the search space
rooted at this node is redundant.

(4) Coherence pruning: Whenever less thidimG genes are coherent (de-
fined bye) at a node, we prune the search.

Note that with pruning strategies (2) and (3).(a), we only need to look at
p-members of the current enumerated representative regulation €hidimvhen

searching for extending condition candidates.
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Figure 5.6 is the representative regulation chain enumeration tree for the run-
ning example (Table 5.1) when = 0.15, ¢ = 0.1, MinG = 3 and MinC = 5,
which consists of six levels, 0, 1, ..., 5. The number on the tree edge indicates the
pruning strategies applied. At thth level, the bicluster subroutine tests all possi-
ble representative regulation chains of lengtiThe depth-first search starts from
the root node initialized with an empty chain. At level 1, the only possible candi-
date conditions are,, c3 andc;. The rest conditions cannot grow any regulation
chain of length 5 along th&W ave’ > models (Figure 5.3). So we can prune the
search ony, ¢y, c5, cg, Cs, cg @ndcyg according to pruning strategies (2) and (3).(a).
Moreover, we can prune the search following neglasing pruning strategy (3).(a),
because the number of p-members of the regulation ehaml, which is smaller
than MinG/2. Then, we grow the subtree of nodgwith candidates;, ¢y and
c10, Which are all possible conditions for extending a regulation chain of minimum
length 5. With pruning strategy (1), we can prune the search after ngdeand
cac9. The only extensible child of node is cyc9, Whose candidates arg and
cg With pruning strategy (3).(a). Nodgc;ycs is pruned during coherence test with
pruning strategy (4), sincé&l (1, co, c19, 10, ¢5) = H(3, o, c10, C10,¢5) = 0.5263
while H (2, ¢y, ¢10, c10, ¢5) = 2 and, therefore, no validated gene subset is discov-
ered when sliding the window of minimum length 3 and= 0.1. Nodecycigcs
is pruned with pruning strategy (1). Again, we examine the p-members of node
¢; and find the candidates for further extension ay@and cq. c7c1p IS pruned
with strategy (1) and the only validated representative regulation chain discovered

IS ¢ ¥\ Cg N C5 N €] N C3.
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Figure 5.7: A Simple Node Split Case whéhinGG = 1 ande = 0.1

A more complicated case than Figure 5.6 is node split. When a sliding win-
dow with minimum length ofMinG and coherence threshotds applied on the
genes sorted by coherence scores, the genes will be assigned to several possibly
overlapping maximal gene subsets. In our running example, node split occurs at

nodecycigcs Whene = 0.1 andMinG = 1, as illustrated in Figure 5.7.

5.4 Experimental Studies

To evaluate the performance of our reg-cluster algorithm, we performed experi-
ments on a series of synthetic datasets and two real-life gene expression datasets,

2D and 3D respectively, on a 3.0-GHz Dell PC with 1G memory running Window

XP.
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As the runtime of reg-cluster algorithm on real datasets are too short for in-
depth analysis, we evaluate the efficiency of our algorithm on synthetic datasets,
which are obtained with a data generator with three input parameters: number
of genes fgene), number of conditions#condition), and number of embed-
ded clusters#cluster). We set the default parameters of the data generator al-
gorithm as#gene = 3000, #condition = 30 and#cluster = 30. The synthetic
dataset is initialized with random values ranging from 0 to 10. Then a number of
#cluster perfect shifting-and-scaling clusters of average dimensionabtgd av-
erage number of genes (including both p-member genes and n-member genes) equal
to 0.01 x #gene are embedded into the data, which are reg-clusters with parameter
settingse = 0 andy = 0.15.

We evaluate the effectiveness and extensibility of our reg-cluster algorithm
on a benchmark 2D yeast gene expression data [76], availabtgdtarep.
med.harvard.edu/biclustering/ , and the 3Dyene x sample x time in
[85] respectively. The 2D dataset contains the expression levels of 2884 genes
under 17 conditions while the 3D dataset contains the expression values of 7679

genes from 13 samples under 14 time points.

