Analysis of Gene Expression and Proteomic Profiles based on Biological Networks

Limsoon Wong

Preliminaries

2

• This tutorial assumes you already know a little about what biological networks are. If you don't, Natasa Przulj's lecture slides maybe helpful

http://www.doc.ic.ac.uk/~natasha/341_Lectures_2-3_notes.pdf

• The ppt for this tutorial can be downloaded at

http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorial.pdf

• The notes for this tutorial can be downloaded at

http://www.comp.nus.edu.sg/~wongls/talks/apbc2012-tutorialnotes.pdf

Tutorial Outline

- Some issues in gene expression analysis
- Batch effect & normalization
- Reproducibility
 - Law of large numbers
 - Use background info
 - Find more consistent disease subnetworks

utorial for APBC 2012

Tutorial for APBC 2012

Copyright 2012 C Limsoon Wong

Part 2: Delivering more powerful proteomic profile analysis

 Common issues in proteomic profile analysis

NUS

- Improving consistency
 - PSP

- PDS

Improving coverage

 CEA

 Max Link Copyright 2012 © Limsoon Worg Part 3: How good are available sources of pathway & PPI Network?

- Sources of pathway & PPIN
 - Comprehensiveness
 - Consistency
 - Compatibility
- Integration
 - Pathway matching
- PPIN cleansing

Tutorial for APBC 2012 Tutorial for APBC 2012

Copyright 2012 C Limsoon Wong

NUS

Analysis of Gene Expression and Proteomic Profiles based on Biological Networks Part 1

Limsoon Wong

Diagnosis Using Microarray

Clare A

Shining a laser light at GeneChip causes tagged DNA fragments that hybridized to glow

Hybridized DNA

AFFX-Murl AFFX-Murl AFFX-Murl AFFX-Murf AFFX-BioE AFFX-BioE AFFX-BioE AFFX-Biod AFFX-BioC AFFX-BioE AFFX-BioE AFFX-CreX AFFX-CreX AFFX-BioE AFFX-BioE

Clas A Class B

(II) Intra-class distance is too large

(III) Inter- and intra-class distances of a good signal

Copyright 2012 © Limsoon Wong

(I) Inter-class distance is too small

Part 1: Delivering reproducible gene expression analysis

- Some issues in gene expression analysis
- Batch effect & normalization
- Reproducibility
 - Law of large numbers
 - Use background info
 - Find more consistent disease subnetworks

Some Headaches

- Natural fluctuations of gene expression in a person
- Noise in experimental protocols
 - Numbers mean diff things in diff batches
 - Numbers mean diff things in data obtained from diff platforms

⇒ Selected genes may not be meaningful
 – Diff genes get selected in diff expts

NUS

Sometimes, a gene expression study may involve batches of data collected

 Samples from diff batches are grouped together, regardless of subtypes and treatment response

National Univers

of Singapore

Percentage of Overlapping Genes

- Low % of overlapping genes from diff expt in general
 - Prostate cancer
 - Lapointe et al, 2004
 - Singh et al, 2002
 - Lung cancer
 - Garber et al, 2001
 - Bhattacharjee et al, 2001
 - DMD
 - Haslett et al, 2002
 - Pescatori et al, 2007

Datasets	DEG	POG
Prostate	Top 10	0.30
Cancer	Тор 50	0.14
	Top100	0.15
Lung		
	Тор 10	0.00
Cancer	Тор 50	0.20
	Top100	0.31
DMD		
	Тор 10	0.20
	Тор 50	0.42
	Top100	0.54

Zhang et al, Bioinformatics, 2009

Copyright 2012 © Limsoon Wong

Part 1: Delivering reproducible gene expression analysis

- Some issues in gene expression analysis
- Batch effect & normalization
- Reproducibility
 - Law of large numbers
 - Use background info
 - Find more consistent disease subnetworks

Approaches to Normalization

- Aim of normalization: Reduce variance w/o increasing bias
- Scaling method
 - Intensities are scaled so that each array has same ave value
 - E.g., Affymetrix's

- Transform data so that distribution of probe intensities is same on all arrays
 - E.g., (x – μ) / σ
- Quantile normalization

Quantile Normalization

- Given n arrays of length p, form X of size p × n where each array is a column
- Sort each column of X to give X_{sort}
- Take means across rows
 of X_{sort} and assign this
 mean to each elem in the
 row to get X'_{sort}
- Get X_{normalized} by arranging each column of X'_{sort} to have same ordering as X

 Implemented in some microarray s/w, e.g., EXPANDER

GEP after removing batch effect by quantile normalization

Caution: "Over normalize" signals in cancer samples

A gene normalized by quantile normalization (RMA) was detected as down-regulated DE gene, but the original probe intensities in cancer samples were higher than those in normal samples

A gene was detected as an upregulated DE gene in the nonnormalized data, but was not identified as a DE gene in the quantile nornmalized data

Wang et al. Molecular Biosystems, in press

Part 1: Delivering reproducible gene expression analysis

Percentage of C	verlappi	ng Ger	ies
 Low % of overlapping genes from diff expt in general Prostate cancer Lapointe et al, 2004 Singh et al, 2002 Lung cancer Garber et al, 2001 Bhattacharjee et al, 2001 DMD Hasiett et al, 2002 	Datasets	DEG	POG
	Prostate	Top 10	0.30
	Cancer	Top 50	0.14
		Top100	0.15
	Lung Cancer DMD	Top 10	0.00
		Top 50	0.20
		Top100	0.31
		Top 10	0.20
		Top 50	0.42
Pescatori et al, 2007		Top100	0.54

- Some issues in gene expression analysis
- Batch effect & normalization
- Reproducibility
 - Law of large numbers
 - Use background info
 - Find more consistent disease subnetworks

Law of Large Numbers

- Suppose you are in a room with 365 other people
- Q: What is prob that a specific person in the room has the same birthday as you?
- A: 1/365 = 0.3%

- Q: What is prob that there is a person in the room having same birthday as you?
- A: 1 (364/365)³⁶⁵ = 63%
- Q: What is prob that there are two persons in the room having same birthday?
- A: 100%

Individual Genes

Suppose

- Each gene has 50% chance to be high
- You have 3 disease and 3 normal samples

- Prob(a gene is correlated) = 1/2⁶
- # of genes on array = 100,000
- ⇒ E(# of correlated genes) = 1,562
- How many genes on a microarray are expected to perfectly correlate to these samples?
- \Rightarrow Many false positives
- These cannot be eliminated based on pure statistics!

NUS National University of Singapore

19

Group of Genes

Suppose

- Each gene has 50% chance to be high
- You have 3 disease and 3 normal samples
- What is the chance of a group of 5 genes being perfectly correlated to these samples?

