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Understanding how proteins interact with DNA is essential for decoding many 

biological processes and disease states. We can study protein-DNA interaction in two 

levels: sequence level and structure level. Recent improvement in biotechnology 

enables us to study protein-DNA interaction in a high-throughput manner. For 

sequence level, we have Protein Binding Microarray(PBM) and ChIP-seq. For 

structure level, we have Hi-C and ChIA-PET. Novel bioinformatics problems are 

generated when scientists analyze the data of these new technologies.  The aim of this 

thesis is to propose novel computational methods to solve the new challenges bought 

by the new generation data. 

For the sequence level, ChIP-chip or ChIP-seq experiments can identify the 

binding sites of a selected transcription factor. Given these binding sites, there are two 

bioinformatics problems. One is motif enrichment analysis, and the other one is de 

novo motif finding. For motif enrichment analysis， the performance of existing 

programs is heavily dependent on the proper background and other parameter 

settings. A novel parameter-free method called CENTDIST is developed in Chapter 

III, and it tunes its parameters automatically and assesses motif enrichment by 

utilizing center distribution property from the ChIP-seq data.  For de novo motif 

finding, existing programs over-take the prior knowledge from the ChIP-seq data, 

which may be only suitable for ChIPed protein but not collaborating transcription 

factors (co-TF). A novel EM(expectation maximization)-based program called SEME 

Summary 



 viii

is developed in Chapter IV, and it learns different positional bias and sequence rank 

bias for different motifs by estimating the parameters in a mixture model with EM 

technique. Large-scale ChIP-seq and ChIP-chip experiments demonstrate that 

CENTDIST can obtain better result than existing programs without requiring expert 

knowledge in configuring the program. SEME not only reports more accurate co-TF 

motifs than other programs but also correctly estimates the position and sequence 

rank distribution of each co-TF’s motif. 

For the structure level, Hi-C or TCC experiments can identify the contact 

frequencies among different genome regions with a fine-grained resolution.  This type 

of data leads to a novel bioinformatics problem, that is, to identify the underlying 3D 

structure of the genome. Although a few works have been proposed recently, they do 

not guarantee to reconstruct the correct structure even in the noise-free case. To fill in 

the gap, a semi-definite programming (SDP) based algorithm called ChromSDE is 

developed in Chapter V, which guarantees to recover the correct 3D structure when 

the structure is uniquely localizable. Furthermore, the parameter of conversion from 

contact frequency to spatial distance is proved to change under different resolutions 

theoretically and empirically. Comparing with existing methods, ChromSDE doesn’t 

assume the conversion parameter is known or fixed, but searches for the correct value 

based on the input data. Experimental result indicates that ChromSDE is more 

accurate than existing methods and its predicted 3D structure can provide novel 

information of the chromosome spatial organization which is hidden from the linear 

view of the chromosome. 

In conclusion, this study has achieved several important improvements on 

processing the new-generation protein-DNA interaction related data at both the 

sequence level and the structure level. Novel information, like co-TF binding features 
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and 3D interaction features, can be unveiled by our bioinformatics programs. While 

there is still much room to further explore these new-generation data, future works are 

given at the end of this thesis. 
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CHAPTER - I  Introduction 

I-1 Background 

Understanding how proteins interact with DNA is essential for decoding 

biological processes and disease states. DNA-binding proteins are the main regulators 

of gene expression. For example, the protein RNA polymerase can bind to DNA and 

transcribe gene regions into mRNAs. There are also other DNA-binding proteins 

called transcription factors (TFs) that can recognize specific short stretches of DNA 

sequences in the genome and regulate the target genes’ expression.  Gene is usually 

not regulated by only a single protein, but by a group of collaborating proteins (co-

factors) binding to chromatin in close proximity. Apart from controlling gene 

expression, DNA-binding proteins are also the main constructors of chromatin 

structure. Histone proteins[56] control DNA accessibility by wrapping the DNA 

around them, and CTCF protein[22] is believed to act as a chromatin barrier by 

preventing the spread of heterochromatin structures. Hence, protein-DNA interaction 

is a very important subject in genetics. 

In genetics, a DNA molecule firstly is considered as a sequence of nucleotides, 

where each nucleotide is encoded by one of four nitrogenous bases A,C,G,T (viz. 

Adenine, Cytosine, Guanine, and Thymine). Two complementary strands pair up 

where Gs pair with Cs and As with Ts to form base pairs (bp). Further, a DNA chain 

has a double helical structure, and is tightly packed around histone proteins. Within 

cells, DNA is organized into long structures called chromosomes.  

This thesis studies protein-DNA interaction at both the sequence and structure 

levels. At the sequence level, each chromosome is treated as a one-dimensional 
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sequence, and each element on the chromosome is encoded by its linear position on 

that sequence (genomic location). At the structure level, each chromosome has a 

three-dimensional structure in the nucleus, and each element on the chromosome is 

encoded by three-dimensional coordinates (spatial location). Generally, if two 

elements are close at the sequence level, they are also close at the structure level. 

However, the reverse statement is not necessarily true. 

In the following sections, some basic concepts of molecular biology are 

provided, which establish a ground for introducing the new generation experimental 

data and the corresponding bioinformatics problems. 

I-1.1 Gene Regulation 

DNA encodes genetic information. But it does not perform most of the 

functional activities. These activities are carried out by a set of functional molecules 

called proteins, which are complex macromolecules of amino acids. The central 

dogma in biology[21] describes the flow of genetic information from DNA to its final 

product “Protein”. A set of short segments in the long DNA chain, called genes, 

provide the templates for synthesizing short ribonucleic acid (RNA) molecules in a 

process called transcription. Those RNA molecules encode the information needed to 

construct proteins.  

Although a majority of the cells in the same organism contain the same 

genetic information (DNA), the cells of different tissues have different types of 

proteins or different amount of certain proteins in order to function differently. The 

difference is controlled by a set of transcription regulators, so that only a fraction of 

the genes in a cell are expressed at a time. In eukaryotes, each gene is transcribed by a  

RNA-polymerase, and the transcription is initiated at a specific genomic location, 
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called the transcription start site (TSS, the blue right arrow in Figure I-1). However, 

the RNA-polymerase enzyme is incapable of initiating transcription on its own. The 

initiation process is assisted by a number of DNA-specific binding proteins called 

transcription factors (TFs). This process can be explored at both the sequence level 

and the structure level. 

 For the sequence level, TFs bind to the DNA sequence and interact with 

RNA-polymerase as shown in Figure I-1 (a). The sequences bound by TFs are called 

regulatory sequences, which usually contain specific sequence pattern (motif). The 

regulatory sequence near the TSS is called promoter sequence (green line), and the 

regulatory sequence far away from the TSS is called enhancer sequence (red line). 

For the structure level, both enhancer sequence (red line) and promoter 

sequence (green line) are spatially close to the TSS, as shown in Figure I-1 (b). Also, 

transcription initiation is associated with open chromatin state (loose DNA region), in 

which the DNA around the TSS is unpacked in order for RNA-polymerase to bind on 

it. Another interesting fact related to transcription initiation at the structure level is 

that people observed the TSS of different genes are gathering spatially during the 

transcription, and this observation points out that all genes are transcribed together but 

in a more efficient way by sharing the TFs and recycling the RNA-polymerases. This 

phenomenon is called transcription factory[91], which is hidden at the sequence level. 
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Figure I-1: Transcription initiation process regulated by transcription 
factors. Red line presents enhancer sequence and green line present 
promoter sequence. (a) Sequence level of view. (b) Structure level of 
view. 

In short, a protein binding to the regulatory sequence can either directly 

interact with RNA polymerase or remodel the surrounding chromatin state, which 

promotes or inhibits RNA polymerase in the transcription process[19]. Thus the 

crucial point of the regulation mechanism is the binding of regulatory proteins. 

I-1.2 Nature of Protein-DNA Interaction 

There are two types of protein-DNA interaction based on how the protein 

binds on DNA. One type is sequence-specific binding. For example, a transcription 

factor (TF) contains one or more DNA-binding domains (DBDs), and has the affinity 

of binding to a specific DNA sequence. The other type is non-sequence-specific 

binding, with which the protein doesn’t recognize a specific DNA sequence, but binds 

to DNA by forming complex with TFs or wrapping DNA around their surfaces.  

TF1

RNA Pol

TF2 TF3

TSS
DNA

CCACGTCGT ACGTACGATT TATATT

TSS

RNA Pol

Condensed 
DNA

Loose DNA

(a)

(b)
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I.1.2.1 Sequence-specific binding 

The binding sequence of a TF is usually of length 5-30 bp and can be 

identified experimentally[12]. The quantitative modeling of TF binding specificity 

was firstly introduced by von Hippel and Berg [122]. Generally, the bases in a 

binding sequence are not equally important. Some bases can be substituted without 

affecting the affinity of the binding, but some bases are critical for binding and 

substitution at those bases can reduce binding affinity or completely inhibit binding. 

DNA motif is denoted as the conservation feature of binding sequence pattern for a 

TF, and there are two common ways for modeling DNA motif computationally. 

One representation is called consensus pattern, which presents the motif of a 

set of binding sequences by the conserved nucleotide in each position. If the 

conserved pattern is significant, it can be changed to any binding sequence instance 

by a few substitutions For example, Figure I-2 shows the consensus pattern of the 

binding sequences is “TTGACA”. Note that all the binding sequences can be formed 

from the consensus pattern by at most one substitution. 

The other common representation is called positional weight matrix (PWM), 

which is numerically more precise than consensus pattern. The consensus pattern 

cannot tell the conservation of each base. Such information can be encoded in PWM. 

PWM models a motif of length m as a 4 × l matrix Θ, where the entry Θ௤,௣ gives the 

probability that an occurrence of the motif contains a base q (q∈ {A,T,C,G}) in its p-

th position. Each column of the matrix therefore sums to one as illustrated in Figure 

I-2. Given a length-l sequence, let s[i] denote the base at its i-th position, then the 

probability that Θ produces a particular sequence s is: Prሾݏ|Θሿ ൌ ∏ Θ௦ሾ௜ሿ,௜
௟
௜ୀଵ . Given a 

set of motif occurrences S, the PWM can be easily computed by calculating the 
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modifications (i.e., methylation, phosphorylation and acetylation) on these interacting 

residues can change the strength of the interaction between the DNA and the histones. 

As a result, the wrapping DNA becomes more or less accessible to transcription 

factors, which affect the rate of transcription[13]. 

The second type is general transcription regulator protein, which can interact 

with the DNA indirectly through binding on the transcription factors or histone 

proteins. For example, P300 protein is a general activator, who binds to several 

different DNA-binding proteins [77]. P300 can bind on a TF called CREB, through its 

protein interaction domain KIX to enhance the transcription of target genes of CREB. 

Moreover, p300 also interacts with histone through protein interaction domain HAT, 

which acetylates conserved lysine amino acids on histone proteins and relaxes the 

chromatin structure. 

I-2 Biotechnology Advances 

The knowledge of protein-DNA interaction is enriched through the advance in 

biotechnologies, including breakthroughs in chromatin immunoprecipitation (ChIP) 

technology, parallel-sequencing technology and chromosome conformation capture 

(3C) technology. At the sequence level, we have technologies like PBM[12] and 

ChIP-seq[59]. At the structure level, we have Hi-C[76] and ChIA-PET[37]. The data 

produced by the new technologies leads to more novel bioinformatics problem. This 

thesis addresses some of these problems. First, this section gives a brief description of 

these biotechnologies. 
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I-2.2 Chromatin immunoprecipitation related Technology 

Chromatin Immunoprecipitation (ChIP) is a type of immunoprecipitation 

experimental technique used to capture the interactions between specific proteins and 

DNA in the cell[113]. It identifies a set of protein-DNA complexes of interests using 

specific antibody. The workflow of ChIP experiment is shown in Figure I-3. First, a 

DNA-binding protein is cross-linked to its genomic DNA targets in vivo. Second, the 

protein-DNA complex is extracted from cells and the bounded DNA is further 

sheared by sonication into DNA fragments. Third, the cross-linked DNA fragments 

with the protein of interest are enriched by immunoprecipitation (IP) with an antibody 

that specifically binds that protein. Finally, the IP-enriched DNA fragments are 

examined using different techniques. 

For example, ChIP-PCR [113] is used to test whether the pre-defined DNA 

sequences are enriched in the identified DNA fragments. Tiling array (ChIP-chip) or 

massive parallel sequencing (ChIP-seq) techniques can map the identified DNA 

fragments to the locations in the reference genome. Also, the enhanced version of 

ChIP called ChIP-exo[97] was developed recently, which applies a 

lambda exonuclease to further cut the unbound parts of the ChIP fragments and 

improve the resolution. Table I-1 shows the comparisons between different techniques. 

Note that the latest developed techniques are all high-throughput approaches, which 

target higher sensitivity (more genomic regions) and higher specificity (higher 

resolution).  For these high-throughput approaches (ChIP-chip, ChIP-seq and ChIP-

exo), they share similar dry lab protocol, which consists of three steps: mapping, peak 

calling and downstream analysis. The following sections briefly describe these three 

steps. 
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I.2.2.1 Mapping 

The ChIP fragments can be processed using tiling array (ChIP-chip) or short 

read sequencing (ChIP-seq). For ChIP-chip, each probe in the array has its 

corresponding mapping location in the reference genome. The fluorescence signals of 

hybridized probes are mapped to the corresponding locations in the reference genome.  

For ChIP-seq, millions of short reads are generated from the ChIP fragment 

and represent either a fragment start or end. The short reads can be mapped to a 

reference genome using different alignment program, such as BWA[75], Bowtie[69] 

and BatMis[115]. 

Table I-1: Comparison between different CHIP based techniques. 

Technique	 Sequencing	
type	

Invention
Time	

Targeted
region	

Throughput Resolution	

ChIP‐PCR	
[113]	

PCR	 1988 Selected	region Low ~100bp	

ChIP‐chip	
[2]	

Microarray	 2004 Promoters High ~200bp	

ChIP‐seq	
[59]	

Short	read	
sequencing	

2007 Whole	genome High ~100bp	

ChIP‐exo	
[97]	

Short	read	
sequencing	

2010 Whole	genome High ~10bp	

 

I.2.2.2 Peak Calling 

Once the signals (either fluorescence signal or short read) are mapped to the 

reference genome, the peak calling procedure estimates the binding site location in the 

reference genome based on signal coverage. Usually the genomic background signal 

coverage is also required and prepared by performing the same ChIP experiment 

without immunoprecipitation with an antibody. Peak calling programs such as 

MACS[134] and CCAT[132],  can identify a set of small regions with significant 

ChIP enrichment against background in the reference genome called ChIP peaks. 

Generally, each ChIP peak has two attributes: peak summit and ChIP intensity. Peak 
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summit indicates the most probable binding site location in the reference genome and 

ChIP intensity indicates the binding strength. They are important to the downstream 

analysis. 

I.2.2.3 Downstream Analysis 

Identified ChIP peaks can be used to analyze the binding profile of different 

DNA-interacting proteins including RNA polymerases, transcription factors, 

transcriptional co-factors, and histone proteins [106]. There are several common 

downstream analyses, such as peak-gene association, binding motif analysis, and peak 

annotation. For peak-gene association, the genes near the ChIP peak locations are 

treated as targeted genes, and the gene ontology analysis (or gene expression analysis) 

can be further performed to summarize the target genes function (or binding effect on 

gene expression). For binding motif analysis, the DNA sequences around ChIP peaks 

are extracted to identify whether any over-represented DNA motif enriched with the 

ChIP peaks, which can indicate the sequence-specific binding patterns of ChIPed 

proteins or their co-associate proteins. For peak annotation, the locations of ChIP 

peaks are overlapped with the annotation data in the reference genome, in order to 

check with whether the ChIP peaks significantly co-occurs with any type of 

annotation or not. In summary, these downstream analyses are very useful to 

understand the biology context of the ChIPed protein.  

I-2.3 Chromosome conformation capture 

Two genomic regions that are distal to one another on the linear view of 

genome can physically interact due to chromatin interaction. The ChIP technologies 

mentioned above cannot reflect this higher-order chromatin structure. To fill this gap, 

chromosome conformation capture or 3C [24], is a molecular biology technique used 
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to analyze the chromatin interactions in a population of cells. It measures the contact 

frequency between pairs of chromosomal loci, which can be used to further infer the 

structural properties and spatial organization of chromosomes.  

Several enhanced techniques have been developed from 3C to increase the 

throughput of quantifying chromatin interactions in protein non-specific manner (4C 

[140], 5C[26], Hi-C[76] and TCC[61]) or in protein-specific manner (6C[118], ChIA-

PET[37]). In this thesis, we focus on two methodologies: Hi-C and ChIA-PET, which 

have brought the assessment of chromatin interactions to the genome-wide scale. 

I.2.3.1 Hi-C Experiment 

Comparing to 3C, 4C or 5C, Hi-C introduces an unbiased way to measure the 

contact frequency of physical interaction between pairs of chromosomal loci on 

genome-wide scale. It solved the problem in previous 3C-related versions (including 

4C, 5C), which require a set of pre-selected target loci, and are not designed for 

genome-wide studies. 

Figure I-4(left panel) briefly shows the workflow of Hi-C, which contains 

seven steps. In Step 1, protein-DNA complexes are cross-linked with formaldehyde, 

such that interacting loci are bound to one another.  In Step 2, the DNA is cut into a 

million pieces using a restriction enzyme. The specific restriction enzyme will 

recognize 6bp specific DNA sequences as cutting points (e.g., HindIII enzyme cuts 

“AAGCTT” sites). In Step 3, the ends of the overhang DNA fragments are filled in 

biotinylated residues. In Step 4, the overhang DNA fragments are further ligated with 

one another under dilute conditions. In Step 5, a set of ligation products with the 

biotin junctions are sheared, and pulled-down with streptavidin beads (not shown in 

the figure).  In Step 6, the purified junction DNA fragments are subsequently 
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sequenced by high-throughput pair-end sequencing and the pair-end reads from two 

interacting DNA fragments can be read and mapped back to the reference genome. In 

Step 7, the contact frequency matrix is built by counting the number of pair-end read 

covered in any two-genome regions in resolution 40kbp-1Mbp.  

Based on the contact frequency matrix (or contact heatmap), several common 

downstream analyses can be performed, such as chromosome topological domain 

study, 3D chromosome modeling, and interaction regions study. 

I.2.3.2 ChIA-PET Experiment 

Similar to Hi-C, ChIA-PET (i.e., Chromatin Interaction Analysis by Paired-

End Tag Sequencing) allows the detection of long-range chromatin interactions on a 

genome-wide scale. The difference is that ChIA-PET integrates chromatin 

immunoprecipitation and chromatin proximity ligation. Hence, ChIP-seq identifies 

chromatin interactions mediated by specific protein only. Comparing to ChIP-seq, 

which is typically used for identification of the locations of TFBS[8, 125], and 

provides only one dimension information of those sites along the chromosomes (but 

not interactions between them), ChIA-PET further incorporates proximate ligation 

approach to link the free ends of the DNA fragments within the same protein-DNA 

complex, which captures the spatially contacting chromosome regions. 

Figure I-4(right panel) briefly shows the workflow of ChIA-PET, which 

contains five steps. The first step is cross-linking protein-DNA, which is the same as 

Hi-C.  In Step 2, the DNA is cut into a million pieces by sonication instead of 

restriction enzyme. In Step 3, protein of interest bound chromatin fragments are 

enriched by a specific antibody, which is the same as in the ChIP experiment. In Step 

4, the ChIPed fragments are ligated with two types of biotinylated linkers(A and B) 
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I-3 Research Problems 

Despite of the breakthrough of these technologies, the extracted data lead to 

more novel bioinformatics problems (Figure I-5). This thesis addresses three of these 

problems.  

I-3.1 Binding Motif Enrichment Analysis 

The first problem is motif enrichment analysis using ChIP-seq data. The main 

application for solving this problem is to discover the co-TF using the known motif 

database. It assumes that the co-TF motifs will enrich around a binding sites of 

ChIPed TF. Recently, several studies[18, 16] showed that if two TFs are co-associated, 

their ChIP-seq peaks (or their binding sites) are not only in close proximity with each 

other, but the relative distance of each TF with respect to the other exhibits a peak-

like distribution. We call this property the center distribution. In Chapter III, we 

examine whether the center distribution can be utilized for co-TF discovery.  

I-3.2 De Novo Motif Finding Analysis 

The second problem is de novo motif finding using ChIP data. Its main 

application is to recover the motifs for ChIPed TF and its co-TFs when the motif of 

the interested TF is not available in the known motif database. In the ChIP data, the 

ChIPed TF's motif (ChIPed TF is the TF pulled down in the ChIP experiment) prefers 

to occur in sequences with high ChIP intensity and also near the ChIP peak summits 

(thus having both position and rank preference). Hence, if we know the position 

preference and the sequence preference of the TF motifs in the input sequences, we 

can improve motif finding. However, it is an open question whether the position 

preference and the sequence preference can be treated as prior knowledge. In Chapter 
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IV, we explored an expectation-maximization method in de novo motif finding, which 

can automatically learn those preferences and provide novel finding. 