Cluster Process Function Cellular Component

c% DNA replication DNA-directed DNA polymerase activity replication fork
(p=3.64e-07) (p=0.01586) (p=0.00019)

c% protein biosynthesis structural constituent of ribosome cytosolic ribosome
(p=0.00016) (p=1.45e-07) (p=1.44e-08)

c§3 cytoplasm organization and biogenesis helicase activity ribonucleoprotein complex
(p=5.72e-05) (p=0.00175) (p=0.0002)

c? mRNA transport ATP binding integral to membrane
(p=0.00057) (p=0.00313) (p=0.00329)

Table 5.2: Top GO Terms of the Discovered Biclusters and Tricluster
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5.4.1 Efficiency

Given the default parameter setting of the data generator algorithm above, we test
the scalability of reg-cluster by varying only one input parameter while keeping the
other two as default. The average runtime of reg-cluster when we vary the param-
eters invoked withV/inG = 0.01 x #gene, MinC = 6,y = 0.1 ande = 0.01 is
illustrated in Figure 5.8. As we can observe, the runtime of the reg-cluster algorithm
is slightly more than linear in terms of the number of gegggdne). It shows worse
scalability with respect to the number of conditiogscondition). This is because

the reg-cluster algorithm may examine all possible permutations of conditions when
looking for the representative regulation chains, but it only searches for the maxi-
mal sets of genes that are projected onto the enumerated (inverted) representative
regulation chains. Typically, the number of conditions is much smaller than the
number of genes. Figure 5.8 shows an approximately linear relationship between

the runtime of the reg-cluster algorithm and the number of clustec&ister).

5.4.2 Effectiveness

We ran the reg-cluster algorithm on the 2BB4 x 17 yeast dataset with/inG =

20, MinC' = 6, v = 0.05 ande = 1.0; 21 bi-reg-clusters are output in 2.5 sec-
onds, where the overlapping percentage a bi-reg-cluster with another one generally
ranges from0% to 85%. Note that we did not perform any splitting and merging

of clusters. Due to space limit, we only report the details of three non-overlapping

bi-reg-clusters with 21 genes and six conditions each.
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Figure 5.9: Three biclusters

Figure 5.9 illustrates the gene expression profiles for each of the three bi-reg-
clusters. Our reg-cluster algorithm can successfully identify shifting-and-scaling
patterns satisfying the regulation and coherence thresholds, where the scaling fac-
tor can be either positive or negative. For each bi-reg-cluster, we represent its
p-members with black solid lines and its n-members with red dashed lines. Ob-
viously, the relationship between any two p-member genes or between any two
n-member genes of the same cluster is shifting-and-positive-scaling while that be-
tween a p-member gene and a n-member gene is shifting-and-negative-scaling. As
a remarkable characteristic of reg-clusters, crossovers can be observed frequently
in the gene expression profiles of a pair of genes, resulting from the combination
effects of shifting and scaling. In contrast, previous pattern-based biclustering al-
gorithms [80, 83, 85] only allow pure shifting or pure positive-scaling patterns (but

not a mixture of both) and hence fail to identify the three bi-reg-clusters.
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We apply the yeast genome gene ontology term finlaktp:(/db.yeastgenome.
org/cgi-bin/GO/goTermFinder ) on each discovered clusters to evaluate
their biological significance in terms of associated biological processes, cellular
components and gene function respectively. Table 5.2 shows the top GO terms of
the three categories and the GO terms with the lowest p-values for the 3 bi-reg-
clusters in Figure 5.9, which have been overlooked by previous work. Despite the
relatively smaller number of genes with our regulation threshotd 0.05, the ex-
tremely low p-values suggest that the three bi-reg-clusters are of significant biolog-
ical meaning in terms of biological process, cellular component and gene function.