- Prob(group of genes correlated) = (1/2⁶)⁵
 - Good, << 1/2⁶
- # of groups = ${}^{100000}C_5$
- $\Rightarrow E(\# of groups of genes$ $correlated) = {}^{100000}C_5^*$ $(1/2^6)^5 = 2.6^*10^{12}$
- ⇒ Even more false positives?
- Perhaps no need to consider every group

Gene Regulatory Circuits

- Each disease phenotype has some underlying cause
- There is some unifying biological theme for genes that are truly associated with a disease subtype
- Uncertainty in selected genes can be reduced by considering biological processes of the genes
- The unifying biological theme is basis for inferring the underlying cause of disease subtype

Taming false positives by considering pathways instead of all possible groups

Group of Genes

of pathways = 1000

E(# of pathways correlated) = $1000 * (1/2^6)^5 =$ $9.3*10^{-7}$

- Suppose
 - Each gene has 50% chance to be high
 - You have 3 disease and 3 normal samples
- What is the chance of a group of 5 genes being perfectly correlated to these samples?

- Prob(group of genes correlated) = (1/2⁶)⁵
 - Good, << 1/26
- # of groups = 100000C5
- E(# of groups of genes correlated) = $\frac{100000}{C_5}$ ($\frac{1/2^6}{5}$ = 2.6*10¹²
- ⇒ Even more false positives?
- Perhaps no need to consider every group

of Singapore

Overlap Analysis: ORA

S Draghici et al. "Global functional profiling of gene expression". *Genomics*, 81(2):98-104, 2003.

Direct-Group Analysis: FCS

P Pavlidis et al. "Using the gene ontology for microarray data mining: A comparison of methods and application to age effects in human prefrontal cortex". *Neurochem Res.*, 29(6):1213-1222, 2004.

FCS: Key variations

- "Correlation score"
 - Score of a class C = average pair-wise correlation of genes in the class C
- "Experimental score"
 - Score of a class C = average of log-transformed pvalues of genes in the class C
- Null distribution to estimate the p-value of the scores above is by repeated sampling of random sets of genes of the same size as C

Pavlidis et al., PSB 2002

Pavlidis et al., PSB 2002

26

Goeman & Buhlmann. "Analyzing gene expression data in terms of gene sets: Methodological issues". *Bioinformatics*, 23(8):980-987, 2007

A problem w/ FCS as proposed by Pavlidis et al in PSB 2002

Null distribution to estimate the p-value of the scores above is by repeated sampling of random sets of genes of the same size as C

Pavlidis et al., PSB 2002

Tutorial for APBC 2012

Copyright 2012 C Limsoon Wor

27

- Its null hypothesis:
 - "genes in C are independently expressed & not diff from other genes

But ...

- Genes in a pathway are not independent
- \Rightarrow Becomes over sensitive
- Solution: generate null distribution by randomizing patient class labels

FCS: Why do we estimate p-value using a null distribution based on repeated sampling of randomized gene sets / patient sets?

Venet et al. "Most random gene expression signatures are significantly associated with breast cancer outcome". *PLoS Computational Biology*, 7(10):e1002240, 2011.

Tutorial for APBC 2012

Direct-Group Analysis: GSEA

A Subramanian et al. "Gene set enrichment analysis: A knowledge-based approach for interpreting genome wide expression profiles". *PNAS*, 102(43):15545-15550, 2005

Tutorial for APBC 2012

Copyright 2012 © Limsoon Wong

GSEA: Key Points

"Enrichment score"

- The degree that the genes in gene set C are enriched in the extremes of ranked list of all genes
- Measured by Komogorov-Smirnov statistic

Fig. 1. A GSEA overview illustrating the method. (A) An expression data set sorted by correlation with phenotype, the corresponding heat map, and the "gene tags," i.e., location of genes from a set S within the sorted list. (B) Plot of the running sum for S in the data set, including the location of the maximum enrichment score (ES) and the leading-edge subset.

Subramanian et al., PNAS, 102(43):15545-15550, 2005

 Null distribution to estimate the p-value of the scores above is by randomizing patient class labels Wong. "Using Biological Networks in Protein Function Prediction and Gene Expression Analysis". *Internet Mathematics*, 7(4):274--298, 2011.

31

A problem w/ GSEA

 Null distribution to estimate the p-value of the scores above is by randomizing patient class labels

Subramanian et al., PNAS, 102(43):15545-15550, 2005

Totonal for APBC 2012

Copyright 2012 C Limsoon Won

- Its enrichment score considers all genes in C
- But ...
 - Not all branches of a large pathway have to "go wrong"
 - ⇒ Cannot detect if only a small part of a pathway malfunctions
- Solution: Break pathways into subnetworks

Soh et al. "Finding Consistent Disease Subnetworks Across Microarray Datasets". *BMC Bioinformatics*, 12(Suppl. 13):S15, 2011.

32

Network-Based Analysis: SNet

- Group samples into type D and ¬D
- Extract & score subnetworks for type D
 - Get list of genes highly expressed in most D samples
 - These genes need not be differentially expressed!
 - Put these genes into pathways
 - Locate connected components (ie., candidate subnetworks) from these pathway graphs
 - Score subnetworks on D samples and on ¬D samples
- For each subnetwork, compute t-statistic on the two sets of scores
- Determine significant subnetworks by permutations

Soh et al. "Finding Consistent Disease Subnetworks Across Microarray Datasets". *BMC Bioinformatics*, 12(Suppl. 13):S15, 2011.

33

SNet: Score Subnetworks

Step 2: Subnetwork Scoring We assign a score vector $SN_{sn,d}^{v_score}$ with respect to phenotype d to each subnetwork sn within SN^{List} according to Equation 1.

$$SN_{sn,d}^{\upsilon_score} = \langle SN_{sn,1,d}^{i_score}, SN_{sn,2,d}^{i_score}, \dots, SN_{sn,n,d}^{i_score} \rangle$$
(1)

Where *n* is the number of patients in phenotype *d*. The formula $SN_{sn,i,d}^{i_score}$ for the *i*th patient (also the *i*th element of this vector) is given by:

$$SN_{sn,i,d}^{i_score} = \sum_{j=1}^{g} G_{sn,j,d}^{score} \tag{2}$$

 $G_{sn,j,d}^{score}$ refers to the score of the j^{th} gene (say, gene x) in the subnetwork sn for phenotype d. (This score $G_{sn,j,d}^{score}$ is given by Equation 3) and is simply given by:

$$G_{sn,j,d}^{score} = k/n \tag{3}$$

Where k is the number of patients of phenotype d who has gene x highly expressed (top α %) and n is the total number of patients of phenotype d. The entire Step 2 is repeated for the other disease phenotype $\neg d$, giving us the score vectors, $SN_{sn,d}^{v_score}$ and $SN_{sn,\neg d}^{v_score}$ for the same set of connected components. The t-test is finally calculated between these two vectors, creating a final t-score for each subnetwork sn within SN_{List} . Soh et al. "Finding Consistent Disease Subnetworks Across Microarray Datasets". *BMC Bioinformatics*, 12(Suppl. 13):S15, 2011.