I-3.3 3D Chromosome Structure Modeling 

The third problem is building 3D chromosome structure using Hi-C data. The 

contact frequency matrix identified in Hi-C experiment gives a set of spatial distance 

constraints among different chromosome locations. Computationally, it is possible to 

embed each chromosome location in the 3D space and to satisfy all the spatial 

distance constraints indicated by Hi-C data. Many potential biological hypotheses are 

hidden when we assume that the chromosome is one dimension. However, they can 

be easily observed in the 3D space. This embedding problem can be solved naively 

using a non-convex constraint optimization method. However, such method cannot 

guarantee to find a feasible solution. In Chapter V, we proposed an elegant way to 

relax this problem as a semi-definite programming problem, which can be solved in 

polynomial time and guaranteed an optimal solution in the noise-free case and robust 

solution in the noisy case. 

I-4 Thesis Organization 

The thesis stands at the intersection of two areas, namely, computer science 

and molecular biology, and draws heavily on Bayesian statistics and optimization 

theory. Although the readers are not supposed to be the experts of these areas, general 

knowledge of basic concepts and techniques (e.g., DNA and Protein molecule, 

binomial statistics and convex optimization, etc.) is expected for the general audience 

in computational biology.  
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Three specific research problems, which are the main focus in thesis, have 

been briefly introduced in Section I-3, and each of them is presented in a separate 

chapter: motif enrichment analysis is addressed in Chapter III, followed by de novo 

motif finding problem in Chapter IV and finally chromosome 3D modeling problem 

in Chapter V. A review of the current literature within the scope of each research 

problem is given in Chapter II. Chapter III, IV and V are mostly self-contained and 

can be read separately from the rest. For the readers most interested in motif 

enrichment analysis, they are advised to read Section II-1 in Chapter II first and then 

Chapter III. For the readers interested in de novo motif finding, they are advised to 

read section II-2 in Chapter II first and then Chapter IV. For the readers interested in 

chromosome 3D modeling, they are advised to read section II-3 in Chapter 2 first and 

then Chapter V. 

Chapter VI summarizes the contribution of this thesis and discusses some 

open questions and directions for future investigation. 

Some of the material in this thesis has appeared before in my previous 

publications [135, 136, 138].  
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CHAPTER - II   Literature Review 

In this literature review, we will look at the following three fundamental 

genomic problems:(1) what are the TFs enriched in a set of regulatory sequences 

(Motif Enrichment Analysis); (2) What are the DNA binding motifs for a set of 

interested TFs (De Novo Motif Finding); (3) How do the chromosomes fold in 3D 

(chromosome 3D modeling). These problems are still unresolved even though many 

methods have been developed. Recently, novel experimental methodologies such as 

ChIP-chip ChIP-seq, ChIA-PET and Hi-C have been introduced. They provide 

unprecedented power for researchers to answer these fundamental problems. 

II-1 Motif Enrichment Analysis  

Transcription factors (TFs) will bind to specific DNA sequence pattern on the 

regulatory sequences of the targeted genes and regulate the expression of those genes. 

One basic question in bioinformatics is, given a set of regulatory sequences (e.g., 

promoters of a set of genes), to find TFs that bind on those sequences. If TF binding 

motifs are known, we can get the answer for this problem using motif enrichment 

analysis. Motif enrichment analysis is to determine whether the regulatory sequences 

have significantly higher than expected occurrences for a certain known DNA-

binding motif. Such a motif is said to be "enriched" in that set of regulatory sequences. 

The TFs or microRNAs whose motifs are enriched in that set of regulatory sequences 

are candidate transcriptional regulators for some or all of the corresponding targeted 

genes.  
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II-1.1 General Method 

Given a set of DNA sequences, motif enrichment analysis aims to identify 

over-represented known motifs in those sequences. The known motifs usually come 

from some public databases of TF motifs such as JASPAR [105] and Transfac [85].  

When motif enrichment analysis is performed, we usually expect that input 

sequences enrich with binding sites of the same TF. Generally, such a set of input 

sequences can be a set of promoter sequences of co-regulated genes identified by 

expression microarray data or binding regions of certain TF identified using ChIP 

experiment data. Then, there are two stages in the analysis (see Figure II-1). The first 

stage is called "motif scanning". Each known motif in a database will be used to scan 

along the whole input sequences (and background sequences if provided) to determine 

their occurrences. Based on the motif model (usually PWM), the motif scanning 

program need to compute the matching scores for the tested motif and all substrings 

in the input sequences. If the matching score is higher than some user-defined 

threshold, the matched site is considered as one motif occurrence. The earliest 

developed motif scanning programs [20, 93] computed the matching score site by site 

and then filtered out the sites with the scores below given cut-off. However, this type 

of methods is considered to be slow since they need to scan the input sequences N 

times if we have N candidate motif models. To address the efficiency problem, some 

sophisticate data structures (e.g., Hash Table [108], suffix tree [68])are used to index 

the original sequences. Instead of computing score for each site, they usually compute 

the matching scores for the k-mers appearing in the original sequences. Because the 

size of k-mers is usually much smaller than size of original sequences, the running 

time is improved. 



21 

 

In the second stage, different statistics can be applied to test whether the 

occurrences of the given known motif in the input sequences are significantly 

correlated with the signal labeled for the sequences or enriched under some null 

hypothesis (background model). The common types of statistics in motif enrichment 

analysis, are the Fisher Exact Test[54], the multi-hypergeometric test [29], the 

binomial test, the rank-sum test [109, 5], Clover[35] and Spearman's rank 

correlation[32]. Almost all these types of enrichment analysis require a background 

model or a set of background sequences. Hence, their power is limited to whether user 

can select the correct background. 

Some programs are developed for motif enrichment analysis. ConTra[50], 

PASTAA[98] and oPOSSUM[48] can find the enriched known motifs in the 

promoters of the user input genes. Apart from considering statistical enrichment, they 

also check whether the matching sites are conserved in cross-species or not. This 

strategy is particularly useful when the number of input sequences is too small to 

make a statistically significant conclusion. As more and more functional inter-genic 

regions are identified, CEAS[57]  and CORE_TF[47] are proposed and they allow 

user to input a list of genomic regions instead of only promoter regions. Although 

different programs compute different enrichment statistics, Robert C McLeay[86] 

gave a comprehensive examination for different enrichment statistics using a unified 

framework, and pointed out how to partition the data into positive set (regulatory 

sequences in interest) and negative set (background sequences), which would affect 

the result of motif enrichment analysis. Other than background, there are other factors 

affecting the motif enrichment analysis, such as motif matching threshold. A 
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database) with the given ChIPed TF motif by assuming they have preferred distance 

when forming TF complexes. However, this assumption may not be valid. On one 

hand, it is questionable whether there exists a fix distance between co-TF and ChIPed 

TF, since people believe most co-TFs can interact with the main TF when they are 

close enough. On the other hand, it failed to consider the case that ChIP-seq peaks 

may also present the indirect binding sites of ChIPed TF and there may be no ChIPed 

TF motif sites but the co-TF motif in those regions. 

Table II-1 Summary of Different Motif Enrichment Analysis Programs. 
(*)MT: Motif Matching Threshold; LEN: length of genomic region 
to be considered; CON: conservation information among species; ST: 
scoring type; PM: Primary Motif PWM; 

Program	
Name	

Genomic	
Regions	

ChIP	 Peak	
Info	

Background Web Additional	Input*

ConTra	 Promoter	 NA Need yes MT,LEN,CON
oPOSSUM	 Promoter	 NA Need yes MT,LEN,CON
PASTAA	 Promoter	 NA Need yes LEN	
CEAS	 Genome	Wide	 NA Need yes LEN	

CORE_TF	 Genome	Wide	 NA Need yes MT,LEN	
AME	 Genome	Wide	 ChIP	Intensity Optional no ST,MT,LEN
SpaMo	 Genome	Wide	 Peak	Location No yes PM,LEN	

 

To use the existing motif enrichment analysis in ChIP-seq data, apart from 

ChIP-seq peak locations, people need to input some additional information (the 6th 

column in Table II-1) before running the programs. Some information like the 

matching threshold, the length of interested regions and the choice of background 

regions can affect the final result of motif enrichment analysis, especially when the 

aim is to identify the potential co-TFs. Here, I summarize three limitations of existing 

methods using ChIP-seq data as follow: 

The first limitation is to decide the distance between the ChIP peak summit 

and the motifs. The input sequences for motif enrichment analysis are usually 

extracted from regions around the ChIP peak summits. Different co-TF motifs may 
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have different distance distribution. If we scan motifs using a shorter or longer region 

around the ChIP peak summit, it may weaken the power of the enrichment statistics. 

The second limitation is to compute the known motif occurrence. The DNA 

motif is usually modeled as a position weighted matrix (PWM) in the motif database. 

When we say a motif matches a sequence, it is usually referred to an approximate 

match (i.e., high PWM score). Hence, the cut-off for PWM score is usually needed 

and affects the follow-up enrichment analysis. 

The last limitation may be the most serious problem. Almost all types of 

current enrichment analysis require a background model or a set of background 

sequences. Although AME[86] programs can compute the correlation between motif 

occurrences and the ChIP Intensity without any additional background, this method is 

only suitable to compute the ChIPed TF motif enrichment but not for computing the 

co-TF motif enrichment. The correct background model or background sequences are 

not easy to choose. For example, choosing all promoters sequences as background 

when analyzing mammal genome, the enrichment analysis may bias to AT-rich motif 

since most mammal promoters are CG-rich. 

II-2 De Novo Motif Finding  

Given a set of DNA sequences bound by the same TF, there are two ways to 

identify the binding motif for that TF. One is to search the know motif database to see 

which known motif is most enriched in the given set of sequences, which is stated in 

previous section. But this approach assumes the binding motif of the TF is known, 

which may not be true. The other approach is called de novo motif finding, which 
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tries to identify the recurring patterns (motifs) in the given set of sequences. This 

section reviews existing methods related to de novo motif finding. 

II-2.1 General Method 

De novo motif finding algorithm can generally be classified into three types 

based on their motif models: consensus, PWM and other forms. 

For consensus based motif finding algorithms, the problem can be formalized 

as follows: Given a set of sequences, we aim to find a length l (6-12bp for TFBS) 

pattern so that the number of k-mismatch occurrences (where k is usually 1 or 2) of 

the motif is significantly over-represented in the input sequences. Exhaustive search 

for all 4l candidate patterns is considered to be time-consuming. Different indexing 

structures of the input sequences have been proposed in this class of algorithm. Using 

indexing data structures  (e.g. suffix tree[92], suffix array[68], and hash table[95]), it 

can efficiently identify short consensus motifs. Weeder[92], Trawler[30], YMF[111], 

DREME [4] are a few examples representing this line of approach. 

Comparing to consensus, position weighted matrix (PWM,[110]) provides 

more powerful and flexible description of the binding specificity of a TF, and so it has 

been the most preferred way in motif modeling. The definition of PWM can be 

referred to Section I.1.1.2 in Chapter I. The de novo motif finding problem is to find a 

single or a set of PWMs, which can discriminate the input sequences and the 

background. Almost all the combinatorial optimization techniques (i.e. greedy[108], 

local search[6], stochastic search[99, 126] and so on) have been tried and applied over 

the years. Among all, Expectation-Maximization (EM)[6] and Gibbs sampling [99] 

are the two most common approaches to find a PWM but they usually require long 

running time. MEME algorithm [5, 81] models the motif finding problem as learning 
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the parameters for a mixture model.  It assumes every length-l substring in the input 

sequences is generated from either a motif model  (i.e., PWM) or a background 

model B (kth-order markov model). To learn the parameters  and B of a mixture 

model, EM algorithm is applied. The EM algorithm iterates two steps: E-step and M-

step. In E-step, given the current best parameters  and B, the likelihood for all l-

mers in each input sequence are computed, and in M-step, MEME builds the new 

parameters  and B using all l-mers weighted by the corresponding likelihood value. 

Different types of mixture model are provided in MEME, such as ZOO (zero or one 

occurrence per sequence), OOPS (only one occurrence per sequence) and TCM 

(general two component mixture model), in order to fit the prior expected occurrence 

per input sequence. Since this EM framework is very flexible, several MEME variants 

[81, 96, 43] are developed to speed up the EM process by parallel computing or data 

indexing, or to utilize additional information. Another related optimization approach 

is called Gibbs sampling, which is a stochastic counterpart of the EM. It has been 

implemented in several tools such as GibbsDNA[70], AlignACE[100], 

MotifSampler[117], BioProspector[79], ANN-spec[130], etc.  

Other types of motif models are also proposed. Instead of assuming each 

position of a motif is independent like PWM, more complex motif models considering 

position dependency are developed. Bayesian network approach were used in[7, 11],  

and PWM was extended to di/tri nucleotide matrix to model the dependency of 

adjacent positions in a motif [141, 53]. Some other approaches use graph-based 

representation[34]. They represent each k-mer in the input sequences as a node in the 

graph and two k-mers are connected if they are similar. Such that a motif can be 

derived from the maximum density subgraphs. Although these complex 
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representations can capture inter-position dependency for the binding sites, they suffer 

seriously over-fitting and time-consuming problems. 

II-2.2 Method in ChIP Era 

For the general motif finding algorithms, they only examine the over-

representation of sequence patterns, and often miss some real motifs and generate 

many false positives. Fortunately, additional information for the input sequences is 

found to be helpful to improve motif finding. As ChIP experiment is becoming a 

popular way to identify transcription factor binding sites, many new algorithms have 

been developed and optimized for ChIP data. 

Similar to motif enrichment analysis, the input sequences for motif finding of 

ChIP data, are usually extracted from the regions around ChIP peak summit, and 

further sorted by the ChIP intensity (from high to low). Basically, the motif finding 

algorithm optimized for ChIP data is based on two assumptions: One is that the real 

ChIPed TF motif is more enriched in the regions (input sequences) with higher ChIP 

intensity. For example, MDscan [79] only considers high-ranking sequences to 

generate its initial candidate motifs. DRIM[28] searches the motif whose occurrences 

correlate with the ChIP intensity. The ChIPed TF motif is more enriched in positions 

close to the peak summits than the positions far away from the peak summits. Many 

programs allow users to specify the position prior distribution of motifs with respect 

to the peak summits [6, 92, 4, 67, 52]. Normal distribution or student-distribution is 

common used in modeling the motif position with respect to the ChIP peak summit. 

However, the prior knowledge of ChIP data may only be true for the ChIPed 

TF motif, but may not for co-TF motifs. For example, co-TF motif may be a bit far 

away from the ChIP peak summits, which have already been occupied by ChIPed TF. 
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Also, it is possible that co-TF motif enriches in low ChIP intensity regions, which 

ChIPed TF may just indirectly bind to those regions through co-TF.  

II-3 3D Chromosome Structure Modeling 

In the previous sections, genome is usually assumed to be a set of linear 

chromosomes. This model, however, is oversimplified and it cannot explain the 

interactions among different genomic elements (e.g., enhancer, promoter, and gene). 

Chromosome actually forms a 3D structure within the nucleus and its spatial 

organization affects many chromosomal mechanisms such as gene regulation, DNA 

replication, epigenetic modification and maintenance of genome stability[23, 33, 42, 

88, 87]. For example, the three-dimensional chromatin interactions have been shown 

to bring distal transcription factor binding sites into close spatial proximity to gene 

promoters [15]. ChIA-PET and Hi-C data give us the opportunity for global analysis 

of three-dimensional chromatin interactions in high-resolution and whole-genome 

manner. Generally, there are three popular ways to analyze interaction data: pair-

based analysis, heatmap-based analysis and 3D structure modeling. The first two are 

briefly introduced in the following two sections, and this thesis focuses on 3D 

structure modeling, which is reviewed in the last section. 

II-3.1 Pair based Analysis  

Given a set of interacting loci pairs, people can easily overlap them with the 

known genome annotations. For example, we can annotate a set of pairs as 

"Promoter-Promoter" pairs, if the two ends of the pairs both overlap the promoter 

regions in the genome. Using this kind of annotation analysis,Li, et al. [74] shows that 
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visualize the Hi-C data, it is also called a Hi-C heatmap (Figure II-3(a)).  Figure II-3 

shows an example for Hi-C heatmap analysis for mouse chromosome 17. A genomic 

region is defined as a topological domain if the interactions inside that region are 

much more frequent than then interaction between that region and other regions. Thus, 

based on the Hi-C heatmap, the topological domains can be computational detected as 

the hot square regions on the heatmap (Figure II-3(a)). Moreover, Principle 

component analysis (PCA,[55]) is also a common analysis for the Hi-C heatmap. 

Figure II-3(b) demonstrates that the first principle component generated from the 

given contact frequency matrix are highly correlate with the H3K4me2 histone signal 

and the gene density.  

II-3.3 3D Structure Modeling 

The final goal of the interaction data is to understand the higher order 

architecture of genomic domains and entire genomes at unprecedented resolution. 

Therefore, given the interaction data, one interesting bioinformatics problem is to 

infer the 3D structure of the chromosomes. 

Some progress has been made in reconstructing 3D structure of chromosomes 

using newly generated interaction data (4C, 5C, Hi-C and TCC), and most of them 

model this problem as a constraint optimization problem mathematically. Concretely, 

interaction data imposes a set of spatial distance constraints of the interacting points. 

The linear genomic distance and other prior knowledge provide additional spatial 

constraints, which enable us to model the problem as constraint optimization problem. 

The optimization problem resolves the three-dimension coordinates for each genomic 

location in the constraints, such that the linear genomic locations are mapped to the 
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three-dimension space. The general workflow of chromosome 3D modeling 

containing three components, and is shown in Figure II-4. 

 

Figure II-3: An example of Hi-C heatmap analysis on mouse chromosome 
17 (derived from [46]). (a) Hi-C heatmap represents the contact 
frequencies for any pair of loci on chr17:10 Mb-90Mb. Hotter colors 
indicate higher contact frequency for given two loci. Topological 
domain can be defined as the hot sub-region in the heatmap (b) PC1 
(middle track) presents the first principle component of PCA analysis 
of the Hi-C heatmap above. It shows that the PC1 signal is highly 
correlated with histone modification (H3K4me2, red) and gene 
density (purple). 
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5C experiments to spatial distances by inverting the Z-score of contact frequencies 

and modeled the 3D structure modeling problem as finding an equilibrium state of a 

set of particles using Integrated Modeling Platform (IMP)[103]. With different 

optimization and searching strategy from [27], IMP simulates particles in many 

independent Monte Carlo rounds and local searching like simulated annealing is 

performed at each round to reduce the number of violated constraints. Finally, it 

ensembles the selected good particle simulations (with low number of violations) by 

rigid-body superposition and clustering.  

More recently, two Markov-chain Monte Carlo (MCMC)[40] sampling-based 

methods, MCMC5C[101] and BACH[51], were proposed to infer the 3D structures by 

maximizing the likelihood of the observed Hi-C data. Both methods assume that the 

expected contact frequencies and spatial distances among loci follow the power law 

distribution. MCMC5C models the observed frequency with Gaussian distribution 

with respect to the expected frequency. BACH models the observed frequency with 

Poisson distribution with respect to the expected frequency and takes the enzyme 

cutting site bias (e.g., CG content, mappability, fragment length) into account. 

Although some works have been done, these 3D modeling methods have 

common crucial defeats. (1) Existing methods infer the 3D chromosomal structure by 

heuristics and there is no guarantee that their final outputted 3D model satisfies all the 

imposed constraints and the result of local search heavily depends on the starting 

point. Even in the noise-free case, they cannot recover the 100 percent correct 

structure. (2) The conversion between the contact frequency and spatial distance has 

some parameters. Existing methods, except BACH, assume that those parameters are 
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fixed or known beforehand. However, it is not true. The parameters are actually 

different for different datasets and it is important to have a method to estimate them. 

Besides, high-throughput sequencing data is derived from a population of cells 

instead of single cell, and people argue that the predicted chromosome structure based 

on the high-throughput sequencing data cannot represent the chromosome structure in 

the individual cell. Hence, population based approach is introduced by Kalhor, et al. 

[61], which claims that the Hi-C (or TCC) data can be better fitted by learning a set of 

3D structures (since the sample has multiple cells where the chromatin structures in 

different cells are different) instead of one single structure. Only based on a small set 

of nuclear landmarks and molecular volume constraints, Tjong, et al. [119] further 

showed that the population simulation result can reproduce a contact frequency matrix 

highly correlated with the contact frequency matrix derived from 4C experiment in 

yeast genome. This result points out that the dominating factor of global 

chromosomes organization is the physical property of chromosome and nuclear 

instead of chromatin-bound proteins. 

II-4 Review Summary 

Based on the above literature review, different research gaps for three 

bioinformatics problems related protein-DNA interaction can be summarized below: 

For motif enrichment analysis using ChIP-seq data, the extracted window size 

around ChIP peak summit and the cut-off of motif scanning will affect the final result. 

It is debatable whether the users can choose the correct parameters by themselves. 

Moreover, almost all types of current enrichment analysis require a background 
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model or a set of background sequences. The correct background model or 

background sequences are also not easy to choose.  

For de novo motif finding using ChIP-seq data, the prior knowledge used by 

existing program may only be true for the ChIPed TF motif, but may not be true for 

co-TF motifs. Moreover, different TFs may have different position preference and 

sequence rank preference. Hence, it is impossible to ask the user to provide one prior 

distribution to satisfy different potential co-TFs the user is interested in.  

