

Guilt by Association of Sequence Similarity

PDGF-21SLGSLTIAE PAMIAECKTREEVFCICRRL?DR??34p28sis61LARGKRSLGSLSVAE PAMIAECKTRTEVFEISRRLIDRTN100

APBC2007, 15-17 Jan 2007

	protein-protein BLAST	
Nucleotide		
<u>Search</u>	NRYVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFUR MIUEQNTATIVNVTNLKEREECKCAQYUPDQGCUTYGNVRVSVEDVTVLVDYTVRKPC IQQVGDVTNRKPQRLITQFHFTSUPDFGVPFTPIGNLKFLKKVKACNPQYAGAIVVHC SAGVGRTGTFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLE HYLYGDTELE	<
Set subsequence	From: To:	
<u>Choose database</u>	nr 💌	
Do CD-Search		
Now:	BLASTI or (Resetquery (Reset all	_
Options	for advanced blasting	
Limit by entrez	or select from: All organisms	
query		
2007. 15-17 Jan 200	7 Copyright 2	2007 © Limsoon We

	16
Examp	le Alignment with PTPα
Score = Identitic	632 bits (1629), Expect = e-180 s = 294/302 (97%), Pocitivos = 294/332 (97%)
Query: 1	SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACP:QATCEAASXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
al :	SPSTNRKYPPI.PVDKI.EEEINRRMADDNKI.FREEFVAI.PACP QATCEAAS R
\$6jCt: 202	SPSINKKYPPLPVDALEEEINKKMADDINLPKEEPNALPACP.QAICEARSKEENKENNK 201
Ouerv: 61	YVN ILPYDHSRVHLTPVEGVPDSDY INASFINGYOEKNKFIAAOGPKEETVNDFWRMIWE 120
(,	YVN ILPYDHSRVHLTPVEGVPDSDY I NASF I NGYQEKNKF I AAQGPKEETVNDFWRMI WE
Sbjct: 262	YVN ILPYDHSRVHLTPVEGVPDSDY I NASF I NGYQEKNKF I AAQGPKEETVNDFWRMI WE 321
A . 101	
Query: 121	UNIAIIVMVINLKERKECKCAUYWPDUUCUVIYGNVXVSVEDVIVLVDVIVRKECIUUVUD OMTATIUMUTMI KEDKECKCAUVWDDOGCWITYGNVXVSVEDVIU UNVTUDKECIOOUGD
Shict: 322	ONTATIWWINIKERKECKCAOYWPDOGCWIIONXXXXVEDVIVIJVDIIWKECIOOVGD 381
	<pre></pre>
Query: 181	VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG 240
	VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
Sbjet, 382	VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVORTG 441
Onersz: 241	TEVVIDAM DIMESERVDVYGEVSELRAORCONVOTDMOVVELVOALLEHVLVGDTELE 300
Quo19. 241	TFVVIDAMLDMMHSERKVDVYGFVSRIRAORCOMVOTDMOVVFIVOALLEHVLVGDTELE
Sbjet: 442	TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQVVFIYQALLEHYLYGDTELE 501
APBC2007, 15-17 Jan 200	7 Copyright 2007 © Limsoon Wong

Copyright 2007 © Limsoon Wor

References

- S.F.Altshcul et al. "Basic local alignment search tool", JMB, 215:403--410, 1990
- S.F.Altschul et al. "Gapped BLAST and PSI-BLAST: A new generation of protein database search programs", *NAR*, 25(17):3389--3402, 1997
- D. Brown et al. "Homology Search Methods", *The Practical Bioinformatician*, Chapter 10, pp 217—244, WSPC, 2004
- S.B.Needleman & C.D.Wunsch. "A general method applicable to the search for similarities in the amino acid sequence of two proteins", *JMB*, 48:444—453, 1970
- J. Park et al. "Sequence comparisons using multiple sequences detect three times as many remote homologs as pairwise methods", *JMB*, 284(4):1201--1210, 1998
- T.F.Smith & M.S.Waterman. "Identification of common molecular subsequences", JMB, 147:195—197, 1981
- Z. Zhang et al. "Protein sequence similarity searches using patterns as seeds", NAR, 26(17):3986—3990, 1996