34

SNet: Significant Subnetworks

- Randomize patient samples many times
- Get t-score for subnetworks from the randomizations
- Use these t-scores to establish null distribution
- Filter for significant subnetworks from real samples

Key Insight # 1

35

Genes A, B, C are high in phenotype *D*

A is high in phenotype ~*D* but B and C are not

Conventional techniques: Gene B and Gene C are selected. Possible incorrect postulation of mutations in gene B and C

- SNet does not require all the genes in subnet to be diff expressed
- It only requires the subnet as a whole to be diff expressed
- Able to capture entire relationship, postulating a mutation in gene A

Key Insight # 2

• SNet: Able to capture the subnetwork branch within the pathway

Key Insight # 3

• SNet: Able to select only pathway 1, which has the relevant relationship

Let's see whether SNet gives us subnetworks that are

(i) more consistent between datasets of the same types of disease samples

(ii) larger and more meaningful

Soh et al. "Finding Consistent Disease Subnetworks Across Microarray Datasets". *BMC Bioinformatics*, 12(Suppl. 13):S15, 2011.

39

Better Subnetwork Overlap

Table 1. Table showing the percentage overlap significant subnetworks between the datasets. Each row refers to a separate disease (as indicated in the first column). Each disease is tested against two datasets depicted in the second and third column. The overlap percentages refer to the pathway overlaps obtained from running SNet (column 4) and GSEA (column 5) The actual number of overlaps are parenthesized in the same columns.

Disease	Dataset 1	Dataset 2	SNet	GSEA
Leuk	Golub	Armstrong	83.3% (20)	0.0% (0)
Subtype	Ross	Yeoh	47.6% (10)	23.1% (6)
DMD	Haslett	Pescatori	58.3% (7)	55.6% (10)
Lung	Bhatt	Garber	90.9% (9)	0.0% (0)

• For each disease, take significant subnetworks from one dataset and see if it is also significant in the other dataset

Soh et al. "Finding Consistent Disease Subnetworks Across Microarray Datasets". *BMC Bioinformatics*, 12(Suppl. 13):S15, 2011.

40

Better Gene Overlaps

Table 2. Table showing the number and percentage of significant overlapping genes. γ refers to the number of genes compared against and is the number of unique genes within all the significant subnetworks of the disease datasets. The percentages refer to the percentage gene overlap for the corresponding algorithms.

Disease	γ	SNet	GSEA	SAM	t-test
Leuk	84	91.3%	2.4%	22.6%	14.3%
Subtype	75	93.0%	4.0%	49.3%	57.3%
DMD	45	69.2%	28.9%	42.2%	20.0%
Lung	65	51.2%	4.0%	24.6%	26.2%

 For each disease, take significant subnetworks extracted independently from both datasets and see how much their genes overlap Soh et al. "Finding Consistent Disease Subnetworks Across Microarray Datasets". *BMC Bioinformatics*, 12(Suppl. 13):S15, 2011.

41

Larger Subnetworks

Table 3. Table comparing the size of the subnetworks obtained from the t-test and from SNet. The first column shows the disease and the second column shows the number of genes which comprised of the subnetworks. The third and fourth column depicts the number of genes present within each subnetwork for the t-test and SNet respectively. So for instance in the leukemia dataset, we have 8 subnetworks with size 2 genes, 1 subnetwork with size 3 genes for the t-test. For SNet, we have 2 subnetworks with size 5 genes, 3 subnetworks with size 6 genes, 2 subnetworks with size 7 genes and 1 subnetwork with a size of \geq 8 genes

Disease	γ	Num Genes (t-test)			Nu	m Ge	enes ((SNet)	
		2	3	4	5	5	6	7	≥ 8
Leuk	84	8	1	0	0	2	3	2	1
Subtype	75	5	1	1	1	1	0	1	6
DMD	45	3	1	0	0	1	0	0	5
Lung	65	3	2	1	0	5	3	0	1

What have we learned?

42

- Common headaches in gene expression analysis
 Natural fluctuation, protocol noise, batch effect
- Use of biological background info to tame false positives
- Overlap analysis → direct-group analysis → network-based analysis
- SNet method yields more consistent and larger disease subnetworks

- Zhang et al. Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes. *Bioinformatics*, 25(13):1662-1668, 2009
- [ORA] Khatri & Draghici. Ontological analysis of gene expression data: Current tools, limitations, and open problems. *Bioinformatics*, 21(18):3587-3595, 2005
- [FCS] Goeman et al. A global test for groups of genes: Testing association with a clinical outcome. *Bioinformatics*, 20(1):93-99, 2004
- [GSEA] Subramanian et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS, 102(43):15545-15550, 2005
- [NEA] Sivachenko et al. Molecular networks in microarray analysis. JBCB, 5(2b):429-546, 2007
- [SNet] Soh et al. Finding consistent disease subnetworks across microarray datasets. BMC Genomics, 12(Suppl. 13):S15, 2011

From pathways to models, From static to dynamic:

A couple of very recent papers that are worth your leisure reading...

- Geistlinger et al. From sets to graphs: Towards a realistic enrichment analysis of transcriptomic systems. *Bioinformatics*, 27(13):i366—i373, 2011
- Zampieri et al. A system-level approach for deciphering the transcriptional response to prion infection. *Bioinformatics*, 27(24): 3407--3414, 2011

Fig. 1. System response inference: a toy genetic network consisting of six genes exemplifies the advantages of using a system-level data comparison (a). Standard statistical tests (i.e. t-test) unveil significant fold change in gene expression variations for each transcript individually (b), neglecting the underlying regulatory network. Such statistical test can identify whether the expression level of a transcript is significantly changed with respect to a reference. Putative gene expression changes are reported in panel (c). In this specific example, two genes are identified to be overexpressed [red/+ nodes] and one downregulated (green/- node), while the remaining three do not show any changes (grey nodes). By knowing the corresponding genetic regulatory network (d), we can discriminate the coherent variations from the unexpected ones. As shown in the example, two of the genes that showed a significant expression variations are consistent with model predictions i.e. the expression changes of genes x and y can be explained by the variation of gene z. This is reflected by a skew distribution of discrepancies (i.e. residues), between model predictions and observed data, centered around 0 (f). At the same time, one transcript, w, is not responding coherently to the initial model. The fact that its expression is unchanged, when it should have been increased, might relate to an anomalous direct effect of the pathology, preventing a synergistic response between all the genes in the system. Hence, the list of 'perturbed genes' can be sensibly different from the standard DEGs identified from individual fold change analysis (b/e).