Further experimental results show that our reg-cluster algorithm can identify
a much broader range of biologically significant gene clusters. Each group of genes

in these clusters show strikingly similar regulation under a subset of conditions.

5.4.3 Extension to 3D Dataset

Our reg-cluster mining algorithm can be easily extended for mining thgeab x
sample x time expression dataset in [85]. All we need is to replace the biclustering
subroutine of the tricluster algorithm in [85] with our reg-cluster algorithm in Figure
5.5, and replace its coherence cluster model with our reg-cluster model. We build
the 3Dgene x sample x time = 7679 x 13 x 14 expression dataset as that used

in [85] by choosing 13 attributes as samples of the raw data taken at each of the
14 time points (Omin, 30min, ...... , 390min) for 7679 genes during the elutriation

experiments. The raw data is availablenttp://genome-www.stanford.
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edu/cellcycle/data/rawdata/individual.html Here, the sample
dimension corresponds to our condition dimension.

We first mine the biclusters in the 2D time sligene| x |sample| = 7679 x
13 for each of the 14 time points With,c,,c x sampie = 0.1. Then we search the inter-
sections of the time slices with/inTime = 4 and relax the regulation thresholds
Vgenextime ANAYsampiextime 10 ZErOES, considering the gene expression levels across
different time points need not regulate rigidly. In the whole process, we set the
coherence thresholds 88,.cxsampic = €sampiextime = €genextime = D, ACCOMMO-
dating the noise in the raw data. WitlhinG = 40, MinC' = 6 andMinTime = 4,
our reg-cluster algorithm identified od8 x 6 x 4 tricluster on sample sdt;, ¢,
s, C7y Co, C1o} @Nd time sefts, t7, t1o, t13} after cluster merging. The gene slice

views (projected on the 12th, 24th, 36th and 48th genes), the sample slice views

(projected on the first four samples) and the four time slice views of this tricluster
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is shown in Figure 5.10. Again, the GO term finder reports significant biological

meaning of this cluster, denoted @yTable 5.2).

5.5 Summary

To overcome the limitations of previous pattern-based biclustering algorithms which
can only find either pure shifting or pure positive scaling patterns, we have pro-
posed a general reg-cluster model for identifying arbitrary shifting-and-scaling co-
regulation patterns, where the scaling can be either positive or negative. Unlike
previous work, our algorithm also allows a flexible regulation threshold to quantify
up or down regulation. The shifting-and-scaling patterns manifest a synchronous
and proportional change of expression values in a subspace, and are able to capture
both positive correlations and negative correlations among the genes in the sub-
space. We have developed a bi-directional depth-first algorithm which effectively
and efficiently mine the reg-clusters using a nav& ave” model. Our experimen-

tal results prove that our reg-cluster algorithm is able to: (1) discover a significantly
number of biologically meaningful reg-clusters missed by previous work; and (2)

be easily extended to 3ixne x sample x time dataset.
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CHAPTER 6

Conclusion

In recent years, large amounts of high-dimensional data, such as images, handwrit-
ing and gene expression profiles, have been generated. Analyzing and handling
such kinds of data have become an issue of keen interest. Elucidating the patterns
hidden in high-dimensional data imposes an even greater challenge on cluster anal-
ysis. In this thesis, we have proposed effective and efficient data mining methods

for gene expression analysis in capturing the correlation between gene expression
profiles and environmental conditions, and also the correlation among genes them-
selves. While we focus on gene expression data, our data mining techniques can
be applied to other kinds of high-dimensional data with homologous correlations as

well. We summarize our work as follows.