For 3D chromosome structure modeling using Hi-C data, most existing 

methods assume that the conversion function from contact frequency to spatial 

distance is known. However, it is theoretically problematic for this assumption. 

Moreover, none of the existing methods can guarantee recovering the correct 3D 

structure even in the error-free case, since all of them are based on local search or 

random sampling. 

Accordingly, the main objectives of this study were to propose three practical 

algorithms to fill the gaps listed above, and they were: 

 To develop a novel motif enrichment analysis method for ChIP-seq 

called CENTDIST. CENTDIST does not require the input of any user-

specific parameters and background information. Instead, CENTDIST 

automatically determines the best set of parameters and ranks co-TF 

motifs based on their distribution around ChIP-seq peaks.  

 To propose a novel motif finding algorithm called SEME, which uses 

unsupervised mixture model learning to learn the motif pattern (PWM), 

position preference and sequence rank preference at the same time, 

instead of asking users to provide them as inputs. It does not assume 
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the presence of both preferences but automatically detects them during 

the motif refinement process by statistical significance testing. 

 To propose an elegant semi-definite programming (SDP) formulation 

to solve the 3D chromosome modeling problem. It is also important 

that the algorithm can guarantee to recover correct structure in the 

noise-free case and automatically choose the correct way to convert 

contact frequency to the spatial distance. 

 

The thesis may have significant impact on the study of protein-DNA 

interaction at both the sequence level and the structure level. They also may open a 

door for people to better understand the potential of the new generation data like 

ChIP-seq and Hi-C. Nevertheless, this study assumes the reference genome is 

generally correct and the structure variant is not considered here. It is a valid 

assumption when the data are from normal cells. For cancer cells, there may be 

genome rearrangements for them, and most of problems can only be solved 

approximately in this scenario by assuming that the reference genome is unchanged.  
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CHAPTER - III     CENTDIST: Motif Enrichment Analysis for 

ChIP-seq data 

ChIP-seq is one of most important technology advance to study Protein-DNA 

interaction in vivo. This chapter describes CENTDIST, a motif enrichment analysis 

method to identify co-TF motifs for ChIP-seq data. CENTDIST takes advantage of 

the ChIP-seq property to improve the accuracy. This is a joint work with Chang 

Cheng Wei. Parts of the material covered in this chapter were originally published in 

[135].  

III-1 Introduction 

As mentioned in the review in Chapter-II Section II-1，the success of motif 

enrichment analysis highly depends on several aspects: 1. The background model 

(which represents the non-binding sites), 2. The enriched region size (which models 

the range between the co-TF and the ChIP peak summit), and 3. The motif/PWM 

score cut-off (which determines if a site can be matched the given motif/PWM or not). 

Moreover, different TFs may satisfy different parameters, and existing methods can 

only assign one set of parameters, which reduces the accuracy and sensitivity of 

existing methods. Therefore, it would be ideal to have a method that automatically 

determines the background and estimates the enriched region size as well as the PWM 

score cut-off for every candidate motif. The motif enrichment analysis problem for 

ChIP-seq data is defined in Section III-2. A new scoring measure called center 

distribution score is introduced in Section III-3, which is based on two histograms of 

motif distribution around the ChIP-seq peaks. A user-friendly and accurate motif 
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enrichment analysis tool CENTDIST is developed in Section III-4 that utilizes the 

center distribution score to detect co-TF motifs associated with the given ChIP-seq 

data. The performance of CENTDIST against two enrichment-based programs on 13 

ChIP-seq datasets generated from mouse embryonic stem cells [16] is reported in 

Section III-5, which showed that CENTDIST was the best performer among the three 

programs and also provides useful additional information that helps users select the 

best co-TF candidates.  

III-2 Problem Definition 

Recent advances in ChIP-seq allow researchers to identify binding sites of the 

selected TF (ChIPed TF) in genome-wide scale. One open challenge is to identify the 

co-TFs of the ChIPed TF given a list of ChIP-seq peaks. Assuming the binding motifs 

of candidate co-TFs are known, one approach to this challenge is motif enrichment 

analysis (MEA). The motif enrichment analysis problem can be defined as following:  

Given a set of ChIP-seq peak summit locations P={P1,P2,…,Pn}, a list of motif 

patterns { 	Ɵଵ, 	Ɵଶ, … , 	Ɵ௠ } of the candidate co-TFs, and the reference genome 

sequence G. The problem is to compute the enrichment score for each motif pattern	Ɵ 

given P and G, so that the motif patterns of true co-TFs get higher score than other 

motif patterns. Then, all the candidate co-TFs are sorted from high to low according 

to their motif enrichment scores. Finally, the top rank candidates are classified as 

potential co-TF candidates and subsequently validated experimentally.  

From the problem definition, we know that the key issue is how to design a 

good motif enrichment score. In the next section, a parameter-free motif enrichment 

score called center distribution score will be introduced. 
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III-3 Center Distribution Score 

For each motif, a center distribution score is designed for ChIP-seq data. It 

includes two goodness measures. The first measure is called the frequency score, 

which is computed from the distribution of the motif occurrences with respect to the 

peak summit (frequency graph, Figure III-1(a)) under different enriched region size 

and PWM score cut-offs. An optimal set of parameters (enriched region size, PWM 

score cut-off) is also found that maximizes the frequency score (Equation (3.1)) given 

the ChIP-seq peaks. 

 

Figure III-1. Frequency and velocity analyses of the AP4 motif. (a) The 
frequency graph of the AP4 motif in an AR ChIP-seq dataset, (b) 
The velocity graph of the AR motif in an AR ChIP-seq dataset. In 
each graph, the dotted line partitions the distribution into the 
enriched region (left region) and the non-enriched region. The dotted 
line is determined by maximizing the frequency difference between 
the two regions. 

The second measure is called the velocity score, which aims to correct the 

CG/AT bias in the peak regions. This score is derived from the velocity graph (Figure 

III-1(b)), i.e., the slope of the frequency graph. The final center distribution score for 

the given motif is the summation of the frequency score and the velocity score.  In 

Section III-3.1, the details of generation for frequency graph and velocity graph are 

introduced. Next, the frequency score and the velocity score are described in Section 

(a) (b) 
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III-3.2 and III-3.3 respectively. Finally, Section III-3.4 gives the formal definition of 

center distribution score. 

III-3.1  Generation of the frequency and velocity graphs 

Firstly, the DNA sequences are extracted from the 1000 bp region of every 

peak in the ChIP-seq data. For each PWM motif Ɵ, we scanned all the extracted 

sequences and identified all occurrences whose PWM scores are above certain PWM 

score cutoff t. (PWM score is defined in Equation (1.1) in Chapter I) 

From the list of occurrences of the motif		Ɵ with matching scores higher than 

cut-off t, the frequency graph is constructed as follows. We partitioned every 

extracted sequence into 100 bins with respect to the distance to the peak summit, 

where each bin is of size 20bp. For i=1, 2, …, 50, let ܾ௜ be the number of occurrences 

of Ɵ in the range [-20i, -20i+20] and [20i-20, 20i] of all extracted sequences. The 

frequency graph presents the histogram of ܾ௜ for i=1, 2, …, 50 (Figure III-1(a)). 

The velocity graph was obtained from the frequency graph. For every i, the 

velocity of enrichment is defined to be 	ܾ௜
ᇱ = ሺܾ௜ െ ܾ௜ା௪ሻ/ݓ, where w is a parameter 

to adjust the smoothness. In our implementation, we set w=5. The velocity graph 

presents the histogram of ܾ௜
ᇱ for i=1,2,…,50-w. 

Given the motif enriched region (determined based on frequency graph, red 

region in Figure III-1(a)), the velocity is classified into two types as shown in Figure 

III-1(b). The type I velocity is colored red, including positive velocity inside the motif 

enriched region, and negative velocity outside the motif enriched region. The type II 

velocity is colored green, which includes negative velocity inside the motif enriched 

region, and positive velocity outside the motif enriched region. The motif enrichment 
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of velocity is computed by comparing the amount of these two types of velocity and 

will be introduced in Section III-3.3. 

III-3.2   Z-score for frequency graph 

Given a frequency histogram for a motif Ɵ under a PWM score cut-off t, the 

null hypothesis is that the histogram satisfies the uniform distribution, while the 

alternative hypothesis is that the first d bins are enriched. Let |Ɵ|ௗ  be the total 

frequency of Ɵ in the first d bins in the histogram (i.e. ∑ ܾ௜௜ୀଵ..ௗ ) and |Ɵ| be the total 

frequency of Ɵ in all bins in the histogram. Under binomial distribution, the expected 

total frequency of Ɵ  in the first d bins is 
ௗൈ|Ɵ|	

ହ଴
 and the standard deviation 

is	ඥ|Ɵ| 	ൈ ݀ 50⁄ ൈ ሺ1 െ ݀ 50⁄ ሻ . Therefore, the frequency Z-score is 

௙ܼ௥௘௤௨௘௡௖௬,ௗሺƟ, ሻݐ ൌ
ሺ|Ɵ|ௗ െ

݀ ൈ |Ɵ|
50 ሻ

ඥ|Ɵ| ൈ ݀ 50⁄ ൈ ሺ1 െ ݀ 50⁄ ሻ
൙  (3.1) 	

 
	

The parameters include the enriched region size d and PWM score cut-off t 

will be chosen automatically for maximizing the frequency Z-score.  

As shown Figure III-1(a), AP4 is a co-TF for AR, and the motif of AP4 

(RNCAGCTG, IUPAC coding) occurs much more frequently near the center of the 

AR ChIP-seq peaks, when compared to the flanking regions. Thus, the AP4 motif 

would be considered as having a good frequency score and is a good candidate co-TF 

motif of AR. 
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III-3.3  Z-score for velocity graph 

The frequency Z-score is a good measurement for the motif enrichment 

around the ChIP-seq peaks. However, there are occasions when noise (like CG/AT 

bias) could also be imbalancely distributed around ChIP-seq peaks. Although such 

noise may be enriched, we expect it will not change dramatically near the center of 

ChIP-seq peaks compared to flanking regions. Therefore, to account for noise in the 

data, we include the velocity score. The velocity score is derived from a velocity 

graph of the co-TF motif (Figure III-1(b)), which is generated from the slope of the 

frequency graph (Figure III-1 (a)). If noise is assumed to change slowly (or linearly), 

the	ܾ௜
ᇱ have similar values inside and outside the enriched region; otherwise, it will 

change dramatically near to the peaks as compared to the flanking regions. 

Specifically, the velocity score is a Z-score, which measures if the positive velocity 

increases dramatically.  

Given a velocity histogram for a motif Ɵ under a PWM cutoff t, the null 

hypothesis is that the type I velocity and type II velocity uniformly distributed inside 

and outside the enriched region (assume enriched region is [-dൈ20bp, dൈ20bp]), 

while the alternative hypothesis is that the sum of type I velocity (represented by red 

bins) ܣ௥௘ௗ,ௗ is larger than type II velocity (represented by green bins) ܣ௚௥௘௘௡,ௗ, where 

 ௚௥௘௘௡,ௗ are the area under red bins and green bins respectively. Under theܣ ௥௘ௗ,ௗ andܣ

null hypothesis, the expected area for each color is	ሺܣ௥௘ௗ,ௗ ൅ ௚௥௘௘௡,ௗሻܣ ൈ 0.5, and the 

standard deviation is ඥሺܣ௥௘ௗ,ௗ ൅ ௚௥௘௘௡,ௗሻܣ ൈ 0.5 ൈ ሺ1 െ 0.5ሻ   . Therefore, the Z-

score of velocity graph with d enriched bins is 
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ܼ௩௘௟௢௖௜௧௬,ௗሺƟ, ሻݐ ൌ
ሺܣ௥௘ௗ,ௗ െ ሺܣ௥௘ௗ,ௗ ൅ ௚௥௘௘௡,ௗሻܣ ൈ 0.5ሻ

ඥሺܣ௥௘ௗ,ௗ ൅ ௚௥௘௘௡,ௗሻܣ ൈ 0.5 ൈ ሺ1 െ 0.5ሻ

																																						 ൌ
൫ܣ௥௘ௗ,ௗ െ ௚௥௘௘௡,ௗ൯ܣ

ඥሺܣ௥௘ௗ,ௗ ൅ ௚௥௘௘௡,ௗሻܣ
൘ 						

 

(3.2) 	

In short, by taking into consideration of the velocity distribution of motif 

occurrences (velocity graph), it will correct the frequency score biases due to CG (or 

AT) variation in the regions around the ChIP-seq peaks. For example, we observed a 

dramatic positive change in velocity (or slope) for the AP4 motif in the enriched 

region of the AR ChIP-seq peaks while the overall velocity remained small in the 

flanking region (Figure III-1(b)). In such instance, the AP4 motif would be classified 

as having a good velocity score.  

III-3.4    Center distribution score for a motif distribution  

The final scoring function used to assess motif distribution is called the center 

distribution score, which is the sum of two components: frequency score and velocity 

score.  For a motif	Ɵ, the center distribution score ߬ሺƟሻ is defined as the sum of Z-

scores for both the frequency distribution and the velocity distribution. Thus, we have: 

߬ሺƟሻ ൌ ௙ܼ௥௘௤௨௘௡௖௬,ௗሺƟ, tሻ ൅ ܼ௩௘௟௢௖௜௧௬,ௗሺƟ, tሻ 
(3.3) 	

where	the	parameters	݀	ܽ݊݀	ݐ	maximize	 ௙ܼ௥௘௤௨௘௡௖௬,ௗሺƟ, tሻ. 

To assess the probability significance of the center distribution score, we compute the 

empirical p-value by assuming majority of the known motifs are not the co-TF motifs 

of the given ChIPed TF. The p-value of the center distribution score is computed as 

the tail probability of the given score assuming it comes from the normal distribution 

which is fitted using the scores of the lowest rank 80% of all motifs in 

TRANSFAC[85] database.  
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III-4 Implementation of CENTDIST 

CENTDIST is a motif enrichment analysis (MEA) tool for ChIP-seq data, 

which requires minimal input from users. Unlike existing MEA methods, CENTDIST 

does not require any user-specific parameters. CENTDIST can automatically optimize 

the parameters like the enriched region size and the PWM score cut-off and computes 

the enrichment against the flanking regions. As a web-based MEA application, 

CENTDIST is fast, user-friendly, and capable of handling datasets with over a million 

ChIP-seq peaks.  

Table III-1 The pseudo code of CENTDIST Algorithm.  

Algorithm CENTDIST 

INPUT: ChIP-seq peak locations P, Reference Genome G, Extracting Range L  

Load a list of PWMs from TRANSFAC Database. 

From the genome G, extract the list of sequences S from the regions [-L/2,+L/2] of P. 

FOR each PWM Ɵ in the TRANSFAC database 

         Check each PWM threshold t from low to high and enriched region size d 

         Find ሺ࢞ࢇ࢓ݐ, ݀௠௔௫ሻ ൌ
࢞ࢇ࢓
ݐ 	

࢞ࢇ࢓
20 ൑ ݀ ൑ 	4/ܮ ௙ܼ௥௘௤௨௘௡௖௬,ௗሺƟ,  ሻݐ

         Compute the center distribution score	߬ሺƟሻ ൌ ௙ܼ௥௘௤௨௘௡௖௬,ௗ೘ೌೣ
ሺƟ, ሻ࢞ࢇ࢓ݐ ൅ ܼ୴ୣ୪୭ୡ୧୲୷,ௗ೘ೌೣ

ሺƟ,  .ሻ࢞ࢇ࢓ݐ

ENDFOR 

Return the list of PWMs in decreasing order of center distribution scores. 

 

The input of CENTDIST is a set of genomic locations representing ChIP-seq 

peaks (chromosome-peak summit position) and a list of candidate PWM motifs 

(provided by users or obtained from the TRANSFAC[85] or JASPAR[105] databases) 

representing co-TF binding sites. CENTDIST first extracts the sequences from the 

regions ±1000 bp around the ChIP-seq peak locations. Next, CENTDIST scans the 
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sequences, obtains the initial occurrences of each PWM motif and searches the best 

enriched region size and PWM score cut-off to maximize the frequency Z-score for 

different frequency graphs. Then, CENTDIST computes the velocity Z-score using 

the velocity graph under the best enriched region size and PWM score cut-off. The 

center distribution score of each PWM motif is calculated as the sum of the two Z-

scores. Finally, CENTDIST outputs the list of TF families ranked by the center 

distribution scores. The general algorithm of CENTDIST is shown in Table III-1. 

Figure III-2 demonstrates how CENTDIST can promote true positive and 

repress false positive. To demonstrate the former, Figure III-2 (a) presents the motif 

occurrence of V$AR_02 around AR ChIP-seq peaks. The enrichment score increased 

when we use flanking regions as background instead of promoter or random region. 

The V$AR_02 motif enrichment progressively increases by identifying the optimal 

enriched region size, selecting the optimal PWM cut-off, and finally considering the 

velocity score. In contract, to demonstrate the false positive repression, we examined 

the CG-rich yeast TF motif (F$ADR1_01) in Pol2 (RNA polymerase II) ChIP-seq 

peaks in human K562 cells[94]. This CG-rich motif would have been determined 

incorrectly to be enriched around the Pol2 peak using traditional approaches due to 

CpG islands (i.e., regions known to contain many CG repeats) around Pol2 binding 

sites. As shown in Figure III-2(b), this motif has a modest center distribution score 

based on only the frequency score, but the final center distribution score was 

significantly lower after considering the velocity score.  
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Figure III-2: Demonstration of CENTDIST Capability. (a) CENTDIST 
promotes the enrichment of AR motif in the AR ChIP-seq dataset 
(LNCaP cell line). The blue bar and red bar show the Z-scores of the 
AR motif computed using the traditional enrichment method under 
the default enriched region size of 200bp and the default PWM cut-
off (1.32, FDR=0.0001) using random genome region 
background(blue) or promoter background(red) respectively. The 
green bars show the Z-score of the AR motif computed by 
CENTDIST after it optimized different parameters. (b) CENTDIST 
represses the enrichment of the false CG rich motif in the Pol2 ChIP-
seq dataset. All Z-scores are computed exactly as in (a). Since 
CENTDIST considers the velocity graph of the false CG rich motif, 
the combined Z-score of CENTDIST finally drops and is 
significantly lower than that computed by the traditional enrichment 
based method. As a side note, this result also shows that random 
background (blue bar) can produce quite different results compared 
to promoter background(red bar), which highlights the difficulty of 
choosing a correct background in existing enrichment based methods. 

  Recently, 13 TF ChIP-seq maps were generated from mouse embryonic stem 

(ES) cells [16]. These 13 TFs were shown to cluster into two core transcriptional 

modules called MTLs (multiple transcription factor-binding loci), which can be 

highlighted (warm color) in Supp Table 1 by overlapping their ChIP-seq peaks. 

Because numerous co-TF relationships were discovered from the 13 factors, we 

decided to use these datasets for our comparisons of the three MEA programs. Only 

genomic locations of the ChIP-seq peaks and motifs from the TRANSFAC database 

were entered into CENTDIST. For CORE_TF and CEAS, input sequences with 

different enriched region size (100bp, 200bp and 500bp) around the summit of the 

ChIP-seq peaks were extracted and different background settings were tested. The 

results from each program were compared against a table containing the co-TF motifs 

for each of the 13 ES TFs (Supp Table 2). 

We assessed the performance of each program by the area under the receiver 

operating characteristic (ROC) curve (AUC)[45], which is computed as follow: For 

each ChIP-seq dataset, all tested programs ranked the same list of vertebrate 



48 

 

TRANSFAC motif families (Supp Table 3). With the pre-defined list of true co-TFs 

as a positive set (Supp Table 2) and the other motif families in the TRANSFAC as 

negative set, we then generate the ROC curve using the ranking list of the motif 

families reported by each program. Finally, the area under the ROC curve (AUC) was 

calculated using the trapezoid rule. The value of AUC ranges from 0 to 1 (a score of 

0.5 is equivalent to random guessing).  

(a)

(b)
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Figure III-3: Co-TF motif analysis of 13 Embryonic Stem Cell TFs using 
CENTDIST, CEAS, and CORE_TF. (a) A comparison of co-TF 
motif analysis results using CENTDIST, CORE_TF and CEAS on 
13 different ChIP-seq datasets from ES cell. The best setting in each 
dataset for CORE_TF and CEAS were used for comparison. 
CENTDIST*=CENTDIST algorithm without the inclusion of 
velocity score. (b) Heat map representing the analysis of 11 ES cell 
core TFs motif enrichment in 13 ChIP-seq experiments. Every row 
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corresponds to a PWM motif while every column corresponds to a 
ChIP-seq dataset. The color of each entry presents the center 
distribution score (in log scale) of the motifs with respect to the 
peaks of the ChIP-seq dataset. The figure showed  that  the  enhancer  
motifs  are  enriched  in  the enhancer ChIP-seq datasets  (top  left 
gene  rectangle) while  the promoter motifs are enriched  in  the 
promoter ChIP-seq datasets (bottom right green rectangle). 