Tutorial for APBC 2012

Analysis of Gene Expression and Proteomic Profiles based on Biological Networks Part 2

Limsoon Wong

Typical Proteomic MS Experiment

Figure 1 | The mass-spectrometry/proteomic experiment. A protein population is prepared from a biological source — for example, a cell culture — and the last step in protein purification is often SDS–PAGE. The gel lane that is obtained is cut into several slices, which are then in-gel digested. Numerous different enzymes and/or chemicals are available for this step. The generated peptide mixture is separated on- or off-line using single or multiple dimensions of peptide separation. Peptides are then ionized by electrospray ionization (depicted) or matrix-assisted laser desorption/ionization (MALDI) and can be analysed by various different mass spectrometers. Finally, the peptide-sequencing data that are obtained from the mass spectra are searched against protein databases using one of a number of database-searching programmes. Examples of the reagents or techniques that can be used at each step of this type of experiment are shown beneath each arrow. 2D, two-dimensional; FTICR, Fourier-transform ion cyclotron resonance; HPLC, high-performance liquid chromatography.

Source: Steen & Mann. The ABC's and XYZ's of peptide sequencing. *Nature Reviews Molecular Cell Biology*, 5:699-711, 2004

Part 2: Delivering more powerful proteomic profile analysis

- Common issues in proteomic profile analysis
- Improving consistency
 PSP
 PDS
- Improving coverage
 CEA
 - PEP

Max Link

Typical frequency distribution of proteins detected in proteomic profiles

Only 25 out of 800+ proteins are common to all 5 mod-stage HCC patients!

Distribution of counts in mod

Distribution of counts in poor

Issues in Proteomic Profiling

50

- Coverage
- Consistency

\Rightarrow Thresholding

- Somewhat arbitrary
- Potentially wasteful
 - By raising threshold, some info disappears

Part 2: Delivering more powerful proteomic profile analysis

 Common issues in proteomic profile analysis

- Improving consistency
 PSP
 - PDS
- Improving coverage - CEA
 - PEP
 - Max Link

An inspiration from gene expression profile analysis

Copyright 2011 C Limsoon Wong

Intuitive Example

- Suppose the failure to form a protein complex causes a disease
 - If any component protein is missing, the complex can't form
- ⇒ Diff patients suffering from the disease can have a diff protein component missing
 - Construct a profile based on complexes?

We try an adaptation of SNet on proteomics profiles...

"Proteomic Signature Profiling" (PSP)

55

"Threshold-free" Principle of PSP

Tutorial for APBC 2012

Copyright 2012 © Limsoon Wong

56

Applying PSP to a HCC Dataset

Copyright 2012 © Limsoon Wong

Tutorial for APBC 2012

57

Consistency: Samples segregate by their classes with high confidence

Distance: euclidean Cluster method: ward

Patient 1

Feature Selection

Tutorial for APBC 2012

Top-Ranked Complexes

Cluster_ID	p_val	mod_score	poor_score	cluster_name
				NCOA6-DNA-PK-Ku-
5179	0.000300541	0.513951977	3.159758312	PARP1 complex
				WRN-Ku70-Ku80-PARP1
5235	0.000300541	0.513951977	3.159758312	complex
1193	0.000300541	0.513951977	3.159758312	Rap1 complex
159	0	0	2.810927655	Condensin I-PARP-1- XRCC1 complex
				ESR1-CDK7-CCNH- MNAT1-MTA1-HDAC2
2657	0.008815869	0	2.55616281	complex
2067	0.00011641	0	2 55616291	RNA polymerase II complex, incomplete (CDK8 complex), chromatin
3007	0.00911641	0	2.00010201	structure modifying
1226	0.013323983	0.715352108	2.420592827	H2AX complex I
5176	0	0.513951977	2.339059313	MGC1-DNA-PKcs-Ku complex
				DNA double-strand break
1189	0	0.513951977	2.339059313	end-joining complex
5251	0	0.513951977	2.339059313	Ku-ORC complex
2766	0	0.513951977	2.339059313	TERF2-RAP1 complex

60

Top-Ranked GO Terms

GO ID	Description	No. of clusters
GO:0016032	viral reproduction	36
GO:0000398	nuclear mRNA splicing, via spliceosome	34
GO:0000278	mitotic cell cycle	28
GO:000084	S phase of mitotic cell cycle	28
GO:0006366	transcription from RNA polymerase II promoter	26
GO:0006283	transcription-coupled nucleotide-excision repair	22
GO:0006369	termination of RNA polymerase II transcription	22
GO:0006284	base-excision repair	21
GO:000086	G2/M transition of mitotic cell cycle	21
GO:000079	regulation of cyclin-dependent protein kinase activity	20
GO:0010833	telomere maintenance via telomere lengthening	20
GO:0033044	regulation of chromosome organization	19
GO:0006200	ATP catabolic process	18
GO:0042475	odontogenesis of dentine-containing tooth	18
GO:0034138	toll-like receptor 3 signaling pathway	17
GO:0006915	apoptosis	17
GO:0006271	DNA strand elongation involved in DNA replication	17

A Shortcoming of PSP

- Protein complex databases are still relatively small & incomplete...
- ⇒ Augment the set of protein complexes by protein clusters predicted from PPI networks!
- Many protein complex prediction methods
 - CFinder, Adamcsek et al. *Bioinformatics*, 22:1021--1023, 2006
 - CMC, Liu et al. *Bioinformatics*, 25:1891--1897, 2009
 - CFA, Habibi et al. BMC Systems Biology, 4:129, 2010

Another Shortcoming of PSP

- Protein complexes provided a biologically-rich feature set for PSP
 - But it is only one aspect of biological function
- The other aspect is biological pathways
 - But coverage issue of proteomic profiles create lots of "holes"
- Can we extract and use subnets from pathways?

Another adaptation of SNet on proteomics profiles...

"Pathway-Derived Subnets" (PDS)

Pathway-Derived Subnets (PDS)

- Identify the set S_i of proteins detected in more than 50% of samples having phenotype P_i

 Do this for each phenotype P₁, ..., P_k
- Overlay $\cup_i S_i$ to pathways
- Remove nodes not covered by $\cup_i S_i$ \Rightarrow This fragments pathways into subnets
- Use these subnets to form "proteomic signature profiles"
 - The rest of the steps is same as PSP

PDS consistently segregates mod vs poor patients

What have we learned?