Ex TI	amples of Inv he IMP [alid Function Assig Dehydrogen	^{gnment:} ases (IMPD	H)
m	Oracritere	18 ent	nies were found	Batting (Car Bart
NF00181857	Methanococcus jannaschii	E64331 conserved hypothetical protein MJ0653	Y653_METIA Hypothetical protein MJ0653	standing of the second
NF00187788	Archaeoglobus fiilgidus	C69355 MJ0653 homelog AF0847 ALT_KAMES: inceine-monophosphate dehydrogenase (guaB-1) homelog [misnomer]	022411 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-1)	g2542754 inosine monophosphate dehydrogenase (guaB-1) NP_059621 inosine monophosphate dehydrogenase (guaB-1)
NF00188267	Archaeoglobus fulgidus	F692514 yhcV homolog 2 ALT_NAMES: inosine-monophosphete dehydrogenase (guaB-2) homolog [misnomer]	O28162 INOSINE MONOPHOSPHATE DEHYDROGENASE (GUAB-2)	<u>226-93410</u> inosine monophosphate dehydrogenase (guaB-2) <u>NP_070943</u> inosine monophosphate dehydrogenase (guaB-2)
NF00188697 NF00197776	Archaes A partia In co	al list of IMPdel omplete genome public d	iydrogenase mis s remaining in so atabases	nomers ^{tre} inophosphate d grotem nonophosphate d grotem
NF00414709	Methanothermobacter thermautotrophicus	ALT_NAMES: inosine-monophosphete dehydrogenase related protein V [misnomer]	027294 INOSINE-9-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN V	onophosphote dehydrogenase related protein V <u>NP 276334</u> inosine.9-monophosphote dehydrogenase related protein V
NF00414811	Methanothermobacter thermautotrophicus	D59035 MJ1232 protein homolog MTH126 ALT_NAMES: inosine-9-monophosphate dehydrogenase related protein VII [misnomer]	026229 INOSINE-9-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN VII	2021166 inosine-9-monophosphate dehydrogenase related protein VII NP_275269 inosine-9-monophosphate dehydrogenase related protein VII
	Methanothermobacter	H69232 MJ1225-related protein MTH992 ALT_NAMSS: inosine-9-monophosphate debudiosgrasse related protein DC (mispomer)	027073 INOSINE .9-MONOPHOSPHATE DEHYDROGENASE RELATED PROTEIN IX	225220923 inosine-9-monophosphate dehydrogenase related protein IX <u>NP_276127</u> inosine-9-monophosphate
NF00414837	inermation opticus			dehydrogenase related protein IX

Omma		annes	~
	orange ₁	banana ₁	
apple ₁	Color = red vs orange Skin = smooth vs rough Size = small vs small Shape = round vs round	Color = red vs yellow Skin = smooth vs smooth Size = small vs small Shape = round vs oblong	
apple ₂	Color = red vs orange Skin = smooth vs rough Size = small vs small Shape = round vs round	Color = red vs yellow Skin = smooth vs smooth Size = small vs small Shape = round vs oblong	
orange ₂	Color = orange vs orange Skin = rough vs rough Size = small vs small Shape = round vs round	Color = orange vs yellow Skin = rough vs smooth Size = small vs small Shape = round vs oblong	

Copyright 2007 © Limsoon Won

Phylogenetic Profiling: P-value

The probability of observing by chance z occurrences of genes X and Y in a set of N lineages, given that X occurs in x lineages and Y in y lineages is

$$P(z|N, x, y) = \frac{w_z * \overline{w_z}}{W}$$

where

$$w_{z} = \binom{N}{z}$$
No. of ways to distribute z
co-occurrences over N
lineage's
$$\overline{w_{z}} = \binom{N-z}{x-z} * \binom{N-z}{y-z}$$
No. of ways of distribute
the remaining $x - z$ and $y - z$
occurrences over the remaining
 $N - z$ lineage's
$$w_{z} = \binom{N}{x} * \binom{N}{y}$$
No. of ways of
distributing X and Y
over N lineage's
without restriction

Keyword.	No. of non- homologous proteins in group	No. neighbors in keyword group	No. neighbors in random group
Ribosome	60	197	27
Transcription	36	17	10
tRNA synthase and ligase	26	11	5
Membrane proteins*	25	89	5
Flagellar	21	89	3
Iron, ferric, and ferritin	19	31	2
Galactose metabolism	18	31	2
Molybdoterin and Molybden	um,		
and molybdoterin	12	6	1
Hypothetical [†]	1.084	108.226	8,440

IOLE	un: How it	VVOrk	S	
Abbriviation	Encoding		Description	
ec	single value	Extinction coefficier	nt predicted by <u>ExPASy ProtParam</u>	1
gravy	single value	Hydrophobicity pre-	dicted by ExPASy ProtParam	
nneg	single value	Number of negative	ely charged residues counted by	ExPASy ProtParam
npos	single value	Number of positive	ly charged residues counted by E	xPASy ProtParam
nglyc	potential in 5 bins	N-glycosylation site	es predicted by NetNGlyc	
oglyc	potential-threshold in 10 bins	GalNAc O-glycosyla	ations predicted by NetOGlyc	
pest	fraction in 10 bins	PEST rich regions	identified by PESTfind	
phosST	potential in 10 bins	Serine and threoning	ne phosporylations predicted by h	<u>letPhos</u>
phosY	potential in 10 bins	Tyrosine phospory	lations predicted by NetPhos	Extract feature
psipred	helix, sheet, coil in 5 bins	Predicted seconda	ry structure from PSI-Pred	profile of protein
psort	20 probabilities	Subcellular location	n predtions by <u>PSORT</u>	using various
seg	fraction in 10 bins	Low-complexity reg	jions identified by SEG	nuclistion moths
signalp	meanS, maxY, log(cleavage pos)	Signal peptide prer	dictions made by SignalP	prediction metho
tmhmm	inside, outside, membrane in 5 bins	Transmembrane h	elix predictions made by TMHMM	
	Category	Hidden	Input	t features
Amino acid t	pinsynthesis	30	ec psipred psort tmbmm	
		30	ec psipred trohmm	\
		30	ec netodlyc psipred psort	
	Average the outp	out of 30	graw psipred psort	
	the 5 component	ANNS 30	onlyc neinred neart	