Based on AUC scores, our results showed that CENTDIST significantly 

outperformed the best result from both CEAS and CORE_TF (Figure III-3(a) and 

Table III-2). We noticed that for CEAS and CORE_TF, different configurations led to 

different performances. This highlights the difficulty in selecting the appropriate 

parameters for co-TF motif analysis since no single set of parameters can be 

considered the best for each ChIP-seq dataset. CENTDIST, which requires neither 

background nor other parameter settings, performed significantly better (average 

AUC score=0.905) than the best configuration of CEAS (average AUC score=0.740) 

or CORE_TF (average AUC score=0.84084). Furthermore, we compared the results 

of CENTDIST with the results ranked by frequency score only (denoted as 

CENTDIST* in Figure III-3(a) and Table III-2). Although the AUC score changes 

may not very significant, we found that CENTDIST was consistently better than 

CENTDIST* in 11 out of 13 experiments and there is no parameter tuning cross these 

testing datasets, which indicates the velocity score can improve the motif ranking 

result. 

Next, we examined the center distribution scores of 11 ES TF motifs (Smad1 

and p300 do not have known motif) across 13 TF ChIP-seq datasets (Figure III-3(b)). 

From this analysis, we clearly saw two functional groups: the enhancer motifs (Oct4, 

Sox2, Nanog and Stat3) have good center distribution score in the enhancer TF ChIP-

seq datasets (top left green box), while the promoter motifs (cMyc, nMyc, Zfx, and 
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E2f1) have good center distribution score in the promoter TF ChIP-seq datasets 

(bottom right green box) (Figure III-3(b)). Their frequency graphs are shown in 

Figure III-4. These results are in agreement with the previous findings [16]. Moreover, 

enhancer motifs did not show good center distribution in the promoter ChIP-seq 

datasets, and vice versa. The only exception was Stat3, which was classified as an 

enhancer TF but had good center distribution at the promoter. However, a recent 

report showed that Stat3 was also enriched in the promoter regions of ES cells, 

suggesting Stat3 can be located at both promoter and enhancer regions[64]. In short, 

the results from this large-scale comparison demonstrate that center distribution is a 

good statistical model for predicting the occurrences of co-TF motifs from ChIP-seq 

data. 

Table III-2: Comparison of CENTDIST, CEAS, and CORE_TF for 
different ChIP-seq datasets. * The output result of CENTDIST* is 
ranked by the Z-score of frequency graph only. The columns 4th-6th 
are the results for CORE_TF using promoter background 
(promBG,default background for CORE_TF) with enriched region 
size 200-1000 respectively, and the column 7th-9th are the result of 
CORE_TF using random genome background(randBG) with 
enriched region size 200-1000 respectively. The last three columns 
are the results of CEAS with enriched region size 200-1000 
respectively. 

 	 CENTDIST*	CENTDIST	
CORE_TF	
promBG	
200	

CORE_TF	
promBG	
400	

CORE_TF	
promBG	
1000	

CORE_TF	
randBG	
200	

CORE_TF	
randBG	
400	

CORE_TF	
randBG	
1000	

CEAS	
200	

CEAS	
400	

CEAS	
1000	

CMYC	 0.9957	 0.9957	 0.9892	 0.9742	 0.9355	 0.9742	 0.9505	 0.9097	 0.7731	 0.7828	 0.5806	
E2F1	 0.8860	 0.8761	 0.8202	 0.7966	 0.7758	 0.8076	 0.7862	 0.7303	 0.5789	 0.5625	 0.5746	
ESRRB	 0.7961	 0.7869	 0.6373	 0.6627	 0.6065	 0.5359	 0.5451	 0.6183	 0.6203	 0.6072	 0.6111	
KLF4	 0.8542	 0.8550	 0.7075	 0.7058	 0.6908	 0.7058	 0.6950	 0.6813	 0.6708	 0.6883	 0.6021	
NANOG	 0.9686	 0.9699	 0.9320	 0.9399	 0.9020	 0.9255	 0.9046	 0.8327	 0.8386	 0.8510	 0.7268	
NMYC	 0.8824	 0.8889	 0.8052	 0.7915	 0.7627	 0.7922	 0.7719	 0.7418	 0.7255	 0.6137	 0.6039	
OCT4	 0.9200	 0.9300	 0.8767	 0.8908	 0.9067	 0.8625	 0.8342	 0.7900	 0.8650	 0.8175	 0.8017	
P300	 0.8646	 0.8646	 0.9397	 0.9364	 0.8657	 0.8860	 0.8169	 0.7270	 0.7917	 0.7741	 0.6184	
SMAD1	 0.9430	 0.9507	 0.9430	 0.9287	 0.8520	 0.9364	 0.9167	 0.8191	 0.7906	 0.8531	 0.7007	
SOX2	 0.9485	 0.9507	 0.9035	 0.9068	 0.8947	 0.9145	 0.8969	 0.8235	 0.8531	 0.8448	 0.8684	
STAT3	 0.9117	 0.9175	 0.8742	 0.8525	 0.7875	 0.7892	 0.7275	 0.7300	 0.8067	 0.7513	 0.7546	
TCFCP2I1	0.8993	 0.9072	 0.6889	 0.6719	 0.5386	 0.6627	 0.6484	 0.6641	 0.6333	 0.6144	 0.6105	
ZFX	 0.8693	 0.8758	 0.8353	 0.8248	 0.7732	 0.8288	 0.8013	 0.7190	 0.6327	 0.5137	 0.5137	
Average	
AUC	 0.9030	 0.9053	 0.8425	 0.8371	 0.7917	 0.8170	 0.7919	 0.7528	 0.7369	 0.7134	 0.6590	
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III-5.1  Conclusion 

This chapter introduces a parameter-free motif enrichment analysis (MEA) 

tool for ChIP-seq data called CENTDIST. Using CENTDIST, the biologists can 

easily identify the co-TFs with known motifs of the ChIPed TF. The existing MEA 

methods are heavily dependent on selecting the proper background and other 

parameter settings. In contrast, CENTDIST does not require an explicit background 

model and optimizes the parameters automatically based on the frequency 

information as well as slope information (velocity) of motif distribution. As a user-

friendly web-based application, CENTDIST is capable of analyzing large-scale ChIP-

seq datasets. It can test approximately seven hundred TRANSFAC motifs over 10,000 

ChIP-seq peaks in only 10 minutes. The output of CENTDIST contains clean and rich 

information for users. Specifically, it groups the list of enriched motifs into TF 

families, and provides other information such as PWM logo, motif distribution graph, 

enrichment P-value, and the enriched region size of the enriched motifs. We 

examined CENTDIST on 13 ES cell ChIP-seq datasets and demonstrated that it is 

better than existing methods. We also showed that this could be achieved without 

requiring expert knowledge in configuring the program. More other biological 

interesting results found by CENTDIST can be referred in several other 

publications[66, 114, 142, 107, 39, 116]. 

CENTDIST does have certain limitations. CENTDIST assumes the co-TFs 

follow the proximity assumption (i.e. the occurrences of the co-TFs are over-

represented near to the binding sites of the ChIPed TF). Although the proximity 

assumption is generally true, there is also possibility that the co-TF would keep a 
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certain distance to the ChIPed TF. For this case, CENTDIST may fail, and the 

alternative program like SpaMo[129] would be helpful, which can identify the co-TF 

motif with fix distance from the ChIPed TF motif. Also, the reader should be noted 

that the list co-TFs used in the study are derived from the literature and are not 

complete, and some of them were identified by traditional motif enrichment methods 

in the first place. All these limitation may affect the assessment of different motif 

enrichment methods. 

 

Figure III-4: Frequency analysis of ES cell TFs. Every row corresponds to a 
PWM motif while every column corresponds to a ChIP-seq dataset. 
Each entry shows the frequency graph of the motif with respect to 
the peaks of the ChIP-seq dataset. Each graph shows the center 
enrichment region in red color and flanking enrichment region in 
green color. We observed that the frequency graphs in the top left 
blue rectangle show center enrichment while the frequency graph in 
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the bottom right rectangle shows center enrichment. All motifs are 
extracted from TRANSFAC database except the ones with suffix 
“_ES” which are the de novo motifs from[16]. 
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CHAPTER - IV   Simultaneously Learning DNA Motif along with Its 

Position and Sequence Rank Preferences through EM Algorithm 

In the last chapter, motif enrichment analysis for ChIP-seq data was 

introduced, which assuming the motifs of co-TFs is known. This chapter describes 

SEME, a de novo motif finding method to identify novel motifs for ChIP-seq data.   

IV-1 Introduction 

As mentioned in the review in Chapter-II Section II-2, de novo motif finding 

is an important classical bioinformatics problem. However, by only examining the 

over-representation of sequence patterns, the previous generation motif finders often 

miss some real motifs and generate many false positives. On the other hand, 

additional information for the input sequences is found to be helpful to improve motif 

finding. For example, some transcription factor (TF) binding motifs (e.g. TATA-box) 

are localized to certain intervals with respect to the transcription start site (TSS) of the 

gene. In this case, the position information can help to filter spurious sites. In protein 

binding microarray  (PBM) [12] data, the de Bruijn sequences are ranked by their 

binding affinities and people expect the correct motif occurs in the high ranking 

sequences; such data has a rank preference. In the ChIP-seq data [121], the ChIPed 

TF's motif (ChIPed TF is the TF pulled down in the ChIP experiment) prefers to 

occur in sequences with high ChIP intensity and also near the ChIP peak summits  

(thus having both position and rank preference). Hence, if we know the position 

preference and the sequence rank preference of the TF motifs in the input sequences, 

we can improve motif finding. In fact, many existing motif finders already utilize 

such additional information. MDscan [80] only considers high ranking sequences to 
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generate its initial candidate motifs. Other programs allow users to specify the prior 

distribution of position preference or sequence rank preference [6, 52] by adding a 

prior distribution component in their scoring functions [89, 78, 36]. However, the 

users may not know the correct prior(s) to begin with. Even worse, different motifs 

may have different preferences. For example, in ChIP-seq experiments, some motifs 

prefer to occur in high ranking sequences and at the center of the ChIP peak summit 

while others do not.  

To resolve such problem, we proposed a novel motif finding algorithm called 

SEME (Sampling with Expectation maximization for Motif Elicitation). SEME 

assumes the set of input sequences is a mixture of two models: a motif model and a 

background model. It uses EM-based algorithm to learn the motif pattern (PWM), 

position preference and sequence rank preference at the same time; instead of asking 

users to provide them as inputs. SEME does not assume the presence of both 

preferences but automatically detect them during the motif refinement process 

through statistical significance testing. 

We also observed that EM algorithms are generally slow in analyzing large-

scale high-throughput data. Speeding up EM using suffix tree was recently proposed 

[96] but the technique cannot be applied when one wants to also learn the position and 

sequence rank preferences. To improve the efficiency, SEME develops two EM 

procedures. The two EM procedures are based on the observations that the correct 

motifs usually have a short conserved pattern in it and majority of the sites in the 

input sequences are non-motif sites. The first EM procedure, called extending EM 

(EEM), starts by finding all over-represented short l-mers and then attempts to include 

and refine the flanking positions around the l-mers within the EM iterations. This way, 
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SEME recovers the proper motif length within a single run thus saving a substantial 

amount of time by avoiding multiple runs with different motif length  (as done in 

other existing motif finders [78, 52]). The second EM procedure, called the re-

sampling EM (REM), tries to further refine the motif produced by EEM. It is based on 

a theorem similar to importance sampling [41], which stated that the motif parameters 

can be learned unbiasedly using a biased subsampling. By this principle, we can 

sample more sites which are similar to the EEM's motif and fewer sites from the 

background. This way, REM is able to learn the correct motifs using significantly less 

background sites. In our implementation, REM is capable to produce the correct TF 

motifs using approximately 1% of the sites normally considered in a normal EM 

procedure. 

Using 75 large scale synthetic datasets, we showed that SEME was better both 

in terms of accuracy and running time when compared to MEME, a popular EM-

based motif finding program [6]. We found that MEME was unable to find motifs 

with gap regions while SEME's EEM procedure can successfully extend the motifs to 

include them. In the real experimental datasets, we performed comparison using 32 

metazoan compendium datasets and 164 ChIP-seq libraries. SEME consistently 

outperformed seven existing motif finders. In general, we found that SEME not only 

found more TF motifs but also gave more accurate results  (as evaluated using either 

PWM divergence, AUC score or STAMP's p-value [84]). When we compared the 

programs to find co-TF motifs from 15 ChIP-seq datasets, the superior performance 

of SEME was more pronounced. It indicates that SEME's ability to learn the 

underlying motif binding preference is crucial in its performance. We further 

confirmed the correctness of the position and sequence rank preference of the co-TF 
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motifs learned by SEME on three ChIP-seq datasets. The actual ChIP-seq data of the 

predicted co-TFs clearly shows that SEME managed to infer the correct preferences. 

We also showed that such preferences provided biological insights on the mechanism 

of the ChIPed TF—co-TF interactions. 

IV-2 SEME Algorithm 

IV-2.1  Review of Mixture Model for Motif Finding 

Applying mixture model to learn motifs in a set of sequences is first proposed 

by MEME[6], it assumes the observed sequences are generated by two independent 

components: motif model and background model. Let the alphabet be ሼA, C, G, Tሽ for 

DNA sequence. The background model is a zero order markov model  ߠ଴ሬሬሬሬԦ ൌ

൫θ଴,஺, θ଴,஼, θ଴,ீ, θ଴,்൯  where θ଴,௕  is the probability of observing nucleotide 	ܾ ∈

ሼܣ, C, G, Tሽ. The motif model describes a length-l sequence as l independent positions. 

It is represented as Θ, which is a l×4 matrix where Θ௝,௞ is the probability that the 

nucleotide a௞ occurs at position j. For any length-l sequence Xi , the probability that 

Xi is generated from the motif model and the background model can be computed as 

follows.   

Where Xi,j is the letter in the j-th position of sample Xi and I(x,y) is an indicator 

function which is 1 if and only if x=y . 
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Any set of sequences can be conceptually splitted into a set 

X ൌ ሼXଵ, Xଶ, … , X௡ሽ of n overlapping subsequences of length l. MEME assumes those 

length-l subsequences in X are extracted from a mixture of motif model Θ and a 

background model ߠ଴ሬሬሬሬԦ , where λ	ሺ0 ൏ ߣ ൏ 1ሻ is the parameter which defines the prior 

probability of X௜ generated by motif model. The probability framework of the mixture 

model is defined as follows: 

Then MEME formulated the motif finding problem as an optimization 

problem, which finds a set of parameters (λ, θ଴ሬሬሬሬԦ	, Θ	) maximizing the likelihood of data 

Pr(X). This optimization problem is NP-hard. EM algorithm is a state of the art 

method to solve this maximum likelihood problem. The EM algorithm makes use of 

the concept of missing data. In this case, the missing data Zi is the knowledge of 

whether Xi is coming from a motif model. Zi =1 if Xi is from motif model; and Zi =0 

otherwise. Also by definition, Pr(Zi = 1) =ߣ. The objective function of EM can be 

revised as a “complete log likelihood function”: 

The EM algorithm iteratively maximizes the expected log likelihood over the 

conditional distribution of missing data Zi given the current estimation of parameters 

(λ, ,	଴ሬሬሬሬԦߠ Θ	). In the E-step, the expected value of Zi in the iteration t can be computed as: 
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where ηi is likelihood ratio between the motif model and the background model. 

In the M-step, the parameters are estimated to maximize the expected log 

likelihood function given the expected value { Zi } in the last iteration: 

and we can compute the explicit formulas for each parameter. 

For ܾ ∈ ሼܣ, C, G, Tሽ,  

IV-2.2  Mixture Model in SEME 

In SEME implementation, we consider two more binding preferences: position 

and sequence rank in addition to DNA sequence preference information in the 

traditional EM algorithm. The position preference tries to model if the binding site 

prefers certain positions. We discretize the positions into K bins. The probability that 
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a binding site occurs in the k-th position bin is denoted as ߙ௞, for k=1,…,K , while the 

background distribution is assumed to be uniform. Precisely, for every Xi , we have : 

Similarly, the sequence rank preference tries to model if the binding site 

prefers the sequences with certain range of ranks assuming input sequences are sorted 

by some measurement. We also discretize the ranks into K bins. The probability a 

binding site occurs in the k-th rank bin is denoted as ߚ௞ , k=1,…,K , while the 

background distribution is assumed to be uniform. Precisely, for every Xi , we have : 

We use naive bayesian approach to model three types of information 

(sequence, position, rank): 

where the probability of sequence information for bound state and unbound state 

Pr(Xi
(seq)|Zi) can be referred to Equations (4.1) and (4.2). 

Similar to Equation (4.7), the “complete log-likelihood function” with 

additional binding preferences can be modified as follow: 

Where Φ ൌ ൫λ, Θ, θ଴ሬሬሬሬԦ, αଵ, … , α௄, βଵ, … , βଶ൯  are the parameters of mixture model in 

SEME. 

Similarly, EM algorithm can be applied to optimize Equation (4.14). In the E-

step, the likelihood ratio between the motif model and the background model is: 
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and the expected value of Zi
(t) can be computed using Equation (4.5) . 

In the M-step, the parameters Φ ൌ ൫λ, Θ, θ଴ሬሬሬሬԦ, αଵ, … , α௄, βଵ, … , βଶ൯  can be 

estimated by maximizing the expected log likelihood function given the expected 

value Zi in the last iteration. 

The parameters 	ሺλ, Θ, θ଴ሬሬሬሬԦሻ  can be updated using Equations (4.8), (4.9) and 

(4.10), respectively. The additional parameters for position preference and sequence 

rank preference can be updated as follows: 

Above is the general probabilistic framework of SEME by applying classic 

EM algorithm. However, it cannot achieve good efficiency and accuracy for practical 

use if we directly apply classic EM algorithm to solve this problem. Hence, we 

developed four phases in the SEME pipeline (see Figure IV-1). To search for a good 

starting point, SEME first enumerates a set of over-represented short l-mers (phase 1) 

and extends each short l-mer to a proper length PWM motif by the extending EM 

(EEM) procedure (phase 2). The PWM reported by the extending EM procedure can 

 

( )
,

( ) ( )

( )
,

( , )

{ ,

( 1)
( 1) ( 1),

1( )

( , )(

, , }

{ , , , }

1)
0,

1

( ( ) )

( )( )
1

( ( ) ))

seq
i j

pos rank
i i

seq
i j

I b Xt
t tj b

X Xjt
i

I b

l

b A C G T

Xt
b

l

b A Gj C T

K K

 
 




















 

 
  

(4.15) 

 
( )

( ) ( )arg max log ( , | )t

t t

Z
E Pr X Z


    

  (4.16)  

 

( ) ( )

( )
( )

( , )

{1, , }, i

i

t pos
i i

X Xt
k t

i
X X

Z I k X

k K
Z

 



   



  

 

(4.17)  

 

( ) ( )

( )
( )

( , )

{1, , }, i

i

t rank
i i

X Xt
k t

i
X X

Z I k X

k K
Z

 



   



  

(4.18)  



62 

 

approximate the true motif when its starting l-mer captures the conserved region of 

the motif. To further refine EEM's PWM motif, SEME applies the re-sampling EM 

(REM) procedure (phase 3). It is an importance sampling version of the classical EM 

algorithm which greatly speeds up the EM iterations. Finally, the refined PWM motifs 

are scored and filtered for redundancies (phase 4). 

 

Figure IV-1 Algorithm description for SEME Pipeline. 

IV-2.3   Identifying Over-represented l-mers 

In the first phase, SEME computes the frequencies of all short l-mers (l = 5 by 

default) in the input sequences, and also their frequencies in background if control 

sequences or background model are provided. Then, all short l-mers with higher 

frequencies in the input sequences than the background are outputted to the next 

phase for further processing. If no background or control sequences are provided, 1st-

order markov model is estimated from the input sequences as the background model. 

IV-2.4  Extending EM Procedure 

The classic EM algorithm does not allow varying the length of PWM within 

the EM iteration. Assume we know that the motif contains a conserved short l-mer 

seed q (obtained from the first phase), this section developed the extending EM (EEM) 
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which can extend the length-l seed while maximizes the likelihood of the observed 

data. We assume the maximum length of the motif is Wmax. From the set of input 

sequences, SEME extract a set of length- (2Wmax-|q|) sequences 

Y ൌ ൛ ௜ܺ ∈ ܺห ௜ܺ
ሺ௦௘௤ሻ	݄݉ܽܿݐ	ሺܰሻௐ೘ೌೣି|௤|ݍሺܰሻௐ೘ೌೣି|௤|ൟ (“N” is a wild char for 

A,C,G,T), whose middle part is q. For example, if the l-mer is “GGTCA” and the 

longest possible motif length is 10, Y are all the sites matching string pattern 

“NNNNNGGTCANNNNN”. By the definition of Y, we can consider all potential 

binding sites which contain the short conserved l-mer q with the length less than Wmax. 

 

Figure IV-2: Pseudo code for Extending EM procedure. 