- PSP can deal with consistency issues in proteomics
- GO term analysis also indicates that PSP selects clusters that play integral roles in cancer
- PSP reveals many potential clusters and is not constrained by any prior arbitrary filtering which is a common first step in conventional analytical approaches

Part 2: Delivering more powerful proteomic profile analysis

- Common issues in proteomic profile analysis
- Improving consistency
 PSP
 - PDS
- Improving coverage
 CEA
 - PEP
 - Max Link

Peptide & protein identification by MS is still far from perfect

 "... peptides with low scores are, nevertheless, often correct, so manual validation of such hits can often 'rescue' the identification of important proteins."

> Steen & Mann. The ABC's and XYZ's of peptide sequencing. Nature Reviews Molecular Cell Biology, 5:699-711, 2004

Typical proteomic profiling misses many proteins

Need to improve coverage!

Basic Approach

Rescue undetected proteins from high-scoring
 protein complexes

• Why?

Let A, B, C, D and E be the 5 proteins that function as a complex and thus are normally correlated in their expression. Suppose only A is not detected and all of B–E are detected. Suppose the screen has 50% reliability. Then, A's chance of being false negative is 50%, & the chance of B–E all being false positives is $(50\%)^4=6\%$. Hence, it is almost 10x more likely that A is false negative than B– E all being false positives.

Shortcoming: Databases of known complexes are still small

Li et al. Network-assisted protein identification and data interpretation in shotgun proteomics. *Mol. Syst. Biol.*, 5:303, 2009.

- Generate cliques from PPIN
- Rescue undetected proteins from cliques with containing many high-confidence proteins
- Reason: Cliques in a PPIN often correspond to proteins at the core of complexes
- Shortcoming: Cliques are too strict
 ⇒ Use more power complex prediction methods

Goh et al. A Network-based pipeline for analyzing MS data---An application towards liver cancer. *Journal of Proteome Research*, 10(5):2261--2272, May 2011

PFP

72

- Map high-confidence proteins to PPIN
- Extract immediate neighbourhood & predict protein complexes using CFinder
- Rescue undetected proteins from high-ranking
 predicted complexes
- Reason: Exploit powerful protein complex
 prediction methods
- Shortcoming: Hard to predict protein complexes
 Do we need to know all the proteins a complex?

MaxLink

- Map high-confidence proteins ("seeds") to PPIN
- Identify proteins that talk to many seeds but few non-seeds
- Rescue these proteins
- Reason: Proteins interacting with many seeds are likely to be part of the same complex as these seeds
- Shortcoming: Likely to have more false-positives

"Validation" of Rescued Proteins

- Direct validation
 - Use the original mass spectra to verify the quality of the corresponding y- and b-ion assignments
 - Immunological assay, etc.
- Indirect validation
 - Check whether recovered proteins have GO terms that are enriched in the list of seeds
 - Check whether recovered proteins show a pattern of differential expression betw disease vs normal samples that is similar to that shown by the seeds

An example using the PEP approach to recover undetected proteins ...

Background

- HCC (Hepatocellular carcinoma)
 - Classified into 3 phases: differentiated, moderately differentiated and poorly differentiated
- Mass Spectrometry
 - iTRAQ (Isobaric Tag for Relative and Absolute Quantitation)
 - Coupled with 2D LC MS/MS
 - Popular because of ability to run 8 concurrent samples in one go

Poor and mod proteins are widely interspersed

- In the subnet of reported proteins in mod and poor, poor and mod genes are well mixed
 - Mod and Poor
 - Poor only

Tutorial for APBC 2012

Copyright 2012 © Limsoon Wong

Goh et al. A Network-based pipeline for analyzing MS data---An application towards liver cancer. Journal of Proteome Research, 10(5):2261--2272, 2011

Expansion to include neighbors greatly improves coverage

Copyright 2012 © Limsoon Wong

Goh et al. A Network-based pipeline for analyzing MS data---An application towards liver cancer. *Journal of Proteome Research*, 10(5):2261--2272, 2011

80

Returning to Mass Spectra

- Test set: Several proteins (ACTR2, CDC42, GNB2L1, KIF5B, PPP2R1A, PKACA and TOP1) from top 34 clusters not detected by Paragon
- The test: Examine their GPS and Mascot search results and their MS/MS-to-peptide assignments
- Assessment of MS/MS spectra of their top ranked peptides revealed accurate y- and b-ion assignments and were of good quality (p < 0.05)
 ⇒ In silico expansion verified

Goh et al. A Network-based pipeline for analyzing MS data---An application towards liver cancer. *Journal of Proteome Research*, 10(5):2261--2272, 2011

81

Successful Verification

ACTR2

1841	• •	11/100	CHUYER			860		46707	See	er 11	Queries subclimit	
	-	Charles 1	the she had	e_Sydint-k	in others	-line yes		i di ser				
	~			a cres into				A100 1750				
	. 114	Diety	mauryad.	HICLINGTO	Hricale's	Dults.		Score	Espect	Bank	Puptide	
	60	728	1000.54	1885.53	1885.48	0.10			8.918		IR . IPPERIMENT. IN	
		1711	6410,79	1409.30	1499.65	0.13	*	1.0			R.LBIDTHNCH.I	
		1292	1877.111	1811-01	7827100	0.01	+		10		STUTES AND LODGE TO A	
		Prote	ing matchl	ng the com	e set of pe	OCTORES IN	22.5	41411	and series	1.00	Buckles matched	14
		Tes 3	g=8404 Gen	· Dampel-A	CTRC working-	-culsted	arot	man f	Legitoria			
		10100	TABLED					40400	See	81 3.0	Question matching:	18
		Tes_1	8-940E Gen	e_Symmet-A	CT90 48 30+	provents					CPUIS-COUPLE CERT	
												_
	- 1											
					~							
					2	~						
					5	8						
	- 1				1.1	ā		~				
	- 1					_		4				
	- 1					6		ā				
	- 1			2		<u> </u>						
	- 1			Υ		71.6						
	- 1			번 Y		1.1			1		~	
	- 1		1	<u>م</u>						L,	<u>,</u>	
	- 1							3			5	
	- 1		li i					2				
	- 1	11.1	11 .									
	_ 1		I la La La							1.1		
					of Mile			i IIIr			l ili ili	1
	<u> </u>			~					764	1	4000	1
1			25	IV.		300			/50		1000	

MONOISOTOPIC mass of neutral peptide Mr(calc): 1095.44 Fixed modifications: MNTS (C), (N-TERM)_iTRAQ,Lysine(K)_iTRAQ Ions Score: 39 Expect: 0.018 Matches (Bold Red): 8/57 fragment ions using 15 most intense peaks