ProtFun: Exar	nple	Outŗ	out		ļS
	Prion	A4	TTHY		
Amino acid biosynthesis Biosynthesis of cofactors	0.011 0.041	0.011 0.161	0.011	• At the seq level,	
Cell envelope Cellular processes Central intermediary metabolism	0.146 0.027 0.047	0.804 0.027 0.139	0.698 0.051 0.059	are dissimilar	
Energy metabolism Fatty acid metabolism	0.029 0.017	0.023	0.046 0.023	BrotEun prodicts	
Regulatory functions Replication and transcription	0.013 0.020	0.014 0.029	$0.135 \\ 0.014 \\ 0.040$	them to be cell	
Translation Transport and binding	0.035	0.027 0.827	0.032 0.812	envelope-related, tranport & binding	
Enzyme Non-enzyme c	0.233 0.767	0.367 0.633	0.227 0.773		
Oxidoreductase (EC 1) Transferase (EC 2) Hydrolase (EC 3)	0.070 0.031 0.101	0.024 0.208 0.090	0.055 0.037 0.208	 This is in agreement w/ known 	
Isomerase (EC 4) Ligase (EC 5) Vase (EC 6)	0.020 0.010 0.017	0.020 0.010 0.078	0.020 0.010 0.017	functionality of these proteins	

Copyright 2007 © Limsoon Wong

Guilt by Association of Common Interaction Partners: Protein Function Prediction from Protein Interactions

APBC2007, 15-17 Jan 2007

Level-2 neighbour

Correlation w/ Functional Similarity Correlation betw functional similarity & estimates

Neighbours	CD-Distance	FS-Weight
$egin{array}{c} S_1 \ S_2 \ S_1 \cup S_2 \end{array}$	0.471810 0.224705 0.224581	0.498745 0.298843 0.29629

61

Source: Kenny Chua Copyright 2007 © Limsoon Wong

• Equiv measure slightly better in correlation w/ similarity for L1 & L2 neighbours

Integra • Equiv funct intera	ating Re v measure ional sim actions is	eliability e shows im ilarity whe considere	nproved c n reliabili d:	orrelation ty of	64 NUS Martinetone
	Neighbours	CD-Distance	FS-Weight	FS-Weight R	-
	$egin{array}{c} S_1 \ S_2 \ S_1 \cup S_2 \end{array}$	0.471810 0.224705 0.224581	0.498745 0.298843 0.29629	0.532596 0.375317 0.363025	-
APBC2007, 15-17 Jan 20	007			Copyright 20	107 © Limsoon Wong

Genome	Annotation	SS.	SS.	5.05.	CC
S caravisina	MIPS	0.007193	0 226574	0.463960	0 706872
D. melanogaster	GO	0.008801	0.168622	0.138138	0.315561
C. elegans	GO	0.007193	0.051237	0.061080	0.119510

Copyright 2007 © Limsoon Wong

Copyright 2007 © Limsoon Won

References

- S.Letovsky & S. Kasif. "Predicting protein function from protein/protein interaction data: a probabilistic approach". *Bioinformatics*. 19(Suppl.1):i197–i204, 2003
- M.P. Samanta & S. Liang. "Predicting protein functions from redundancies in large-scale protein interaction networks". *PNAS*, 100(22):12579-83, 2003
- A. Vazquez et al. "Global protein function prediction from protein-protein interaction networks". *Nature Biotechnology*. 21(6):697-670, 2003
- X. Zhou, M.C. Kao, & W.H. Wong. "Transitive functional annotation by shortest-path analysis of gene expression data". PNAS, 99(20):12783-88, 2002

Com • 121	ipai func	rison w/ Existing Approac	thes NUS	0
		Category	Size	
	1	Metabolism	1048	
	2	Energy	242	
	3	Cell cycle & DNA processing	600	
	4	Transcription	753	
	5	Protein synthesis	335	
	6	Protein fate	578	
	7	Cellular transport & transport mechanism	479	
	8	Cell rescue, defense & virulence	264	
	9	Interaction with the cellular environment	193	
	10	Cell fate	411	
	11	Control of cellular organization	192	
	12	Transport facilitation	306	
APBC2007, 15-17 Ja	n 2007	С	opyright 2007 © Limsoon Won	ıg

95 NUS Internal Intervely

Data Sources

• Pfam Domains

- SwissPfam database (http://www.sanger.ac.uk/ Software/Pfam/ftp.shtml)
- Precomputed Pfam domains for SwissProt and TrEMBL proteins w/ E-value threshold 0.01
- Number of common domains used as score
- 15,220 unique pairs involving yeast proteins

Pubmed Abstracts

- Pubmed abstracts obtained by searching protein's name and aliases on Pubmed
- Limit to first 1000 abstracts returned
- Fraction of abstracts w/ cooccurrence used as score

Copyright 2007 © Limsoon Wong

 61,786 unique pairs involving yeast proteins