Similar to the classic EM algorithm, we firstly define a wide PWM modelΘ is 

a (2Wmax-|q|)×4 matrix (may contain non-binding site positions, but is wide enough 

to cover all the potential binding site positions ). Let a background model be ߠ଴ሬሬሬሬԦ , and 
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two variables l1, l2  index the real binding site start and end positions in Θ . In each 

EM iteration, a subset of columns in the wide PWM	Θ will be used to compute the 

expectation, and a new column is included only if it can increase the likelihood in the 

M-step and show significant difference to background distribution. Let 	Θሾ௟భ,௟మሿ ൌ

ሼΘ௟భ, Θ௟భାଵ, … , Θ௟మሽ , the computation for modeling sequence information will be 

carried on a subset of position in the sites, that is, the positions outside of [l1, l2] will 

not be used and the positions for the given l-mer also will not be used because these l-

mer positions are the same across Y. Here, we have,  

								∀	X௜ ∈ ܻ 

Besides, the position model and sequence rank model remain the same as Equations 

(4.17) and (4.18).  Then, we define each iteration of extending EM procedure as 

follow: 

In the E-step, similar to Equation (4.15) and (4.5), for	all		X௜ ∈ ܻ , we compute 

the likelihood ratio ߟ௜
ሺ௧ሻ and ܼ௜

ሺ୲）
as,  
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In the M-step, the modeling parameters ൫λ, Θ, θ଴ሬሬሬሬԦ, αଵ, … , α௄, βଵ, … , βଶ൯  are 

updated using Equations (4.8),(4.10),(4.9),(4.17) and (4.18), respectively, which are 

the exactly the same as the original EM algorithm except considering the selected 

sites Y instead of all the sites X. Moreover, the two indexing variables l1,l2 will also be 

updated in this step by trying to select a column outside [l1,l2] to maximize the log 

likelihood objective function. Precisely, for each position j = 1,…,2Wmax-|q| not in 

[l1,l2], we show that the maximum increment of the log likelihood before and after 

including the position  j is G(j) where  

where J is any probability distribution over the nucleotides {A,C,G,T}. 

In a greedy manner, the extending EM procedure chooses the column j with 

the largest G(j)，To avoid over-fitting, we require the selected column is (Chi-square) 

significantly different from the background frequency. Let ݌ ൌ arg݉ܽݔ௝ܩሺ݆ሻ, the 

Chi-square statistics χ is defined as: 

then l1, l2 can be updated as ݈ଵ
ሺ௧ሻ ൌ ݉݅݊	ሺ݈ଵ

ሺ௧ିଵሻ, ሻ and   ݈ଶ݌
ሺ௧ሻ ൌ ሺ݈ଶ	ݔܽ݉

ሺ௧ିଵሻ,  ሻ , if and݌

only if the Chi-square test is significant. The pseudo code of the extending EM 

procedure is described in Figure IV-2. The EEM procedure ends when PWM Θ 

converges. Finally, the columns in Θ representing the l-mer q will be further diluted 

(by setting all [1.0, 0.0, 0.0, 0.0] columns representing “A" to [0.52, 0.16, 0.16, 0.16] 
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while other nucleotides are handled similarly) before Θ is returned as the output of the 

EEM procedure. 

IV-2.5  Re-sampling EM Procedure 

In EEM, SEME finds a rough motif model with proper motif length. The motif 

can be further refined using classic EM algorithm to improve the accuracy. However, 

when the input data X is big, this step is slow. With the idea of importance sampling, 

we proposed the re-sampling EM (REM) procedure which reduces the running time 

by running EM algorithm on a subsample of the original data X. 

Let Q(⋅) be the sampler function, where Q(x) =1 if x is sampled; and 0 

otherwise. Q(⋅) is a uniform random sampler, this approximation is trivial and we can 

directly use the classic EM algorithm and formulas in the sampled dataset in this case. 

Here, we generalize the formulas of EM to an arbitrary sampler Q(⋅), which satisfies 

Prሺܳሺݔሻ ൌ 1ሻ ൐ 0, ݔ∀ ∈ ܺ . 

Theorem 1. Let  ࡽࢄ ൌ ሼ࢏ࢄ ∈ ሻ࢏ࢄሺࡽ|ࢄ ൌ ૚ሽ	be the subset sampled from the original 

dataset X using the sampler function Q(⋅), then,  

Where E௑ೂሾ∙ሿ is the expectation operator over all possible subset XQ 

Proof. According to sampling property: 

Then the proof is straightforward. For each site, the sampling process is independent. 

Hence, the expectation of the summation value of a subsampled set XQ can be broken 

down to the expectation of contribution of each site X௜ ∈ ܺ to the summation value. 
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Where 	Φ ൌ ൫λ, Θ, θ଴ሬሬሬሬԦ, αଵ, … , α௄, βଵ, … , βଶ൯  are all the modeling parameters in our 

mixture model.  

Q.E.D. 

According to Theorem 1 and the large sample theory[71], we can expect to get 

the same log likelihood value as Equation (4.16), by weighting each subsequence Xi 

in the sampled dataset X
Q

 with 
1

( ( ) 1)iPr Q X 
, when the sample size |X

Q
| is large 

enough. Therefore, Equation (4.16) can be approximated as:  

Interestingly, no matter how we choose the sampler function Q(⋅), the 

maximum likelihood estimation always converges to the original one, when the 

sample size is large enough. However, running EM using different Q(⋅) yields 

different sampling efficiencies. For example, we can use a uniform random sampler, 

i.e., Pr(Q(Xi)=1)=μ  for every Xi∈X , where μ∈ [0,1] is the sampling ratio. This 

function is expected to only cover 100⋅μ% of the correct motif sites from X which 

prohibits the use of small μ. In addition, the number of parameters in the motif model 

is much larger than that in the background model. In order to learn a motif model as 

good as the background model, it needs more samples from binding sites than from 

background sites. In the real dataset, the prior probability of binding site λ is usually 

very small (less than 0.01). This motivates us to perform biased sampling, i.e., we 
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want to use a sampler function, which tends to sample more binding sites than 

background sites. Here, we define our sampler to sample subsequences according to 

the PWM model outputted by extending EM Θሺாாெሻ, that is:  

where μ is the sub-sampling ratio defined by the user, and l is the motif length. 

Here is the rationale behind Equation (4.29). We want to control the final 

sample size to be roughly μ⋅n, where n is the total number of sites. For sequences of 

length l, there are 4l possibilities, and if we use the Q(⋅) above to sample all these 4l l-

mers, the expected number of sampled sites is  

Therefore, if the original dataset X of size n is formed by a uniform subset of 

those unique 4l  l-mers, we can expect the size of X
Q
 is μ⋅n. 

This strategy is useful since we avoid most of the background sites in X. In 

fact, our simulation reveals that the REM procedure can achieve nearly 60% recall 

rate (of the correct motif sites) at the sampling ratio as small as 2−10(≈0.001) and 90% 

recall rate at the sampling ratio of 2−5(≈0.031) (see Figure IV-5(b)). We choose a 

default sampling ratio of 0.01 in all experiments in this chapter. 

Below, we describe the implementation detail for re-sampling EM (REM) 

procedure. First, for the E-step, it is almost the same as the classic EM except that we 

add two Boolean parameters (τ
pos

 and τ
rank

) to indicate whether the computation 

should consider the position model and the sequence model or not.  

( )( ( ) 1) min(4 ( | ),1),EEMlPr Q x Pr x x X       (4.29)  
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The motivation of introducing the indictor variables (τ
pos

 and τ
rank

) is to avoid 

over-fitting the data in the final model by assuming the position preference and the 

sequence rank preference must exist. The position and sequence rank preferences are 

assumed to be non-existent at the beginning of the REM iterations (i.e., 

Pr(X
i
|Z

i
)=Pr(X

(seq)
i |Z

i
) ). The position and/or sequence rank preferences are considered 

only when the position and/or sequence rank distributions of {Z
(t)
i } are significantly 

different from the uniform distribution (by Chi-square test). This strategy allows 

SEME to tell users which preference is really important for the predicted motif. These 

two indicator variables are updated in the M-step in each iteration and set to 1 only if 

the expected binding sites distribution is significantly different to uniform distribution 

(i.e., background distribution). 

Next, we describe the M-step. Using the new objective function, (λ,Θ,	ߠ଴ሬሬሬሬԦ) in 

the t-th iteration of the M-step can be estimated by Equations (4.32)-(4.34).  

For b ∈ ሼA, C, G, Tሽ and j=1,…,l, we have  
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As the position and sequence rank modeling parameters are independent to our 

sampler function Q(⋅), so we do not have to re-weight each site in X
Q

. 

(α
1
,...,α

K
,β

1
,...,β

K
) are updated using Equations (4.17) and  (4.18), except that we 

replace X with X
Q
. 

For the values τ
pos

 and τ
rank

, they are updated based on the result of two Chi-

square tests. Precisely, τ
pos

=1  if the positional distribution of binding sites 

( ) ( ){ ( | 1)| }pos pos
i Qi i iX P Xr X Z X  is significantly different from the uniform 

distribution (Chi-square test); and τ
pos

=0 otherwise. The Chi-square statistics χ is 

defined as: (I(⋅,⋅) is the indicator function)  

Similar significance test can be applied for τ
rank

,  
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As the default setting, if the p-value for the Chi-square test is less than 0.05, 

the indictor variable τ
(t)
pos or τ

(t)
rank will be updated to 1, respectively; and 0, otherwise. 

Figure IV-3 is the pseudocode for this procedure. 

 

Figure IV-3: Pseudocode for Re-sampling EM procedure. 

 

IV-2.6  Sorting and Redundancy Filtering 

The PWMs outputted by REM are further evaluated and sorted by empirical 

ROC-AUC (the area under the receiver-operator characteristic curve) or over-

representation Z-score (representing the motif abundance) with the input data (details 

on each scoring are in the Figure IV-4 and Supp Figure 1). The first score is preferred 

for the case when the input sequences are short and most sequences contain at least 

one motif site (e.g., ChIPed TF motif finding); for the other cases, we suggest to use 

the Z-score (Supp Figure 1). We eliminate redundant PWMs from the sorted list as 
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follows. When the sites of a PWM motif overlap with those of another PWM motif by 

more than 10%, we will treat the PWM motif with the lower score as redundant and 

remove it. 

 

Figure IV-4: Procedure for computing AUC score. Given a set of positive 
sequences and negative sequences, and a PWM motif, we compute 
the best match score of the PWM motif in every sequence. Then 
using different PWM score cut-off, we can compute the "True 
Positive Rate" and "False Positive Rate" of the PWM and generate 
the receiver operating characteristic (ROC) curve. Finally, the AUC 
score of the given PWM can be calculated as the area under the ROC 
curve.   

IV-3 Result 

IV-3.1  Profiling two novel EM procedures 

IV.3.1.1  EEM estimates the correct motif length  

One of the strong points of SEME is that user need not provide any prior motif 

length (which is, in most cases, hard to estimate). As shown in Figure IV-5(a), for 

most cases, the EEM procedure estimated motif lengths that are very close to the 

planted motif length. We further observed that, when the estimated PWM length 

differs, EEM tends to underestimate the length. Sinice most motifs in JASPAR 
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to 2−10 to 2−1. It shows great efficiency ratio when the sampling ratio is low, because 

SEME performs subsampling using the output PWM from the extending EM 

procedure which has much higher chance to sample a true site than naive uniform 

sampling. Moreover, we observed that most true sites were sampled even in the low 

sampling ratio. After certain point, increasing the sampling ratio is almost the same as 

increasing the background ratio, which makes efficiency ratio drop dramatically. To 

illustrate this, we can check the average recall rate (blue line in Figure IV-5(b)) across 

different sampling ratio, and it shows near 60% recall rate at sampling ratio 

2−10≈0.001 and 90% recall rate at sampling ratio 2−5≈0.031. The error bar in Figure 

IV-5(b) presents the interval +/- one standard deviation from the average recall rate, 

and we can see that higher sampling ratio can bring smaller variances of recall rate. 

To balance trade-off between the efficiency ratio and coverage, we fix default 

sampling ratio=0.01 in the later experiments of this chapter. 

IV.3.1.3 SEME significantly outperforms MEME in recovering the planted 

PWM. 

To analyze SEME’s performance, we extract all seventy-five motifs with 

lengths longer than 9bp in JASPAR[124] vertebrate core database. For each such 

motif, we generated a training dataset of 1000 random sequences of length 400bp 

where 500 of them contain one motif site. These motif sites are planted uniformly 

across all positions and sequences. 

For each dataset, we run SEME (EEM only), SEME (EEM + REM), and 

MEME (the classical EM-based motif finder) and obtain the top 5 predicted PWMs 

from each program. To test the goodness of the predicted PWMs, we compared the 

PWM divergence[78] between the predicted PWMs and the actual planted PWMs. 
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Figure IV-6(a) also shows that SEME outperformed MEME. In fact, SEME is 

better than MEME in 42 out of 75 experiments (the cases with positive AUC 

differences in Figure IV-6(b)). The cases where SEME performed worse have 

relatively small AUC score differences (less than 0.04). We examined the Pax4 

dataset in which SEME gains the highest improvement against MEME. The 

implanted JASPAR Pax4 motif is a diverged PWM of length 30. SEME successfully 

extended and recovered the full Pax4 motif; thanks to the ability of its EEM 

procedure to handle long gaps in its extension step. In contrast, MEME failed to 

model the long gaps due to their starting point finding procedure which assumes that 

all of the PWM positions are equally important. 

IV.3.1.4 SEME is more suitable in handling large-scale data. 

We further generated 7 large datasets to observe the capability of SEME in 

handling large-scale data. Each dataset consists of different number of sequences 

(from 500 to 10000, each of length 400bp). Figure IV-6(c) shows that the original 

MEME program cannot process more than 2000 sequences within one day, hence we 

also used the GPU-accelerated version of MEME, CUDA-MEME [81](run on two 

Intel X5670 CPUs and two Fermi M2050 GPUs with 48GB RAM). SEME was run as 

a normal CPU program. SEME is still around 60 times faster than CUDA-MEME 

which runs on a highly parallelized GPU system. In addition, SEME can process up to 

10000 sequences (a typical dataset size for ChIP-seq experiments) in 1 hour while the 

CUDA-MEME took more than one day to process 6000 sequences. 

IV-3.2  Comparing TF motif finding in large scale real datasets 

We compared the performance of SEME with other existing motif-finding 

programs on two large-scale TF binding data. We also studied the ability of SEME in 
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uncovering the hidden position and/or sequence rank preferences in the input dataset 

when they are present.   

IV.3.2.1 The Metazoan Compendium datasets 

The first benchmark is a metazoan compendium dataset published by Linhart 

et.al[78]; consisting of 32 datasets based on experimental data from microarray, ChIP-

chip, ChIP-DSL, and DamID as well as Gene Ontology data. A list of the promoter 

sequences of many target genes (1000bp upstream and 200bp downstream the 

Transcription Start Site (TSS)) are used as the positive input for each motif-finding 

program and promoter sequences of other non-target genes are used as background 

sequences. The performance of six existing motif-finding programs, namely 

AlignACE[99], MEME [6], YMF [111], Trawler [30], Weeder [92], and Amadeus 

[78], were compared in the original benchmark study [78]. Each program’s predicted 

PWMs are evaluated by the PWM divergence. Only PWMs with medium and strong 

matching with the known motifs (PWM divergence <0.18) are considered to be 

successfully detected[78]. 

The result of this comparison is shown in Figure IV-7. We found that SEME 

successfully detected the correct motifs in 21 datasets whereas the second best 

program, Amadeus, succeeded in 18. Weeder and Trawler found correct PWMs in 11 

and 12 datasets, respectively. SEME also found more accurate motifs than the rest; it 

found 12 motifs with PWM divergence <0.12. SEME further detected a significant 

position preference for the correct motifs for many datasets in this benchmark: most 

of them tend to bind nearer to the TSS position (see Figure IV-8 and Figure IV-9(a)). 
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Figure IV-7: Comparison of de-novo motif discovery tools on the metazoan 
compendium.  Each column of the table presents the results for one 
motif discovery tool, and each row corresponds to one data set of the 
metazoan compendium. The color of the checkmarks represents the 
accuracy of the motif discovered as measured by the normalized 
euclidean distance, and we used the thresholds on the PWM 
divergence as proposed by Linhart et al[78]. The symbol ∞ marks 
long execution times (hour) that were aborted in[78]. In the last row 
of the table, we report the total number of motifs discovered by each 
of the tools. 
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Figure IV-8: SEME detected TF motifs with significant position 
preference to TSS Seven examples of SEME’s output of 
metazoan compendium dataset. The result indicates these TF 
binding sites are enriched near the transcription start sites. The TSS 
position is located around 200bp from the rightmost position. The 
original 1200bp promoter sequences may be shortened after 
removing “N"-masked regions, so the TSS position may be shifted in 
those cases. 
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IV.3.2.2 ChIP-seq experimental datasets: Discovery of the ChIPed TF motif from 

ChIP-seq data. 

The second benchmark is a collection of large scale ChIP-seq experimental 

data which consists of 164 published ChIP-seq libraries from the ENCODE project[31] 

and our lab over different cell-lines and TFs[17, 135, 65]. ChIP-seq usually reports 

more than 10000 target sequences with narrower target regions (100bp). We 

computed the Area Under ROC Curve, Positive Predictive Value, Average Site 

Performance and Specificity scores of each program’s predicted PWM. The formula 

for the above scores are given in the Figure IV-4 and Equations(S. 1)-(S. 3). From 

each library, the 100bp sequences around the top 10000 ChIP-seq peaks were 

extracted (sorted by ChIP intensity) as our input data. For MEME and Weeder, we 

only used the top 2000 peaks due to their long running time. Peaks with odd 

numbered ranks were used for training while the even numbered peaks were used as 

positive testing data. The negative dataset is generated a 1st-order Markov model 

trained using the same number of 100bp random sequences extracted from the regions 

1000bp away from the ChIP-seq peaks. 

We compared SEME with 7 popular de novo motif finding programs for ChIP 

data: MEME, Weeder, Cisfinder, Trawler, Amadeus, ChIPMunk and HMS. Each 

program’s top 5 motifs are evaluated using the four statistics measurements on the test 

data. For each scoring, the best of the 5 motifs were used to represent the performance 

of a program. Figure IV-9(b) shows the average performances of the motif finders. 

Again, we found that SEME is consistently better than all other programs (1st rank in 

Area under ROC Curve, Positive Predictive Value and Specificity, and 3rd rank in 

Average Site Performance). 
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IV.3.2.3 Discovery of co-TF motifs from ChIP-seq data 

We noted that most motif finders showed good performance in finding the 

ChIPed TF motifs. This is expected since the ChIPed TFs are highly enriched in the 

extracted sequences[135]. Comparing to finding ChIPed TF motifs in ChIP-seq 

datasets, the problem of finding co-TF motifs in the ChIP-seq datasets is much more 

challenging. The co-TF motif sites are less abundant and most are not located exactly 

at the ChIP-seq peaks. Nevertheless, finding the co-TF(s) could potentially uncover 

previously unknown co-TFs interaction. 

For co-TF motif comparison, we used 15 ChIP-seq libraries whose co-TFs 

have been characterized (the list of co-TFs for each ChIP-seq is in Supp Table 2). We 

extracted 400bp sequences around the ChIP-seq peaks and compared the top 20 de 

novo motifs of each program to the known co-TF motifs in the JASPAR[105] and 

TRANSFAC[85] database; we cannot use the previous statistical measurements since 

co-TFs may not occur in all ChIP-seq peaks. Furthermore, the ChIPed TF binding 

sites were masked before the co-TF motif finding. SEME and ChIPMunk can do this 

automatically and, for other programs without auto-masking mode, the input 

sequences were masked by the top 2 motifs reported from their ChIPed motif finding 

results. 

STAMP program[84]was used to compute the p-value of the match between a 

predicted co-TF motif against the known co-TF motif. STAMP p-value provides a 

better match measurement compared to PWM divergence since it removes the motif 

length bias. We separated the p-value of the PWM matching into three significance 

levels: (1) weak match (0.05≥ p-value >0.01), (2) medium match (0.01≥ p-

value >0.0001) and (3) strong match (p-value ≤0.0001). Figure IV-9(c) shows the 
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To study the biological significance of the learnt preferences, we further study 

the output of three datasets, involving TFs like ER, AR, FoxA1, Oct4 and c-Myc, in 

details (see Figure IV-10). The real binding site of each TF is defined to be the site 

around +/-100bp around the TF’s ChIP-seq peak whose known PWM score is better 

than a cutoff that yields FDR=0.01. If multiple matches occur, only the best scoring 

site is chosen. Comparison between SEME’s learnt distributions (Figure IV-10, 

middle columns) and the real binding site distributions (Figure IV-10, rightmost 

columns) indicates that SEME is able to learn the correct position and sequence rank 

preferences of the tested TFs. We also found that the motif positions of FoxA1, a 

known co-TF of ER, is not enriched exactly at the ER ChIP-seq peak in the MCF7 

data; instead it is found in the flanking regions near the ER peaks. Interestingly, in the 

LnCAP AR ChIP-seq dataset (FoxA1 is also a known co-TF of AR), we found that 

FoxA1 binds very closely to AR—it is enriched at the AR ChIP-seq peak summits. 