#	Immon.	a	a*	a ⁰	Ь	b*	հ 0	Seq.	у	у*	y ⁰	#
1	87.06	231.16	214.13		259.15	242.13		Ν				6
2	159.09	417.24	400.21		445.23	428.21		W	838.30	821.27	820.29	5
3	88.04	532.26	515.24	514.25	560.26	543.23	542.25	D	652.22	635.19	634.21	4
4	88.04	647.29	630.26	629.28	675.29	658.26	657.28	D	537.19	520.17	519.18	3
5	104.05	778.33	761.30	760.32	806.33	789.30	788.32	м	422.17	405.14		2
6	245.12							K	291.13	274.10		1

CDC42

Uches to Larius this bit is strir talerant seams of archive report Destry Descred He(mapt) Hr(cale) balls Hiss Score Report Hask Peptide 2 2222 1475,77 1474,70 1474,70 1478,85 0.33 0 39 6.010 1 K.VVECSALTUK.U 1211 1590.04 1309.83 1599.75 9.00 0 8 18 3 K.TCLLISETTHE.P 2 1000 1800.03 1479.54 1879.75 8.00 8 48 0.000 1 K.VVECSALTUK.P.T 2 1000 1800.03 1479.54 1879.75 9.00 0 8 18 0.000 1 K.VVECSALTUK.P.T 0 1000 1800.03 1479.54 1879.75 9.00 0 8 48 0.000 1 K.VVECSALTUK.P.T 0 1000 1800.03 1479.54 1879.75 9.00 0 8 48 0.000 1 K.VVECSALTUK.P.T 0 1000 1800.03 1479.54 1879.75 9.00 0 8 48 0.000 1 K.VVECSALTUK.P.T 0 1000 1800.03 1479.54 1879.75 9.00 1 8 48 0.000 1 K.VVECSALTUK.P.T 0 1000 1800.03 1479.54 1879.75 9.00 1 8 48 0.000 1 K.VVECSALTUK.P.T 0 1000 1800.03 1479.54 1879.75 9.00 1 8 48 0.000 1 K.VVECSALTUK.P.T 0 1000 1800.03 1479.54 1879.75 9.00 1 8 48 0.000 1 K.VVECSALTUK.P.T 0 1000 1 1000 1 1000 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1 1000 1 1 1 1 1 1000 1 1 1 1 1 1 1000 1		Tes_Id	19606 Gene	_2phole	0041 lau	tien 2 of	Cell	14113 divisi	549 005 001	ore: orcal	prosein	eries mat 42 honolo	ched: 3 g precurs	-
4		Query 2 2220 5212 2 100	Cheerred 1475.75 1590.04 1880.01	Hereset) 1474.70 1509.83 1879.84	Hr(cale 1471-1 1519.7 1479.7	r talarad 6) Dalla 67 0.13 75 0.00 76 0.00	Hins B B B	Score 39 8	Experi 9.05	t Har 8 1 8 1	A Peptida K.YVEC K.TCLLI K.TCLLI	SALTIK. 0 LSYTTHE.P		
A set of the set of th		1	40211210											
	TO REAL	EISSTUR rd modi a Score chee (1	200 TC mass ficatias	(7) (7) (7) (7) (7) (7) (7) (7)	600 ral prp (C1, (N .010 9 frngts	Eide Mr.(-TEAR)_1	Con United	A 14	(6)4 (6)(0 = 12 74,67 be (K)	x0 _177 177	tana te			
* immen. * * * * * * * * * b* b* b* bet y y* y*	0 1.0 at	ntsotur rd modu a Scote (1 Immen	200 FIC mass fication ald Red)	() () () () () () () () () ()	600 ral pep (C1. (3) .010 9 fraga	B ata Mr -TEPR)_1 mrs_tons b	eale) TRAG	1 14 500 1 14 59413 59 26	(604 (6))8-52 12 42 (6) 74 (6) 10 10 10 10 10 10 10 10 10 10 10 10 10 1	20 _177 : LM Seg.	stoo 2400 2400	niz y*	yê	-
Instrument a a" b" b" Sets, y y" y" 1 136.08 280.18 308.17 Y 1 1	0 1.0 at	uisatus ed modi a Scare chee (1 Immen 136 0	280 280 Fic mass fication 280 18	() () () () () () () () () ()	600 ral pep (C1.(1) .010 9 frage	000 1100 1100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	eate) TRAG	() 1 14 1 14	(6)4 (6)(0-22 12 12 12 12 12 12 12 12 12 12 12 12 1	50 1777 1777 1777 1777 1777	jaco y	natar 9*	y [®]	1
Janman a a a b <td>50 108 11 2</td> <td>arsarus ed sodr Score Chee (1 Immen 136 08 72 08</td> <td>280 280 280 280 280 18 280 18 379 25</td> <td>er nesti at ne</td> <td>600 ral pep (C1. (8) .010 2 frage</td> <td>8 14e Mrd 114e Mrd 114e Mrd 1000</td> <td>eale) TRAG</td> <td>00 00 00 00 00 00 00 00 00 00 00 00 00</td> <td>(6)** (6)(0 = 12 12 74, 61 16 (R) 10 0 0 1</td> <td>50 _177 Seg Y</td> <td>3400 140 9 1163 49</td> <td></td> <td>y[®] 1150.48</td> <td>-</td>	50 108 11 2	arsarus ed sodr Score Chee (1 Immen 136 08 72 08	280 280 280 280 280 18 280 18 379 25	er nesti at ne	600 ral pep (C1. (8) .010 2 frage	8 14e Mrd 114e Mrd 114e Mrd 1000	eale) TRAG	00 00 00 00 00 00 00 00 00 00 00 00 00	(6)** (6)(0 = 12 12 74, 61 16 (R) 10 0 0 1	50 _177 Seg Y	3400 140 9 1163 49		y[®] 1150.48	-
Janman a a a b <td>1 1 2 3</td> <td>Internet in the second second</td> <td>280 120 mass fication 280 18 280 18 379 25 508 29</td> <td>er nest</td> <td>600 ral prop (C1. (B) 010 9 frago 8 490 28</td> <td>8 14e Mrd 100 114e Mrd 100 100 100 100 100 100 100 10</td> <td>eale) b*</td> <td>00 00 01 14 1. Lymti 1. Lymti</td> <td>(6)* (6)0 = 12 12 74.43 16 (K) 10 = 12 12 14 = 12</td> <td>20 1 177 177 Seq. Y V E</td> <td>1162.49 1069.42</td> <td>nit# 9* 1151.47 1052.40</td> <td>y[®] 1150-48 1051-41</td> <td></td>	1 1 2 3	Internet in the second	280 120 mass fication 280 18 280 18 379 25 508 29	er nest	600 ral prop (C1. (B) 010 9 frago 8 490 28	8 14e Mrd 100 114e Mrd 100 100 100 100 100 100 100 10	eale) b*	00 00 01 14 1. Lymti 1. Lymti	(6)* (6)0 = 12 12 74.43 16 (K) 10 = 12 12 14 = 12	20 1 177 177 Seq. Y V E	1162.49 1069.42	nit# 9* 1151.47 1052.40	y[®] 1150-48 1051-41	
Janman a" b" b" beg y y y" 1 136.08 280.18 308.17 Y 1 1 2 72.08 379.25 407.24 V 1168.49 1151.47 1150.48 3 102.05 508.29 490.28 536.28 518.27 E 1069.42 1052.40 1051.41 4 122.01 657.29 639.28 685.28 667.27 C 340.38 923.36 922.37	1 1 2 3 4	Interest (1) Interest (1) In	200 200 200 200 200 200 200 200	of next p 1 400 of next w: titls peet: 0 17/12 a*	600 ral prp (c), (8) 010 9 frages 490 28 639 28	536 28 685 28	ealer b*	1 14 1	(674 (6))0 11 12 74 (67) 10 001 10 000 10 000 1000 10 000 10 000 10000 1000 1000000	20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3400 1402 enuse pe 7 1162 49 1069 42 940 38	nit# 9* 1151.47 1052.40 923.36	y [®] 1150.48 1051.41 922.37	