132



e The high-dimensionality of gene expression data renders traditional item-
wise association rule mining algorithms impractical due to exponential ex-
plosion of item combinations. Although a recent row-wise rule mining algo-
rithm FARMER is much more efficient than traditional item-wise algorithms
by identifying interesting rule groups instead of searching individual rules
one by one, the number of interesting rule groups can still be very large. We
proposed the concept of top k covering rule groups, TopKRGs, and devel-
oped an efficient algorithm for TOopKRGs discovery. In this way, we not only
solved the problems of inefficiency and huge rule number, but also helped
users concentrate on the most significant information and minimized the in-
formation loss. Experimental studies on four benchmark gene expression
datasets demonstrate that our TopKRGs algorithm is significantly faster than

FARMER.

e Based on TopKRGs, we designed a novel associative classifier RCBT com-
posed of a committee df sub-classifiers. Each test sample is classified by
the highest ranked sub-classifier and will be assigned the default class only
when no sub-classifiers matches the test sample. Compared with previous
associative classifiers [20,56], RCBT greatly reduces the chance of default
class judgement as well as successfully locating globally significant rules.
Moreover, by combining the discriminating powers of the delicately selected
rules from TopKRGs, RCBT achieves a rather high classification accuracy on

four benchmark gene expression datasets. To give users some hints on Top-
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KRGs criteria, effective visualization techniques are also introduced, which
provides an interactive graphic interface for users to observe, compare and

explore rule groups.

To address nonlinear correlation, we proposed a novel algorithm CURLER
which adopts a fuzzy EM clustering subroutine to estimate the nonlinear ori-
entations of the data in a trade off for efficiency and accuracy. Inspired by
the reachability plot of OPTICS, we also proposed NNCO plot which visu-
alizes the clusters embedded in subspace as well as their orientations. As
another contribution, CURLER works in top-down manner so that users are
able to further explore the sub-structure of any cluster of their interest. Ex-
perimental studies were carried out on synthetic helix datasets, UCI machine
learning repository and real-life gene expression data to show the efficiency

and effectiveness.

Correlated genes can demonstrate pure shifting or pure scaling expression
patterns across a subset of samples. Such correlation is pattern-based, which
is neither linear nor nonlinear. We successfully improved existing pattern-
based subspace clustering algorithms which ignore the general shifting-and-
scaling pattern by proposing reg-cluster to cluster genes exhibiting shifting-
and-scaling patterns w.r.t. coherence threshko&hd regulation threshold

~. Experimental studies on real-life gene expression data show that these
shifting-and-scaling patterns ignored by previous work have rather high bi-

ological significance. Experimental results also indicate that our reg-cluster
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discovery algorithm is efficient and scalable on high-dimensional data.

In our future studies, we would like to further explore the following related

problems.

e Association rule mining algorithms run on discretized data. One interesting
guestion is whether the discretization subroutine and the association mining
subroutine can be integrated simultaneously. For classification purpose, en-
tropy discretization method is usually adopted to partition the data first. How-
ever, the resulting genes may still contain duplicate information. And the dis-
covered rules may have such redundant information as well. The performance
of the associative classifier may be increased by combining discretization and

rule ming together to filter out most important information directly.

e Another problem related with class association rule mining on gene expres-
sion data is the disregard of time factor. The gene expression profiles of
patients could be rather different at distinct disease phases, while current as-
sociative rules just reflect the correlation at a single one phase. When applied
to cancer diagnosis in clinical practice, these rules may be problematic. A
better way may be to discover class association rule whose item corresponds
to an expression interval of a gene at a certain phase or a tendency change of

individual genes rather than a fixed expression interval.

e Our CURLER algorithm is able to identify nonlinear as well as linear cor-

relation gene clusters in subspace and our reg-cluster algorithm is capable
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of finding the general shifting-and-scaling clusters in subspace. However,
neither of them has considered the case where the density-based, no matter
linear or nonlinear, and the pattern-based clusters coexist together. It will
be interesting if we can combine density measurement and pattern similarity

measurement together.

Although biological technology will continue growing and evolving, data
mining will remain a powerful tool to effective and efficiently discover the most
important information from the vast and complex data. It is admitted that the ul-
timate impact of the studies on biology will depend heavily on data mining and
statistical analysis. Data miners definitely undertake great responsibility with the

advance of new biology era.
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