This observation is consistent with the previous report that FoxA1 can physically 

interact with AR[38]. It also indicates FoxA1 may play different roles when working 

with AR and ER[104]. In the ChIP-seq data of Oct4 from mouse’s ES cell, SEME 

found the motif of c-Myc enriched within Oct4’s low intensity peaks regions. We 

conjecture that, in these regions, Oct4 indirectly binds the DNA through c-Myc 

(hence explaining the ChIP-seq’s low intensity). An earlier report showed that Oct4, 

along with Sox2, Nanog, and Stat3 form an enhancer module while c-Myc along with 

n-Myc, E2F1 and Zfx form a promoter module in the ES cell[17]. In fact, the 

interactions between these enhancer and promotor modules have also been reported 

previously[131]. 
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Figure IV-10: Automatic learning of the position and sequence rank 
preference from the input data. Instead of requiring the user to 
input the expected co-TF motif preference distribution (position 
and/or sequence rank distribution), SEME learns such distributions 
directly from the input data. We show that most of the time, SEME 
can learn the correct distributions of each TF (as compared to real 
binding sites distribution in the rightmost column, defined by the 
ChIP-seq and the known PWM of the TF). For position distribution, 
the x-axis is +/-200bp from ChIP-seq peak summit (the black dash 
line), and the y-axis is the fraction of binding sites in a given position. 
For rank distribution, the x-axis is the rank of ChIP-seq peak (left : 
high ChIP intensity, right : low ChIP intensity), and the y-axis is the 
fraction of binding sites in a given rank. The ChIP-seq peak rank 
distributions (MCF7 ER ChIP, LNCaP AR ChIP) of FoxA1 and the 
position distribution of Myc are tested to be insignificant by SEME. 

These examples indicate that the position and sequence rank distribution learnt 

by SEME are reasonably accurate and users could use them to infer the nature of the 

interaction between the ChIPed TF and the co-TF(s). In this manner, SEME can be 
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used to generate biological hypothesis for further experimental validations. Moreover, 

the highly diverse preferences that we observe highlight the difficulty for users to 

provide the correct prior in the first place. 

IV-4 Conclusion 

This chapter developed a novel algorithm called SEME for mining motifs 

using mixture model and EM algorithm. We presented three important contributions: 

(1) automatic detection and learning of the position and sequence rank preferences of 

a candidate motif. (2) ability to estimate the correct TF motif length (with possible 

gaps within) and (3) using importance sampling for efficiency while still able to 

estimate the EM parameters unbiasedly. As a result, we showed that SEME is 

substantially better, both in terms of accuracy and efficiency, compared to the existing 

motif finding programs. 

Moreover, in the task of finding co-TF motif in the ChIP-seq data, SEME not 

only reports more accurate co-TF motifs than other programs but also correctly 

estimates the position and sequence rank distribution of each co-TF’s motif. We 

showed that such information provides useful insights on the interaction between the 

ChIPed TF and the predicted co-TFs. SEME does have a few limitations. Firstly, it 

assumes that the target motif contains a conserved 5-mer region. In cases without 

such 5-mer, SEME also allows user to provide custom seeds. Secondly, SEME is 

more suitable for large scale input (≥100 sequences) since it needs enough samples to 

determine whether it should do extension (EEM) or include additional binding 

preferences (REM). 
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CHAPTER - V   Inference of Spatial Organizations of Chromosomes 

Using Semi-definite Embedding Approach and Hi-C Data 

The last two chapters focus on motif analysis for ChIP-seq data, which is 

sequence level study of Protein-DNA interaction. In this chapter, the focus has been 

shifted to the structure level study of Protein-DNA interaction using Hi-C data. 

ChromSDE, a novel chromosome 3D modeling method is introduced in this chapter. 

V-1 Introduction 

As mentioned in the review in Chapter-II Section II-3, the workflow 

chromosome 3D modeling contains two steps: (1) Converting the contact frequencies 

between loci to spatial distances and (2) Predicting the 3D chromosomal structure 

from the spatial distances. 

Although some works [27, 10, 102, 62, 51] have been done, there are still 

unsolved issues in both steps 1 and 2. For step 1, the conversion between the contact 

frequency and spatial distance has one parameter. Existing methods, except 

BACH[51], assume that the parameter is fixed or is known beforehand. We found that 

the parameter is actually different for different datasets. Thus it is important to have a 

method to estimate the parameter. For step 2, existing methods infer the 3D 

chromosomal structure by heuristics. They are not guaranteed to reconstruct the 

correct structure even in the noise-free case. 

To fill in these gaps, we propose a novel chromosome structure modeling 

algorithm called ChromSDE (Chromosome Semi-Definite Embedding). ChromSDE 

models the problem as two parts: 
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 Assuming that the parameter for the conversion from the contact frequency to the 

spatial distance is known, ChromSDE formulates the 3D structure modeling 

problem as a non-convex non-linear optimization problem similar to the previous 

works. Instead of directly solving the non-convex optimization which is NP-hard, 

ChromSDE relaxes it to a semi-definite programming (SDP) problem, whose 

global optimal solution can be computed in polynomial time. With this 

formulation, our approach is guaranteed to recover the correct 3D structure in the 

noise-free case when the structure is uniquely localizable[112]. 

 For the parameter in our conversion function from the contact frequency to the 

spatial distance, ChromSDE formulates it as a univariate optimization problem 

and estimate the correct parameter by a modified version of the golden section 

search method. 

This chapter may have significant impact in three aspects. First, the SDP 

relaxation method in ChromSDE is a powerful relaxation technique, which is 

theoretically guaranteed to recover the correct structure in the uniquely localizable 

noise-free case[112]. The SDP approach has been successfully applied in other graph 

realization problems[14, 72, 127], but to our best knowledge, no one has introduced it 

in chromosome structure modeling. Second, we proved theoretically and empirically 

that the conversion parameter changes if we examine the data under different 

resolutions. Thus, it is inappropriate to assume that the conversion is known. We 

developed an efficient algorithm to estimate the correct conversion parameter from 

the input data. Third, we proposed a measure called Consensus Index that can 

quantify if the input frequency data comes from a consensus structure or a mixture of 

different structures. It is arguable if Hi-C data is appropriate for modeling 3D 
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structures, because the contact frequencies come from a population of cells instead of 

a single cell. Our simulation showed that if the data is from a consensus structure, the 

Consensus Index is high. 

We evaluated our method with simulated data and real Hi-C data. Through 

simulation study, we showed that ChromSDE could perfectly recover different types 

of simulated structures in the noise-free setting while other tested programs fail in 

many cases. Even with noise, ChromSDE still significantly outperforms other tested 

programs. In addition, we also showed that ChromSDE could accurately estimate the 

conversion parameter and output the Consensus Index that can reflect the degree of 

mixture. Next, real Hi-C data replicates with different enzyme cutting sites are used to 

further validate the robustness and accuracy of ChromSDE comparing to other tested 

programs. The result indicates that ChromSDE can infer a more accurate and robust 

3D model than existing methods. Finally, we showed that ChromSDE can robustly 

handle different resolution data and the predicted high-resolution 3D structure unveils 

interesting biological findings. 

V-2 Method 

The Hi-C and TCC technologies enable us to obtain paired-end reads from 

interacting loci in the genome. The interaction data can be summarized by a contact 

frequency matrix F, in which Fij represents the number of contacts between loci i and 

j (loci i and j are genomic regions in a fixed bin size such as 1Mbp or 40kb). We 

expect two loci are close if and only if the contact frequency between them is high. A 

further note is that the raw Hi-C or TCC interaction frequencies are affected by 
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various biases (GC content, mappability and fragment length), and should be 

normalized [133]. 

The chromatin 3D modeling problem is defined as follows: Given a 

normalized interaction frequency matrix F, infer a 3D structure whose pairwise 

distances highly correlate with the interaction frequencies in F. This problem can be 

solved by two steps: 1) converting the frequency matrix F into a distance matrix D 

that describes the expected pairwise distance among the loci; 2) learning a 3D 

structure from the distance matrix D. Step 1 is based on the observation of 

Lieberman-Aiden, et al. [76] that the conversion between the frequency matrix F and 

the distance matrix D follows the power law distribution (Equation (5.1)) where α is a 

parameter called the conversion factor and Dij and Fij are the distance and frequency 

between loci i and j. 

 There are two main challenges in this approach: 1) estimate α; and 2) convert 

the distance matrix D to the 3D model. In the following two sub-sections, we present 

ChromSDE that resolves these two challenges. Firstly, assuming that the conversion 

factor α is known, we describe a method that estimates the 3D structure from the 

expected distance matrix D. Then, the next section explains how ChromSDE 

estimates the correct value of the conversion factor	α. To note that, the scale between 

the converted distance and the real physical distance is not considered here, since the 

relative distance (without the scale) does not affect the predicted structure for 

visualization and further study. 

	 (1/ ) if  0

otherwise
ij ij

ij

F F
D

 
 


	

(5.1) 
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V-2.1 From Distance Matrix To 3D Structure 

Assuming the conversion factor α (>0) is known, the interaction frequency 

matrix F can be converted to the expected distance matrix D by Equation (5.1). The 

3D chromatin structure modeling problem aims to compute a set of 3-dimensional 

coordinates {x
1


,..., x

n


} for the n loci, such that their distances can fit the distance 

matrix D well. In other words, we hope to ensure that ||

x

i


x

j
||  (distance between 

loci i and j) is approximately the same as Dij for all loci i and j .  Mathematically, this 

problem can be formulated as three alternative optimization models in Equations 

(5.2)-(5.4), where || ||  denotes the Euclidean norm. Each equation has two terms. The 

first term aims to minimize the errors between the embedding distances and the 

expected distances. These three alternatives apply three different commonly used 

error functions in the literatures: (a) sum of square errors of the distance differences 

[9, 27], (b) sum of absolute errors of the distance square differences[14, 72] and (c) 

sum of square errors of the distance square differences [14, 82]. The second term is 

the same for the three alternatives. It is a regularization term that maximizes the 

pairwise distances for the loci without any interaction frequency data. It is based on 

the assumption that the spatial distances of loci pairs not captured by the experiment 

cannot be too short. 

	 min
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In the formulas, ij  represents the weight or confidence of the observed data 

Dij. Since we expect the confidence of Dij is higher when Fij is large, this chapter 

simply set ij =1/Dij. The parameter   > 0 in the second term is the regularization 

coefficient to balance the error term and the regularization term. In practice, we found 

that the results are stable for 0.001<  <0.1 (Figure V-1) and we fix it to 0.01 in this 

chapter. All three formulations (5.2)-(5.4) are non-convex non-linear optimization 

problems, which are NP-hard to solve for their global minimizers. Existing methods 

solved them by heuristics like MCMC sampling [101, 51], or local search[27, 61, 

103]. Here, we show that, by relaxing the solution space of every 

x

i
 from R3 to Rn (n 

is the number of loci), formulations (5.3) and (5.4) become convex semidefinite 

programming (SDP) problems for which we can compute their global minimizers to 

any given degree of accuracy in polynomial time. Furthermore, if the expected 

distance matrix is indeed generated from a 3D object and is noise-free, the above 

relaxations can reconstruct the optimal R3 solution by projecting the Rn points to 

certain R3 subspace in theory [112]. In practice, even if the distance matrix is not 

noise-free, we still can find a good approximated solution in the R3 subspace. The 

projecting technique to obtain a solution in R3 will be introduced in Section V-2.3. 
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For Formulation (5.3), the error term contains the absolute value operator | | , 

which cannot be handled directly by standard SDP solvers. Fortunately, without 

increasing the problem complexity, we can replace the absolute value operator| |  by 

adding two sets of slack variables. The linear SDP relaxation of Equation (5.3)  is 

stated as below: 

Note that +
ij   (and -

ij  respectively) represents the penalty when the 

embedding distance is shorter (and longer respectively) than the expected distance. 

Moreover, at least one of them must be zero in the final solution since they are non-

negative and their summation is minimized. 

A general purpose SDP solver, such as SDPT3[120], can be used to solve the 

two SDP problems above. However, all the current general-purpose SDP solvers 

(which are all based on interior-point methods) cannot handle large-scale SDP 

problems. They can only comfortably handle distance matrix with around 40,000 

expected distances (  200 loci). Fortunately, for convex quadratic SDP such as the 

Formulation (5.6), recently developed advanced algorithm[58] based on partial 

proximal-point method (with semi-smooth Newton-CG method for solving the 

subproblems) can handle such a problem very efficiently even when the problem 

min 
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i, j
  0, K  0.

	

(5.6) 	

	 min 
ij

{i , j|Dij}
 (

ij
+  

ij
- )  (K

ii
 K

jj
 2K

ij
)

{i , j|Dij}


          s.t. K
ii
 K

jj
 2K

ij
 

ij
+  

ij
-  D

ij
2

K
ij

ij
  0, K  0, 

ij
+ ,

ij
-  0.

	
(5.7) 	
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scale is large.  In particular, it can handle 10,000,000 expected distances (   3000 

loci). In the result section, we present the results for both SDP relaxations in the 

small-scale problems and the results for the quadratic SDP relaxation in the large-

scale problems (if not specially mentioned, the result is generated by quadratic SDP).  

V-2.3 Obtaining 3D coordinates from the Kernel Matrix 

By solving the SDP Formulation (5.6) or (5.7), we obtain the solution as a 

positive semidefinite kernel matrix K. By computing the eigenvalue decomposition of 

K, the R3 coordinates X {

x

1
,...,


x

n
} can be recovered from K (i.e., TK X X  ). A 3-

dimensional representation that approximately satisfies K
ij


x

i


x

j
 can be obtained 

from the top 3 eigenvalues ( 1 2 3, ,    ) and eigenvectors (

v

1
,

v

2
,

v

3
 ) of K. That is, 

In the ideal case where the input expected distance matrix is noise-free and 

dense enough (i.e., it has sufficient constraints to uniquely present a 3D structure), it 

can be shown that the approximation (5.8) is the exact solution and all other 

eigenvalues (except top 3) are equal to zero. The property is called unique 

localizability [112]. 

When the input expected distance matrix is noisy, ChromSDE performs 

further local refinement to the 3D coordinates obtained from the SDP relaxation 

problems[14]. Specifically, our ChromSDE algorithm applies a local optimization 

method such as a quasi-Newton method or a gradient descent method to the original 

non-convex problem by using the 3D positions obtained from the SDP problems as 

the starting point.  Because the 3D positions produced by the SDP problems are 

	 
x

i
 [ 

1


1,i


2


2,i


3


3,i
]T

(5.8) 	
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generally close to a local minimizer, a local optimization method can generally 

converge to a good local minimizer for the original non-convex problems. 

To measure if the input distance matrix can be represented as a single 3D 

structure, we propose a measure called Consensus Index, which includes two parts: 

the first part measures how the input distance matrix D satisfying the triangle 

inequality, and is presented as the ratio between the embedded distance in Rn
 and the 

input distance; the second part measures how good the R3 approximation is, and is 

presented as the ratio between the sum of top 3 eigenvalues (i.e., 
i

i1

3

  )and the sum of 

all eigenvalues of K (i.e., 
i

i1

n

 ). Precisely, Let ' 2ij ii ij jjD K K K    be the 

embedded distance in Rn
 , then we have: 

Note that the Consensus Index is between 0 and 1. When the Consensus Index 

trends to 1, this means that the input distance matrix fits a single 3D structure well. 

The result section showed that the Consensus Index is a good indicator on whether the 

input data corresponds to a single 3D structure or a mixture of 3D structures. 

V-2.4 Searching for the Correct Conversion Factor 

In Section V-2.2, the conversion factor ( 0)    is assumed to be known. 

However, the assumption is not valid in practice. Even worse, Lemma 1 shows that 

the conversion factor changes with different resolutions.  

 

 	 Consensus Index 

min( D
ij

/ D
ij
, D

ij
/ D

ij
)

{i, j|Dij}


|{i, j | Dij  }|



i

i1

3




i

i1

n


	

(5.9) 	
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Lemma 1 Consider the frequency matrix F for loci 1 2, , nx x . Let the 

conversion factor of F be 0  , i.e., distance between loci ix  and jx  is (1/ )ij ijd F 
.
  

Now, we reduce the resolution by merging adjacent loci, i.e., we generate the 

frequency matrix F' for the low resolution loci 1 , ny y ,  where iy   is formed by 

merging adjacent loci 2 1ix    and 2ix  . Suppose F '
ij
 (F

2i1,2 j1
 F

2i1,2 j
 F

2i,2 j1
 F

2i,2 j
) 

and d '
ij  can be approximated as either arithmetic mean or geometry mean of

2 1,2 1 2 1,2 2 ,2 1 2 ,2{ , , , }i j i j i j i jd d d d    . Then the conversion factor   of F   is less than or 

equal to  . 

Proof. Note that ,log 0p qF   and ,log 0p qd   since , 1p qF  . Let

min {2 ,2 1}, {2 ,2 1} ,min p i i q j j p qd d    . Since minij
d d  , we have minlog log

ij
d d  . We also 

have 

Hence 
  
log F '

ij
 

1


log d

min
 .  As d '

ij
 (1/ F '

ij
)   , we have 

Q.E.D 

The Lemma 1 implies that the conversion factor of high-resolution Hi-C 

datasets is usually larger than that of low-resolution Hi-C datasets. Hence, we cannot 

assume that the conversion factor is a prior or is a fix value for different datasets. In 

fact, the predicted 3D structure is quite sensitive to the conversion factor. Given the 

	
F '

ij
 F

p ,q
p{2i,2i1},q{2 j ,2 j1}

 
1

d
p,q
1/

p{2i,2i1},q{2 j ,2 j1}
 

1

d
min1/

	

	
 

 log d '
ij

log F '
ij


 log d

min


1


log d
min

 . 	
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by 100 points. We assume that the Hi-C technique is sensitive enough to capture 

interactions with at most 50 nearest neighbours and the conversion factor   is 1, i.e., 

the contact frequency f  of two given points can be computed as 1/(1 / ) 1 /f d d  , 

where d is the spatial distance between given points. We compared our algorithm with 

the existing methods MCMC5C[101] and BACH[51], which are the only publicly 

available standalone programs that are suitable for general Hi-C data. For MCMC5C, 

it cannot estimate the conversion factor by itself, so we supplied it with the correct 

value. For BACH, it can estimate the conversion factor with the default starting point 

equal to 1 (i.e., the correct value in our simulation study). Since there is no enzyme 

bias in our simulation, we also modified BACH to suppress this feature (called 

BACH*).  For ChromSDE, we just assume that the conversion factor is within the 

range (0.1, 3), so we give advantages to the existing programs, but not our 

ChromSDE. 

V.3.1.1 ChromSDE guarantees optimality in noise-free case 

Figure V-6 shows the true simulated structures and the predicted structures by 

different programs. For the helix curve, all three programs can recover the structure 

correctly. For the Brownian motion curve, both ChromSDE and MCMC5C can 

almost perfectly recover the true structure and BACH* can only reproduce a not-so-

accurate but similar structure. For the third case, MCMC5C produced a not-so-

accurate structure and BACH* completely failed in this case, while our ChromSDE 

still can perfectly recover the true structure. The result is not surprising since SDP 

method is the only one that can guarantee perfect recovery of the true structure when 

the input data is noise-free and the structure is uniquely localizable. Based on the 
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RMSD(root mean square deviation), ChromSDE also outperforms the other two 

methods in all the three simulated cases. 

 

Figure V-6. Predicted 3D structures by different programs using 
simulated data. The Red curve is the true structure and the green 
curve is the predicted structure. ChromSDE uses quadratic SDP here 
and the linear SDP has the same performance. 

V.3.1.2 ChromSDE outperforms the existing methods in noisy-data 

The previous section showed that ChromSDE could recover the optimal 

chromatin structure in the noise-free case. Now, we test whether ChromSDE is robust 

in a noisy data setting. To study this, we simulated noisy contact frequency data in 

different noise level based on the Brownian curve structure. For any two loci i and j, 

the noisy frequency F
ij

 is deviated from the true frequency 1/ij ijF D   ( ijD  is the 

spatial distance between loci i and j ) by adding a uniform random noise    within a 

given noise level. Precisely, F
ij
 F

ij
(1 )  where | |   is smaller than the noise level. 

RMSD: 0.52 

RMSD:0.25 RMSD:0.027 

RMSD: 0.07 

RMSD:0.044 

RMSD: 0.13 

RMSD: 0.0001 RMSD: 0.001 RMSD: 0.00005 

ChromSDE 

BACH* 

MCMC5C 

RMSD: 0.52 
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noise level <0.7. In contrast, the estimated conversion factor from BACH* tends to be 

incorrect (deviation around 0.35). This may be the reason why BACH* has worse 

performance comparing to others across different noise levels. Moreover, ChromSDE 

is faster than BACH and comparable to MCMC5C even though ChromSDE needs to 

search for the correct conversion factor but MCMC5C does not (Figure V-7(b)). In 

summary, the result shows that the linear SDP and quadratic SDP models perform 

quite consistently and ChromSDE is more robust and accurate than existing methods. 