6 44.05 115.36 797.34 843.35 125 34 A 104.35 687 33 686 34 5 7 \$6.10 928.44 910.43 956.43 938.42 L 633.32 616.29 615.30 4 8 74 06 1029 49 1011 48 1057 48 1039 47 T 520.23 503.20 502.22 3 9 101.07 1157 55 1140 52 1139 53 1185.54 1168 51 1167.53 Q 419.18 402.16 2 10 245.12 K 291.13 274.10 1

Copyright 2012 © Limsoon Wong

References

- Käll & Vitek. Computational Mass Spectrometry–Based Proteomics. PLoS Comput Biol , 7(12): e1002277, 2011
- Goh et al. How advancement in biological network analysis
 methods empowers proteomics. *Proteomics*, in press
- [PSP] Goh et al. Proteomics signature profiling (PSP): A novel contextualization approach for cancer proteomics. Journal of Proteome Research. accepted
- [CEA] Li et al. Network-assisted protein identification and data interpretation in shotgun proteomics. *Mol. Syst. Biol., 5:*303, 2009.
- [PEP] Goh et al. A Network-based pipeline for analyzing MS data---An application towards liver cancer. J Proteome Research, 10(5):2261--2272, 2011
- [MaxLink] Goh et al. A Network-based maximum-link approach towards MS. APBC 2012

Analysis of Gene Expression and Proteomic Profiles based on Biological Networks Part 3

Limsoon Wong

Part 3: How good are available sources of pathway & PPI Network?

- Sources of pathway & PPIN
 - Comprehensiveness
 - Consistency
 - Compatibility
- Integration

 Pathway matching
- PPIN cleansing

Sources of Protein Interactions

Database	# nodes,	URL	Build	Reference
D' ODID	# euges		Tocus	(0, 1, 1, 1, 0000)
BIOGRID	10k, 40k	http://thebiogrid.org	Literature	(Stark et al., 2006)
DIP	2.6k, 3.3k	http://dip.doe-mbi.ucla.edu	Literature	(Xenarios et al., 2002)
HPRD	30k, 40k	http://www.hprd.org	Literature	(Prasad <i>et al.</i> , 2009)
IntAct	56k, 267k	http://www.ebi.ac.uk/intact	Literature	(Aranda et al., 2010)
MINT	30k, 90k	http://mint.bio.uniroma2.it/mint	Literature	(Chatr-aryamontri et al., 2007)
STRING	5200k, ?	http://string-db.org	Literature,	(Szklarczyk et al., 2011)
			Prediction	

and Protein Complexes

• CORUM

- http://mips.helmholtz-muenchen.de/genre/proj/corum
- Ruepp et al, NAR, 2010

Database Remarks KEGG KEGG (http://www.genome.jp/kegg) is one of the best known pathway databases (Kanehisa et al., 2010). It consists of 16 main databases, comprising different levels of biological information such as systems, genomic, etc. The data files are downloadable in XML format. At time of writing it has 392 pathways. Sources WikiPathways (http://www.wikipathways.org) is WikiPathways Wikipedia-based collaborative effort among various labs (Kelder et al., 2009). It has 1,627 pathways of which 369 are human. The content is downloadable in GPML format. Biological Pathways Reactome Reactome (http:://www.reactome.org) is also a collaborative effort like WikiPathways (Vastrik et al., 2007). It is one of the largest datasets, with over 4,166 human reactions organized into 1,131 pathways by December 2010. Reactome can be downloaded in BioPax and SBML among other formats. Pathway Commons Pathway Commons (http://www.pathwaycommons.com) collects information from various databases but does not unify the data (Cerami et al., 2006). It contains 1,573 pathways across 564 organisms. The data is returned in BioPax format. PathwayAPI PathwayAPI (http://www.pathwayapi.com) contains over 450 unified human pathways obtained from a merge of KEGG, WikiPathways and Ingenuity® Knowledge Base (Soh et al., 2010). Data is downloadable as a SQL dump or as a csv file, and is also interfaceable in JSON format.

Low Comprehensiveness of Pathway Sources

Low Consistency of Pathway Sources

Copyright 2012 © Limsoon Wong

89

NUS

National University of Singapore

Tutorial for APBC 2012

Example: Apoptosis Pathway

Apoptosis Pathway									
	Wiki x KEGG	Wiki x Ingenuity	KEGG x Ingenuity						
Gene Pair Count:	144 vs 172	144 vs 3557	172 vs 3557						
Gene Count:	85 vs 80	85 vs 176	80 vs 176						
Gene Overlap:	38	28	30						
Gene % Overlap:	48%	33%	38%						
Gene Pair Overlap:	23	14	24						
Gene Pair % Overlap:	16%	10%	14%						

Pathway sources are curated. They are incomplete; but they have few errors. \rightarrow Makes sense to combine them. But...

KEGG

Incompatibility Issues

- Data extraction method variations
- **Format variations**
- Data differences •
- **Gene/GenelD** name • differences
- Pathway name differences

Data Format Variations

SOAP Data Format

API Call

The preceding analyses hide an intricate issue...

The same pathways in the different sources are often given different names.

So how do we even know two pathways are the same and should be compared / merged?

Part 2: How good are available sources of pathway information?

- Sources of pathway info
 - Comprehensiveness
 - Consistency
 - Compatibility
- Integration

 Pathway matching
- PPIN cleansing

Possible Ways to Match Pathways

- Match based on name (LCS)
 - Pathways w/ similar name should be the same pathway
 - But annotations are very noisy
 - \Rightarrow Likely to mismatch pathways?
 - \Rightarrow Likely to match too many pathways?
- Are the followings good alternative approaches?
 - Match based on overlap of genes
 - Match based on overlap of gene pairs

Soh et al. **Consistency, Comprehensiveness, and Compatibility of Pathway Databases**. *BMC Bioinformatics*, 11:449, 2010.

LCS vs Gene-Agreement Matching

Gene-pair overlap percentage

LCS consistently has higher gene-pair agreement
 ⇒ LCS is better than gene-agreement based matching!

Soh et al. Consistency, Comprehensiveness, and Compatibility of Pathway Databases. *BMC Bioinformatics*, 11:449, 2010.

LCS vs Gene-Pair Agreement Matching

LCS	Gene-Pair Overlap
	6 24
ion of actin outcokalaton	Regulation of Actin Cutoskolaton

Regulation of actin cytoskeleton	Regulation of Actin Cytoskeleton
Wnt signaling pathway	Wnt Signaling Pathway
T cell receptor signaling	t cell receptor Signaling
VEGF signaling	VEGF Signaling
MAPK signaling	MAPK Cascade
Apoptosis	Apoptosis
Apoptosis	Apoptosis Signaling
Toll-like receptor	Toll-like receptor signaling pathway

The 8 pathway pairs singled out by LCS

ErbB signaling pathway	JAK/Stat Signaling
Calcium signaling pathway	Synaptic Long Term Potentiation
Apoptosis	Toll-like receptor signaling pathway
VEGF signaling pathway	Axonal Guidance Signaling
Gap junction	PPAR-alpha/RXR-alpha Signaling
Natural killer cell mediated cytotoxicity	Fc Epsilon RI Signaling
T cell receptor signaling pathway	Axonal Guidance Signaling
B cell receptor signaling pathway	Axonal Guidance Signaling
Olfactory transduction	cAMP-mediated Signaling
GnRH signaling pathway	B Cell Receptor Signaling
Melanogenesis	Wnt Signaling Pathway and Pluripotency
Type II diabetes mellitus	Insulin Recpetor Signaling
Colorectal cancer	Toll-like receptor signaling pathway
Renal cell carcinoma	Axonal Guidance Signaling
Pancreatic cancer	PTEN Signaling
Endometrial cancer	PTEN Signaling
Glioma	ERK/MAPK Signaling
Prostate cancer	JAK/Stat Signaling
Basal cell carcinoma	Wnt Signaling Pathway and Pluripotency
Melanoma	FGF Signaling
Chronic myeloid leukemia	GM-CSF Signaling
Acute myeloid leukemia	PTEN Signaling
Small cell lung cancer	Toll-like receptor signaling pathway
Non-small cell lung cancer	GM-CSF Signaling

The 24 pathway pairs singled out by maximal gene-pair overlap

Note: We consider only pathway pairs that have at least 20 reaction overlap.

Tutorial for APBC 2012

Copyright 2012 © Limsoon Wong

 Having found a good way to match up pathways in different datasources, we proceeded to build a big unified pathway db....

PathwayAPI = KEGG + Wikipathways + Ingenuity

Donny Soh, Difeng Dong, Yike Guo, Limsoon Wong. **Consistency, Comprehensiveness, and Compatibility of Pathway Databases**. *BMC Bioinformatics*, 11:449, September 2010.

What have we learned?

- Significant lack of concordance betw db's
 - Level of consistency for genes is 0% to 88%
 - Level of consistency for genes pairs is 0%-61%
 - Most db contains less than half of the pathways in other db's
- Matching pathways by name is better than matching by gene overlap or gene-pair overlap

of Singapore

Part 3: How good are available sources of pathway & PPI Network?

- Sources of pathway & PPIN
 - Comprehensiveness
 - Consistency
 - Compatibility
- Integration
 Pathway matching
- PPIN cleansing

PPI Detection Assays

- Many high-throughput assays for PPIs
 - Y2H
 - TAP
 - Synthetic lethality

Generating <u>large amounts</u> of expt data on PPIs can be done with ease

Noise in PPI Networks

Experimental method category*	Number of interacting pairs	Co-localization b (%)	Co-cellular-role ^b (%)
All: All methods	9347	64	49
A: Small scale Y2H	1861	73	62
A0: GY2H Uetz et al. (published results)	956	66	45
A1: GY2H Uetz et al. (unpublished results)	516	53	33
A2: GY2H Ito et al. (core)	798	64	40
A3: GY2H Ito et al. (all)	3655	41	15
B: Physical methods	71	98	95
C: Genetic methods	1052	77	75
D1: Biochemical, in vitro	614	87	79
D2: Biochemical, chromatography	648	93	88
E1: Immunological, direct	1025	90	90
E2: Immunological, indirect	34	100	93
2M: Two different methods	2360	87	85
3M: Three different methods	1212	92	94
4M: Four different methods	570	95	93

Sprinzak et al., *JMB*, 327:919-923, 2003 Large disagreement betw methods

- **High level of noise** ٠
- \Rightarrow Need to clean up before making inference on PPI networks

Chua & Wong. Increasing the Reliability of Protein Interactomes. *Drug Discovery Today*, 13(15/16):652--658, 2008

102

Dealing with noise in PPIN

- Two proteins participating in same biological process are more likely to interact
- Two proteins in the same cellular compartments are more likely to interact

CD-distance & FS-Weight: Based on concept that two proteins with many interaction partners in common are likely to be in same biological process & localize to the same compartment CD-distanceFS-Weight

Cf. ave localization coherence of protein pairs in DIP < 5% ave localization coherence of PPI in DIP < 55%

- A Ruepp et al. CORUM: The comprehensive resource of mammalian protein complexes---2009. Nucleic Acids Research, 38:D497-D501, 2010
- M Kanehisa et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research, 38:D355-D360, 2010
- I Vastrik et al. Reactome: A knowledge base of biologic pathways and processes. Genome Biology, 8:R39, 2007
- EG Cerami et al. Pathway Commons, a web resource for biological pathway data. *Nucleic Acids Research*, 39:D685-D690, 2011
- D Soh et al. Consistency, Comprehensiveness, and Compatibility of Pathway Databases. *BMC Bioinformatics*, 11:449, 2010
- Chua & Wong. Increasing the Reliability of Protein Interactomes. Drug Discovery Today, 13(15/16):652--658, 2008

Acknowledgements

Donny Soh

Difeng Dong

Wilson Goh

- A*STAR AIP scholarship
- A*STAR SERC PSF grant
- NRF CRP grant
- Wellcome Trust scholarship

NATIONAL RESEARCH FOUNDATION Prime Minister's Office, Republic of Singapore