V.3.1.3 Consensus Index indicates the degree of mixture of 3D structures 

In Hi-C and TCC experiments, the data is from a population of cells, and each 

potentially has different 3D chromosomal structure. The method section proposed to 

use the Consensus Index to determine if the data is from a consensus 3D structure. To 

show that the Consensus Index is a good indicator of the degree of mixture, we 

generated a frequency matrix mergeF  by merging the frequency matrix from the helix 

curve 1F  and the Brownian motion curve 2F  under different mix factor    (i.e.,

1 2(1 )mergeF F F     ). Figure V-7(d) shows that the Consensus Index is affected by 

both the noise level and mix factor.  For the same noise level, the Consensus Index 

approaches the minimum when the mix factor is close to 0.5. This indicates that the 

Consensus Index is the lowest when the two structures are highly mixed. For different 

noise levels, the Consensus Index decreases as the noise level increases. From Figure 

V-7 (d), we can estimate a lower bound for the percentage of the dominant 3D 

structure by examining the curve of noise level=0. Also we note that the estimated 

conversion factors by ChromSDE are quite consistent with its true value even under 

different mix factors and noise levels (Figure V-8 (c)). 
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GM06990 cell(GM)[76]. Each enzyme replicate is an independent observation of the 

chromosome structure in the same cell type. Hence, we expect the result produced by 

a robust algorithm using one enzyme data can be validated using the other enzyme 

data. 

We applied four different programs ChromSDE, BACH*, BACH and 

MCMC5C to predict the 3D structures of different chromosomes in the two cell lines 

using the Hi-C data from two replicates. For ChromSDE, BACH* and MCMC5C, the 

input is a normalized frequency matrix using the normalization pipeline by Yaffe and 

Tanay [133]. For BACH, we provide the raw Hi-C frequency and enzyme cutting 

point feature data.  

Table V-1: The conversion factors estimated by ChromSDP and BACH. 
Each table element is the mean value of the estimated conversion 
factor across all chromosomes, and the value in each bracket is the 
standard deviation of the corresponding mean. 

 

We compute Spearman correlation between the normalized frequency of one 

enzyme data and the estimated frequency ( ~ 1 /frequency distance  ) of the predicted 

structure from the other enzyme data.  (We use Spearman correlation instead of 

Pearson correlation since the Spearman correlation is independent to the conversion 

between frequency and distance; hence it is fair to every tested program.) Figure 

V-9(a) shows that ChromSDE (both Linear SDP and Quadratic SDP) outperforms the 

other programs by at least 5% across all four tested Hi-C datasets. Especially, in the 

Conversion	Factor	Estimation	

Quadratic	SDP Linear	SDP	 BACH	 BACH*	

mESC_NcoI	 0.5455(0.0167) 0.5437(0.0153) 0.4130(0.0129)	 0.4285(0.0439)

mESC_Hind3	 0.5354(0.0145) 0.5390(0.0183) 0.4182(0.0143)	 0.4408(0.0902)

GM_NcoI	 0.6284(0.0489) 0.5780(0.0382) 0.5942(0.0487)	 0.7078(0.3104)

GM_Hind3	 0.6381(0.0568) 0.6075(0.0490) 0.7342(0.3487)	 0.8818(0.6990)
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Figure V-10: 3D structures predicted by ChromSDE using different 
enzyme data (red: Hind3, green : NcoI). The 3D structures are built 
using 1Mbp resolution data, and quadratic SDP . (a) mouse ES cell. 
(b) human GM cell. 

(a)   

(b)  
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structure, and we find that two groups of Hist1h genes are separated quite far away 

(~1.5Mbp) in the linear genomic locations.  In contrast, the promoters of two groups 

of Hist1h genes are spatially close to each other. To test if these two groups of genes 

interact each other for transcription, we checked the Pol2 ChIA-PET data available in 

our lab. We found that there are strong interactions (red dash line) between these two 

promoter regions mediated by Pol2, which indicates that the histone genes are co-

regulated in the mouse ES cell. 

Moreover, we found that the dense region and the loose region in the predicted 

3D structure can be used to indicate the level of activity of those regions (from the 

snapshot of UCSC genome browser [63]). Dense regions (purple and blue color) 

correspond to repressive chromatin state in the cell, and there are few active histone 

modification and transcription factor-binding events occurring in those regions.  In 

contrast, loose regions (green and yellow color) correspond to active chromatin state 

in the cell, and there are a lot of histone modification and transcription factor-binding 

events occurring in those regions. Also, we found that loose regions usually 

containing more genes and are associated with early replication timing than the dense 

regions. It is also noted that the purple region is associated with LaminB1 binding and 

late replication timing, which suggests that Lamin may plays a part in the histone 

genes regulation and DNA replication. 
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V-4 Discussion 

In this chapter, we presented a method ChromSDE to reconstruct the 

consensus/dominate chromatin 3D structure of the given HiC data.  To our best 

knowledge, ChromSDE is the only method, which can guarantee recovering the 

correct structure in the noise-free case. In the noisy case, ChromSDE is much more 

accurate and robust than existing methods in both simulation and real data study. In 

addition, ChromSDE can automatically estimate the conversion factor, which is 

proved to change under different resolutions theoretically and empirically. 

Furthermore, we demonstrate that interesting biological findings can be uncovered 

from our predicted 3D structure. 

We also developed the Consensus Index to determine how good the data can 

be explained by a single 3D structure. However, Consensus Index may not be 

informative when the noise level of the data is high or the mixing structures are 

similar. When the mixing structures are similar to each other then ChromSDE will 

learn the average structure. One future research is to recover all the mixing structures 

using Hi-C data. 

There are some possible limitations for this study. Due to the dynamics and 

heterogeneity, the predicted structure from Hi-C data may be quite different from the 

real chromosome structure [119], although we believe it retains some statistical 

spatial features. And in this study, we only consider the intra-chromosome contact 

frequency and single chromosome modeling. However, the inter-chromosome contact 

may also affect the prediction of single chromosome structure, especially considering 

the volume exclusion effect among different chromosomes[119]. 
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CHAPTER - VI   Conclusions and Future Directions  

VI-1 Conclusion 

This thesis explored a new set of wet lab experimental data for protein-DNA 

interaction including PBM, ChIP-seq, Hi-C and ChIA-PET. It also studied two levels 

of protein-DNA interaction, namely, sequence and structure. At the sequence level, 

each chromosome is treated as a one-dimensional sequence, and each element (the 

site on DNA bound by protein) is encoded by its one-dimensional position in the 

chromosome (genomic location). At the structure level, each chromosome has a three-

dimensional structure in the nucleus, and each element on the chromosome is encoded 

by a three-dimensional coordinate (spatial location).  

Two computational problems in sequence level were presented in this thesis: 

motif enrichment analysis and de novo motif finding. Although they are classic 

bioinformatics problems, the new-generation data (ChIP-seq) provides the statistical 

power to solve more challenging problem (i.e., finding collaborated binding protein 

motifs) because the data is much higher resolution and higher throughput than 

previous generation data.  

In our work for motif enrichment analysis, a motif enrichment analysis 

program for ChIP-seq called CENTDIST was developed, which is described in 

Chapter III and published in [135]. The performance of motif enrichment analysis 

methods is heavily dependent on selecting the proper background and other parameter 

settings. Comparing with existing methods, CENTDIST is a background-free 

approach and utilizes frequency information as well as slope information (velocity) of 

the motif occurrence distribution around ChIP-seq peak to predict whether a motif is 
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enriched or not. We examined CENTDIST on 13 ES cell ChIP-seq datasets and 

demonstrated that it is better than existing methods, thus showing that good result can 

be obtained without requiring expert knowledge in configuring the program. This 

approach has been taken as the first step in integrating the automatic parameter tuning 

technique for solving the general enrichment analysis problem in the bioinformatics 

field. However, it should be noted that the proposed parameter tuning technique and 

scoring function proposed here may not be the best one. The parameter tuning 

technique ignores the bias in the multiple testing and the hybrid scoring function 

cannot directly associate with the common statistical measure like p-value. Thus, the 

framework can be improved by including multi-test correction and probabilistic 

modeling. 

 In our work for de novo motif finding, a novel motif finding program called 

SEME was developed, which is described in Chapter IV and published in Zhang, et al. 

[137]. SEME can automatically utilize positional bias and sequence rank bias in many 

experimental data (e.g., ChIP-seq, ChIP-chip and Promoter sequence) to improve the 

quality of the discovered motifs. In the task of finding co-TF motif in the ChIP-seq 

data, SEME not only reports more accurate co-TF motifs than other programs but also 

correctly estimates the position and sequence rank distribution of each co-TF’s motif. 

Such information provides useful insights on the interaction between the ChIPed TF 

and the predicted co-TFs, like interaction distance or indirect binding. A most 

important feature of SEME is that it does not rely on prior knowledge and applies 

unsupervised learning to let the data to tell its own story. It should be noted that our 

method requires enough sequence data in order to make a robust parameter estimation, 
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and will over-fit the data if the number of sequences is small, in which case more 

prior information is needed. 

The last research problem in this thesis is to reconstruct the three-dimension 

structure of chromosomes based on chromatin interaction (Hi-C) data. Recently, a few 

works have been proposed to build 3D model of genome using chromatin interaction, 

and all of them used hybrid heuristic to solve a non-convex optimization, which are 

not guaranteed to reconstruct the correct structure even in the noise-free case. To fill-

in the gap, we proposed a novel chromosome structure modeling algorithm called 

ChromSDE, which is a semi-definite programming (SDP) relaxation for the original 

non-convex optimization problem, and is guaranteed to recover the correct 3D 

structure in the noise-free case when the structure is uniquely localizable. Further, we 

proved that the parameter of conversion from contact frequency to spatial distance 

will change under different resolutions theoretically and empirically. Comparing to 

existing methods, ChromSDE does not assume the conversion parameter is known or 

fixed, but search the correct value of it based on the input data. Our result indicates 

that 3D structure can provide novel information for the spatial organization such as 

co-expression of far-away genes, different histone mark in condense or sparse regions, 

which are hidden in the linear view of the chromosome. The novel algorithm 

presented here is of considerable importance since it is one of the most theoretically 

sound and practical methods, which can translate the chromatin interaction data 

directly into 3D structure and makes a worthwhile contribution towards understanding 

genetic mechanism in the 3D perspective. However, it should be pointed out that, the 

current chromatin interaction data cannot differentiate the sister chromosomes and 

different cell cycles. So the predicted structure in this study may not reflect the true 
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structure of an individual chromosome when the structures from two sister 

chromosomes or from different cell cycles are different.  

In summary, the methods developed in this study have unlocked the potential 

provided by the new generation sequencing data of protein-DNA interaction and gave 

more in-depth understanding for biological mechanism compared to the existing 

methods. 

VI-2    Future works 

The proposed research problems in this thesis are current hot research topics. 

On one hand, with the new generation sequencing data, the focuses of some classic 

bioinformatics problem like motif enrichment and de novo motif finding have been 

shifted to the collaborative transcription factors instead of the main transcription 

factor. And there is still much room to improve the current algorithms to fulfill the 

new focuses. On the other hand, for the newborn bioinformatics problems like 

chromosome 3D modeling, there are a lot of unexplored (and not well-defined) 

directions for further investigation. Hence, I list some directions related to the 

research problems in this thesis, which I think are worth further study. 

1. Identifying co-TF through motif enrichment analysis can be further improved 

by incorporating the peak rank distribution. CENTDIST and other ChIP-based 

algorithms such as SpaMo have utilized the position distribution of the motif, 

but not peak rank distribution. When ChIP peaks are sorted by ChIP intensity, 

the low ranking ChIP peaks (low ChIP intensity) usually indicates weak 

binding or indirect binding. If a motif specially enriches in the low ranking 

ChIP peaks, it is possible to belong to a co-TF bound by the ChIPed TF. 
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Hence, based on the position distribution and peak rank distribution, it is 

possible to define different types of interactions between the ChIPed TF and 

co-TF(i.e., co-binding or indirect binding). 

2. Identifying co-TF motifs through de novo motif finding can be further 

improved by categorizing ChIP peaks.  Since co-TF only occurs in the subsets 

of the ChIP peaks, so it is easier to identify co-TF motif if we can correctly 

partition the input ChIP peaks into different subsets.  For example, the set of 

peaks can be partitioned into two sets: one with the ChIPed TF motif and the 

other without ChIPed TF motif. For the peaks with ChIPed TF motif, we can 

extract the DNA sequence around the ChIPed TF motif position, and apply 

SEME to identify co-TF motifs. For the peaks without ChIPed TF motif, they 

are usually less confident, and it will be helpful to incorporate other 

information like evolutionary conservation and performs motif finding only on 

the high confident regions. 

3. There is one open question in chromosome 3D modeling, that is, whether 

there exists a consensus 3D structure for a chromosome. Although consensus 

index has been proposed in Chapter V, the solution for the mixture structures 

are still not well developed.  Mathematically, it is a very challenging problem, 

even the problem is relaxed to high dimension as in ChromSDE.  However, it 

is possible to solve this problem by giving some prior information on the 

interaction. That is, if each interaction can be annotated to belong to which 

cell state, then the 3D structure for each state can be constructed using 

ChromSDE on the corresponding subset of spatial distance constraints. 
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Supp Table 1: Overlapping peak percentage among ChIP-seq experiments. 
Each entry in this table shows the percentage of overlap (within 100 
bp) of the ChIP-seq peak set. The overlap of TF1 and TF2’s peak 
sets is defined as |TF1∩TF2|/min(|TF1|,|TF2| ). 

 

Supp Table 2: Co-TFs list table for each tested ChIP-seq dataset. The table 
contains a list of motif families for the ChIPed TF and co-TFs for 
each ChIP-seq experiment.  

 

 

 

 

 

 

 

 

 

 

Appendix 

	 P300	 NANOG	OCT4	SOX2 SMAD1STAT3KLF4 ESRRB
TCFCP
‐2I1	

CMYC	NMYC	ZFX	 E2F1

P300	 100%	 44.47%	 31.68%	37.60%28.82% 22.14%27.48%24.43% 12.21% 3.44%	 5.73%	 4.77%	 7.25%

NANOG	 44.47%100%	 40.12%	57.58%73.27% 23.49%12.57%10.42% 8.16% 3.59%	 4.19%	 2.34%	 4.44%

OCT4	 31.68%40.12%	 100%	 37.76%42.27% 15.04%20.90%12.02% 11.49% 7.54%	 14.54%	9.65%	 16.62%

SOX2	 37.60%57.58%	 37.76%	100% 55.51% 16.34%18.38%14.05% 12.95% 2.60%	 5.04%	 4.18%	 7.47%

SMAD1	 28.82%73.27%	 42.27%	55.51%100%	 22.11%34.46%29.31% 18.21% 1.33%	 5.68%	 3.64%	 7.55%

STAT3	 22.14%23.49%	 15.04%	16.34%22.11% 100% 25.69%17.79% 14.49% 4.95%	 11.63%	8.25%	 13.08%

KLF4	 27.48%12.57%	 20.90%	18.38%34.46% 25.69%100% 12.06% 9.98% 18.70%	21.35%	12.18%	18.10%

ESRRB	 24.43%10.42%	 12.02%	14.05%29.31% 17.79%12.06%100%	 8.86% 5.08%	 5.76%	 5.70%	 4.63%

TCFCP2I1	12.21%8.16%	 11.49%	12.95%18.21% 14.49%9.98% 8.86%	 100%	 6.52%	 6.89%	 5.12%	 6.98%

CMYC	 3.44%	 3.59%	 7.54%	 2.60% 1.33%	 4.95% 18.70%5.08%	 6.52% 100%	 70.66%	30.77%	46.08%

NMYC	 5.73%	 4.19%	 14.54%	5.04% 5.68%	 11.63%21.35%5.76%	 6.89% 70.66%	100%	 26.54%	37.86%

ZFX	 4.77%	 2.34%	 9.65%	 4.18% 3.64%	 8.25% 12.18%5.70%	 5.12% 30.77%	26.54%	100%	 22.41%

E2F1	 7.25%	 4.44%	 16.62%	7.47% 7.55%	 13.08%18.10%4.63%	 6.98% 46.08%	37.86%	22.41%	100%

DataSet	 ChIPed	TF	motif	and	Co‐TF	motif	list

Nanog	 	NANOG	OCT	SOX	ERE	STAT

Oct4	 	NANOG	OCT	SOX	STAT	ERE	CP2	E2F	EBOX

SOX2	 	NANOG	OCT	SOX	STAT	ERE	CP2

Smad1	 	NANOG	OCT	SOX	STAT	ERE	CP2

Stat3	 	NANOG	OCT	SOX	STAT	ERE	CP2	E2F	EBOX

P300	 	NANOG	OCT	SOX	STAT	ERE	CP2

Klf4	 	NANOG	ERE	EBOX	ZF5	E2F	OCT	STAT	SOX

Esrrb	 	ERE	NANOG	OCT	SOX	STAT

Tcfcpl2	 	CP2	E2F	OCT	SOX	STAT

Cmyc	 EBOX	ZF5	E2F

Nmyc	 EBOX	ZF5	E2F	OCT	STAT

Zfx	 	CP2	EBOX	ZF5	E2F	OCT

E2f1	 	CP2	EBOX	ZF5	E2F	OCT	STAT	

AR	 FoxA1 GATA NF1 OCT1 CEBP ETS1 NKX3

ER	 AP1	FoxA1	PAX2	OCT1	GATA	CEBP	NF1	MYC	NKX3	SP1	LEF1	
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Other Statistical Measurements 

Given a set of positive sequences and negative sequences, and a PWM motif. We get 

all the sites matching the PWM motif higher than the PWM score cut-off (under 

FDR=0.001) in both positive sequences and negative sequences. Then, we define TP 

as the number of matched sites in the positive sequences and FP as the number of 

matched sites in the negative sequences. And TN and FN denote the number of 

unmatched sites in the positive sequences and the negative sequences, respectively. 

Then, some common measurements are defined as follow. 

 

PPV (Positive Predictive Value) 

TP
PPV

TP FP



 

(S. 1) 

SPC (Specificity) 

TN
SPC

TN FP



 

(S. 2) 

ASP(Average site performance 

2

TP TP
TP FP TP FNASP


   

(S. 3) 
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Supp Figure 1: Procedure for computing Zscore. Consider a set of positive 
sequences and negative sequences, and a PWM motif. Under the 
PWM score cutoff with FDR=0.001, we get all the sites matching the 
PWM motif in both positive sequences and negative sequences. Then, 
we define TP be the number of matched sites in the positive 
sequences and FP be the number of matched sites in the negative 
sequences. And T and F denote the total number of sites in the 
positive and negative sequences, respectively. 

 

Supp Table 3: The table of TRANSFAC TF Families and their 
corresponding members (vertebrate only). 

TF	Family	 Family	Members:	{TRANSFAC	PWM	Identifier|Motif	Name}	

HELIOS	 M01003|V$HELIOSA_01	 M01004|V$HELIOSA_02	 M00935|V$NFAT_Q4_01	
M00302|V$NFAT_Q6	

MOVO	 M01104|V$MOVOB_01

GLI	 M01037|V$GLI_Q2	M00448|V$ZIC1_01	M00449|V$ZIC2_01	M00450|V$ZIC3_01

AP2	 M00800|V$AP2_Q3	 M00189|V$AP2_Q6	 M00915|V$AP2_Q6_01	
M00469|V$AP2ALPHA_01	 M01045|V$AP2ALPHA_02	 M01047|V$AP2ALPHA_03	
M00470|V$AP2GAMMA_01	M00468|V$AP2REP_01	

AP3	 M00690|V$AP3_Q6

AP1	 M00517|V$AP1_01	M00199|V$AP1_C	M00173|V$AP1_Q2	M00924|V$AP1_Q2_01	
M00188|V$AP1_Q4	 M00926|V$AP1_Q4_01	 M00174|V$AP1_Q6	
M00925|V$AP1_Q6_01	 M00172|V$AP1FJ_Q2	 M00037|V$NFE2_01	
M00285|V$TCF11_01	M00284|V$TCF11MAFG_01	

AP4	 M00005|V$AP4_01	 M00175|V$AP4_Q5	 M00176|V$AP4_Q6	
M00927|V$AP4_Q6_01	

MEF2	 M00403|V$AMEF2_Q6	 M00406|V$HMEF2_Q6	 M00006|V$MEF2_01	
M00231|V$MEF2_02	 M00232|V$MEF2_03	 M00233|V$MEF2_04	
M00941|V$MEF2_Q6_01	 M00405|V$MMEF2_Q6	 M00026|V$RSRFC4_01	
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M00407|V$RSRFC4_Q2

MEF3	 M00319|V$MEF3_B

ROAZ	 M00467|V$ROAZ_01

CACCC	 M00720|V$CACBINDINGPROTEIN_Q6	M00721|V$CACCCBINDINGFACTOR_Q6

SPZ	 M00446|V$SPZ1_01

SEF1	 M00214|V$SEF1_C

HSF	 M00641|V$HSF_Q6	 M00146|V$HSF1_01	 M01023|V$HSF1_Q6	
M00147|V$HSF2_01	

DEAF1	 M01001|V$DEAF1_01	M01002|V$DEAF1_02

PAX	 M01069|V$GZF1_01	M00808|V$PAX_Q6	M00326|V$PAX1_B	M00098|V$PAX2_01	
M00486|V$PAX2_02	 M00360|V$PAX3_01	 M00327|V$PAX3_B	
M00373|V$PAX4_01	 M00377|V$PAX4_02	 M00378|V$PAX4_03	
M00380|V$PAX4_04	 M00143|V$PAX5_01	 M00144|V$PAX5_02	
M00097|V$PAX6_01	 M00979|V$PAX6_Q2	 M00717|V$PAX8_01	
M00328|V$PAX8_B	M00329|V$PAX9_B	

EGR	 M00807|V$EGR_Q6	 M00243|V$EGR1_01	 M00246|V$EGR2_01	
M00245|V$EGR3_01	M00982|V$KROX_Q6	M00244|V$NGFIC_01	

HNF1	 M00132|V$HNF1_01	 M00206|V$HNF1_C	 M00790|V$HNF1_Q6	
M01011|V$HNF1_Q6_01	

MYB	 M00004|V$CMYB_01	 M00773|V$MYB_Q3	 M00913|V$MYB_Q5_01	
M00183|V$MYB_Q6	

HNF6	 M00639|V$HNF6_Q6

WT1	 M01118|V$WT1_Q6

PIT1	 M00802|V$PIT1_Q6

SP1	 M01113|V$CACD_01	 M00695|V$ETF_Q6	 M00255|V$GC_01	 M00649|V$MAZ_Q6	
M00491|V$MAZR_01	 M00008|V$SP1_01	 M00933|V$SP1_Q2_01	
M00932|V$SP1_Q4_01	 M00196|V$SP1_Q6	 M00931|V$SP1_Q6_01	
M01068|V$UF1H3BETA_Q6	

SP3	 M00665|V$SP3_Q3

ZBRK1	 M01105|V$ZBRK1_01

ZID	 M00085|V$ZID_01

BACH	 M00495|V$BACH1_01	M00490|V$BACH2_01

SOX	 M01014|V$SOX_Q6	 M01131|V$SOX10_Q6	 M01016|V$SOX17_01	
M00042|V$SOX5_01	M00410|V$SOX9_B1	

ARP1	 M00155|V$ARP1_01

XPF1	 M00684|V$XPF1_Q6

IPF	 M00436|V$IPF1_Q4	M01013|V$IPF1_Q4_01

AFP1	 M00616|V$AFP1_Q6

CART1	 M00416|V$CART1_01

NFKB	 M00053|V$CREL_01	 M00054|V$NFKAPPAB_01	 M00051|V$NFKAPPAB50_01	
M00052|V$NFKAPPAB65_01	 M00208|V$NFKB_C	 M00194|V$NFKB_Q6	
M00774|V$NFKB_Q6_01	M00651|V$NFMUE1_Q6	

ZF5	 M00716|V$ZF5_01	M00333|V$ZF5_B

TGTGGT	 M00769|V$AML_Q6	 M00271|V$AML1_01	 M00751|V$AML1_Q6	
M01079|V$CBF_01	 M01080|V$CBF_02	 M00722|V$COREBINDINGFACTOR_Q6	
M00731|V$OSF2_Q6	M00211|V$PADS_C	M00984|V$PEBP_Q6	

AHR	 M00139|V$AHR_01	 M00778|V$AHR_Q5	 M00235|V$AHRARNT_01	
M00237|V$AHRARNT_02	M00976|V$AHRHIF_Q6	

MAF	 M00648|V$MAF_Q6	M00983|V$MAF_Q6_01
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BRCA	 M01082|V$BRCA_01

DBP	 M00624|V$DBP_Q6

CP2	 M00072|V$CP2_01	M00947|V$CP2_02

STAT	 M00223|V$STAT_01	 M00777|V$STAT_Q6	 M00224|V$STAT1_01	
M00492|V$STAT1_02	 M00496|V$STAT1_03	 M00225|V$STAT3_01	
M00497|V$STAT3_02	 M00498|V$STAT4_01	 M00457|V$STAT5A_01	
M00460|V$STAT5A_02	 M00493|V$STAT5A_03	 M00499|V$STAT5A_04	
M00459|V$STAT5B_01	M00494|V$STAT6_01	M00500|V$STAT6_02	

CRX	 M00623|V$CRX_Q4

ZNF219	 M01122|V$ZNF219_01

STAF	 M00262|V$STAF_01	M00264|V$STAF_02

BRACH	 M00150|V$BRACH_01	 M01019|V$TBX5_01	 M01020|V$TBX5_02	
M01044|V$TBX5_Q5	

LDSPOLYA	 M00317|V$LDSPOLYA_B

OLF1	 M00261|V$OLF1_01

DEC	 M00997|V$DEC_Q1

OCT	 M00210|V$OCT_C	M00795|V$OCT_Q6	M00135|V$OCT1_01	M00136|V$OCT1_02	
M00137|V$OCT1_03	 M00138|V$OCT1_04	 M00161|V$OCT1_05	
M00162|V$OCT1_06	 M00248|V$OCT1_07	 M00342|V$OCT1_B	
M00930|V$OCT1_Q5_01	 M00195|V$OCT1_Q6	 M01125|V$OCT4_01	
M01124|V$OCT4_02	

XVENT1	 M00445|V$XVENT1_01

LUN1	 M00480|V$LUN1_01

CMAF	 M01070|V$CMAF_01

LMAF	 M01139|V$LMAF_Q2

MEIS1	 M00419|V$MEIS1_01	 M00420|V$MEIS1AHOXA9_01	
M00421|V$MEIS1BHOXA9_02	

NF1	 M00193|V$NF1_Q6	M00806|V$NF1_Q6_01

GATA	 M00203|V$GATA_C	 M00789|V$GATA_Q6	 M00075|V$GATA1_01	
M00126|V$GATA1_02	 M00127|V$GATA1_03	 M00128|V$GATA1_04	
M00346|V$GATA1_05	 M00347|V$GATA1_06	 M00076|V$GATA2_01	
M00348|V$GATA2_02	 M00349|V$GATA2_03	 M00077|V$GATA3_01	
M00350|V$GATA3_02	 M00351|V$GATA3_03	 M00632|V$GATA4_Q3	
M00462|V$GATA6_01	M00278|V$LMO2COM_02	

E2	 M00107|V$E2_01	M00181|V$E2_Q6	M00928|V$E2_Q6_01	

SZF11	 M01109|V$SZF11_01

EN	 M00396|V$EN1_01

FOX	 M00809|V$FOX_Q2	 M00130|V$FOXD3_01	 M00422|V$FOXJ2_01	
M00423|V$FOXJ2_02	 M00630|V$FOXM1_01	 M00473|V$FOXO1_01	
M00474|V$FOXO1_02	 M00477|V$FOXO3_01	 M01137|V$FOXO3A_Q1	
M00472|V$FOXO4_01	 M00476|V$FOXO4_02	 M00987|V$FOXP1_01	
M00992|V$FOXP3_Q4	 M00290|V$FREAC2_01	 M00291|V$FREAC3_01	
M00292|V$FREAC4_01	 M00293|V$FREAC7_01	 M00129|V$HFH1_01	
M00289|V$HFH3_01	 M00742|V$HFH4_01	 M00294|V$HFH8_01	
M00791|V$HNF3_Q6	 M01012|V$HNF3_Q6_01	 M00724|V$HNF3ALPHA_Q6	
M00131|V$HNF3B_01	 M00148|V$SRY_01	 M00160|V$SRY_02	
M00267|V$XFD1_01	M00268|V$XFD2_01	M00269|V$XFD3_01	

MYOGNF1	 M00056|V$MYOGNF1_01

RFX	 M00975|V$RFX_Q6	M00280|V$RFX1_01	M00281|V$RFX1_02	

GCM	 M00634|V$GCM_Q2
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PBX	 M00998|V$PBX_Q3	 M00096|V$PBX1_01	 M00124|V$PBX1_02	
M01017|V$PBX1_03	

RUSH1A	 M01107|V$RUSH1A_02

SMAD	 M00792|V$SMAD_Q6	 M00974|V$SMAD_Q6_01	 M00701|V$SMAD3_Q6	
M00733|V$SMAD4_Q6	

EFC	 M00626|V$EFC_Q6

TAACC	 M00331|V$TAACC_B

BRN2	 M00145|V$BRN2_01

LYF1	 M00141|V$LYF1_01

LRF	 M01100|V$LRF_Q2

BLIMP1	 M01066|V$BLIMP1_Q6

TFIIA	 M00707|V$TFIIA_Q6

TFIII	 M00706|V$TFIII_Q6

CREB	 M00017|V$ATF_01	 M00338|V$ATF_B	 M00691|V$ATF1_Q6	 M00513|V$ATF3_Q6	
M00514|V$ATF4_Q2	 M00483|V$ATF6_01	 M00039|V$CREB_01	
M00113|V$CREB_02	 M00177|V$CREB_Q2	 M00916|V$CREB_Q2_01	
M00801|V$CREB_Q3	 M00178|V$CREB_Q4	 M00917|V$CREB_Q4_01	
M00981|V$CREBATF_Q6	 M00040|V$CREBP1_01	 M00179|V$CREBP1_Q2	
M00041|V$CREBP1CJUN_01	 M00694|V$E4F1_Q6	 M00260|V$HLF_01	
M00325|V$NRSE_B	 M00256|V$NRSF_01	 M01028|V$NRSF_Q4	
M00114|V$TAXCREB_01	M00115|V$TAXCREB_02	M00036|V$VJUN_01	

ETS	 M00743|V$CETS168_Q6	 M00032|V$CETS1P54_01	 M00074|V$CETS1P54_02	
M01078|V$CETS1P54_03	 M00746|V$ELF1_Q6	 M00007|V$ELK1_01	
M00025|V$ELK1_02	 M00771|V$ETS_Q4	 M00971|V$ETS_Q6	 M00339|V$ETS1_B	
M00340|V$ETS2_B	 M00341|V$GABP_B	 M00531|V$NERF_Q2	
M00655|V$PEA3_Q6	M00658|V$PU1_Q6	M00678|V$TEL2_Q6	

S8	 M00099|V$S8_01

VMAF	 M00035|V$VMAF_01

BCD	 M01117|V$OTX_Q1

LRH1	 M01142|V$LRH1_Q5

SUH	 M01112|V$RBPJK_01	M01111|V$RBPJK_Q4

MIF1	 M00279|V$MIF1_01

COMP1	 M00057|V$COMP1_01

VMYB	 M00003|V$VMYB_01	M00227|V$VMYB_02

CDC5	 M00478|V$CDC5_01

NANOG	 M01123|V$NANOG_01

HIC1	 M01072|V$HIC1_02	M01073|V$HIC1_03

CEBP	 M00159|V$CEBP_01	 M00201|V$CEBP_C	 M00190|V$CEBP_Q2	
M00912|V$CEBP_Q2_01	 M00770|V$CEBP_Q3	 M00116|V$CEBPA_01	
M00109|V$CEBPB_01	 M00117|V$CEBPB_02	 M00621|V$CEBPDELTA_Q6	
M00622|V$CEBPGAMMA_Q6	

ATCGAT	 M00095|V$CDP_01	 M00102|V$CDP_02	 M00104|V$CDPCR1_01	
M00105|V$CDPCR3_01	M00106|V$CDPCR3HD_01	

RP58	 M00532|V$RP58_01

WHN	 M00332|V$WHN_B

E2F	 M00024|V$E2F_01	 M00050|V$E2F_02	 M00516|V$E2F_03	 M00803|V$E2F_Q2	
M00425|V$E2F_Q3	 M00918|V$E2F_Q3_01	 M00426|V$E2F_Q4	
M00919|V$E2F_Q4_01	 M00427|V$E2F_Q6	 M00920|V$E2F_Q6_01	
M00428|V$E2F1_Q3	 M00938|V$E2F1_Q3_01	 M00430|V$E2F1_Q4	
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M00939|V$E2F1_Q4_01	 M00431|V$E2F1_Q6	 M00940|V$E2F1_Q6_01	
M00736|V$E2F1DP1_01	 M00740|V$E2F1DP1RB_01	 M00737|V$E2F1DP2_01	
M00738|V$E2F4DP1_01	M00739|V$E2F4DP2_01	

TEF	 M00672|V$TEF_Q6	M00704|V$TEF1_Q6

GGG	 M00986|V$CHCH_01

HOX	 M00023|V$HOX13_01	 M00395|V$HOXA3_01	 M00640|V$HOXA4_Q2	
M01108|V$HOXA7_01	

SREB	 M00776|V$SREBP_Q3	M00221|V$SREBP1_02	M00749|V$SREBP1_Q6	

HMGIY	 M01010|V$HMGIY_Q3	M00750|V$HMGIY_Q6

MINI	 M00323|V$MINI19_B	M00324|V$MINI20_B	M00321|V$MUSCLE_INI_B	

SRF	 M00152|V$SRF_01	M00215|V$SRF_C	M00810|V$SRF_Q4	M00922|V$SRF_Q5_01	
M01007|V$SRF_Q5_02	M00186|V$SRF_Q6	

HES	 M01009|V$HES1_Q2

ATATA	 M00311|V$ATATA_B

R	 M00273|V$R_01

HP1SITE	 M00725|V$HP1SITEFACTOR_Q6

HEN	 M00068|V$HEN1_01	M00058|V$HEN1_02	M00644|V$LBP1_Q6	

CAAT	 M00687|V$ALPHACP1_01	 M00254|V$CAAT_01	 M00200|V$CAAT_C	
M00334|V$DTYPEPA_B	 M00287|V$NFY_01	 M00209|V$NFY_C	
M00185|V$NFY_Q6	 M00775|V$NFY_Q6_01	 M00059|V$YY1_01	
M00069|V$YY1_02	M00793|V$YY1_Q6	M01035|V$YY1_Q6_02	

ZEC	 M01081|V$ZEC_01

LEF	 M00805|V$LEF1_Q2	M01022|V$LEF1_Q2_01	M00978|V$LEF1TCF1_Q4	

MTF1	 M00650|V$MTF1_Q4

TGIF	 M00418|V$TGIF_01

TATA	 M00100|V$CDXA_01	 M00101|V$CDXA_02	 M00320|V$MTATA_B	
M00252|V$TATA_01	M00216|V$TATA_C	M00471|V$TBP_01	M00980|V$TBP_Q6	

PTF1BETA	 M00657|V$PTF1BETA_Q6

TST1	 M00133|V$TST1_01

AAAAA	 M00734|V$CIZ_01

CDX	 M00991|V$CDX_Q5	M00729|V$CDX2_Q5

MRF2	 M00454|V$MRF2_01

HAND1E47	 M00222|V$HAND1E47_01

HMX1	 M00433|V$HMX1_01

TITF1	 M00432|V$TITF1_Q3

PLZF	 M01075|V$PLZF_02

CAP	 M00253|V$CAP_01

TTF1	 M00794|V$TTF1_Q6

ERE	 M00158|V$COUP_01	 M00765|V$COUP_DR1_Q6	 M01036|V$COUPTF_Q6	
M00762|V$DR1_Q3	 M00966|V$DR3_Q4	 M00965|V$DR4_Q2	 M00191|V$ER_Q6	
M00959|V$ER_Q6_02	 M00511|V$ERR1_Q2	 M00526|V$GCNF_01	
M00134|V$HNF4_01	 M00411|V$HNF4_01_B	 M00764|V$HNF4_DR1_Q3	
M00967|V$HNF4_Q6	 M01031|V$HNF4_Q6_01	 M01032|V$HNF4_Q6_02	
M01033|V$HNF4_Q6_03	 M00638|V$HNF4ALPHA_Q6	 M00646|V$LFA1_Q6	
M00766|V$LXR_DR4_Q3	 M00647|V$LXR_Q3	 M00763|V$PPAR_DR1_Q2	
M00242|V$PPARA_01	 M00518|V$PPARA_02	 M00512|V$PPARG_01	
M00515|V$PPARG_02	 M00528|V$PPARG_03	 M01152|V$PXRRXR_01	
M01153|V$PXRRXR_02	 M01138|V$RORA_Q4	 M00156|V$RORA1_01	
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M00157|V$RORA2_01	 M00727|V$SF1_Q6	 M01132|V$SF1_Q6_01	
M00239|V$T3R_01	M00963|V$T3R_Q6	M00671|V$TCF4_Q5	M00444|V$VDR_Q3	
M00961|V$VDR_Q6	M00711|V$ZTA_Q2	

GATA_DIMER	 M00078|V$EVI1_01	 M00079|V$EVI1_02	 M00080|V$EVI1_03	
M00081|V$EVI1_04	M00082|V$EVI1_05	M00011|V$EVI1_06	

PITX2	 M00482|V$PITX2_Q2

FAC1	 M00456|V$FAC1_01

CLOX	 M00103|V$CLOX_01

DMRT	 M01146|V$DMRT1_01	 M01147|V$DMRT2_01	 M01148|V$DMRT3_01	
M01149|V$DMRT4_01	M01150|V$DMRT5_01	M01151|V$DMRT7_01	

MZF1	 M00083|V$MZF1_01	M00084|V$MZF1_02

BARBIE	 M00238|V$BARBIE_01

POU	 M00744|V$POU1F1_Q6	 M00463|V$POU3F2_01	 M00464|V$POU3F2_02	
M00465|V$POU6F1_01	

ALX4	 M00619|V$ALX4_01

CHOP	 M00249|V$CHOP_01

AT_RICH	 M00437|V$CHX10_01	M00510|V$LHX3_01

MSX1	 M00394|V$MSX1_01

KAISO	 M01119|V$KAISO_01

P53	 M00034|V$P53_01	M00272|V$P53_02	M00761|V$P53_DECAMER_Q2	

Initiator	 M00315|V$GEN_INI_B	M00313|V$GEN_INI2_B	M00314|V$GEN_INI3_B	

FXR	 M00767|V$FXR_IR1_Q6	M00631|V$FXR_Q3	M00964|V$PXR_Q2	

IK	 M00086|V$IK1_01	M00087|V$IK2_01	M00088|V$IK3_01

AR	 M00481|V$AR_01	 M00953|V$AR_02	 M00956|V$AR_03	 M00447|V$AR_Q2	
M00962|V$AR_Q6	 M00955|V$GR_01	 M00192|V$GR_Q6	 M00921|V$GR_Q6_01	
M00205|V$GRE_C	M00954|V$PR_01	M00957|V$PR_02	M00960|V$PR_Q2	

SREB/EBOX	 M00220|V$SREBP1_01

ACAAT	 M00309|V$ACAAT_B

POLYC	 M00212|V$POLY_C

POLYA	 M00310|V$APOLYA_B	M00318|V$LPOLYA_B

BEL1	 M00312|V$BEL1_B

IRF	 M00699|V$ICSBP_Q6	 M00772|V$IRF_Q6	 M00972|V$IRF_Q6_01	
M00062|V$IRF1_01	 M00747|V$IRF1_Q6	 M00063|V$IRF2_01	
M00453|V$IRF7_01	M00258|V$ISRE_01	

P300	 M00033|V$P300_01

NCX	 M00484|V$NCX_01

EBF	 M00977|V$EBF_Q6

EBOX	 M00236|V$ARNT_01	 M00539|V$ARNT_02	 M01116|V$CLOCKBMAL_Q6	
M01145|V$CMYC_01	 M01154|V$CMYC_02	 M00693|V$E12_Q6	
M00804|V$E2A_Q2	 M00973|V$E2A_Q6	 M00002|V$E47_01	 M00071|V$E47_02	
M01034|V$EBOX_Q6_01	 M00698|V$HEB_Q6	 M00797|V$HIF1_Q3	
M00466|V$HIF1_Q5	 M00538|V$HTF_01	 M00277|V$LMO2COM_01	
M00119|V$MAX_01	 M00799|V$MYC_Q2	 M00118|V$MYCMAX_01	
M00123|V$MYCMAX_02	 M00615|V$MYCMAX_03	 M00322|V$MYCMAX_B	
M00001|V$MYOD_01	 M00184|V$MYOD_Q6	 M00929|V$MYOD_Q6_01	
M00712|V$MYOGENIN_Q6	 M00055|V$NMYC_01	 M00985|V$STRA13_01	
M00993|V$TAL1_Q6	 M00066|V$TAL1ALPHAE47_01	
M00065|V$TAL1BETAE47_01	M00070|V$TAL1BETAITF2_01	M01029|V$TFE_Q6	
M00121|V$USF_01	 M00122|V$USF_02	 M00217|V$USF_C	 M00187|V$USF_Q6	
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M00796|V$USF_Q6_01	 M00726|V$USF2_Q6	 M00228|V$VBP_01	
M00251|V$XBP1_01	

AIRE	 M00999|V$AIRE_01	M01000|V$AIRE_02

E4BP4	 M00045|V$E4BP4_01

CACCT	 M00412|V$AREB6_01	 M00413|V$AREB6_02	 M00414|V$AREB6_03	
M00415|V$AREB6_04	M00073|V$DELTAEF1_01	

NRF	 M00652|V$NRF1_Q6	M00108|V$NRF2_01	M00821|V$NRF2_Q4	

GFI	 M00250|V$GFI1_01	M01067|V$GFI1_Q6	M01058|V$GFI1B_01	

NKX	 M00485|V$NKX22_01	 M00240|V$NKX25_01	 M00241|V$NKX25_02	
M01043|V$NKX25_Q5	 M00451|V$NKX3A_01	 M00424|V$NKX61_01	
M00489|V$NKX62_Q2	

RREB	 M00257|V$RREB1_01



136 

 

 


