
1

CS2305s, Guest lecture on 1 November 2007

What do gambling, database design, your

calculator, and human evolution have in

common?

Limsoon Wong

CS2305s, Guest lecture on 1 November 2007

Fun With Invariants

Limsoon Wong

2

3

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Plan

• What is an invariant?

– Bet on color of the bean

– Make a list sorted

– Take exponent faster

• Where do Polynesians
come from?

• Are Europeans of pure
Neanderthal or pure Cro
Magnon or mixed
descent?

• What is a good database
design?

• What will we learn?

– Problem solving by

logical reasoning on

invariants

– Problem solving by

rectifying violation of

invariants

– Solution optimization by

preserving invariants

CS2305s, Guest lecture on 1 November 2007

What is an invariant?

3

5

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Shall we bet on

the color of the
bean that is left

behind?

• Suppose you have a bag
of x red beans and y green
beans

• Repeat the following:

– Remove 2 beans

– If both green, discard

both

– If both red, discard one,

put back one

– If one green and one red,

discard red, put back

green

• If one bean is left behind,
can you predict its colour?

6

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Bet on the last green bean

• Suppose you have a bag
of x red beans and y green
beans

• Repeat the following:

– Remove 2 beans

– If both green, discard

both

– If both red, discard one,

put back one

– If one green and one red,

discard red, put back

green

• If one bean is left behind,
can you predict its colour?

• When the parity of green
beans is odd, it remains
odd…

• Start with y=2n+1

• y=2n+1 ���� y=2n-1

• y=2n+1 ���� y=2n+1

• y=2n+1 ���� y=2n+1

• It must be green!

4

7

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Bet on the last red bean

• Suppose you have a bag
of x red beans and y green
beans

• Repeat the following:

– Remove 2 beans

– If both green, discard

both

– If both red, discard one,

put back one

– If one green and one red,

discard red, put back

green

• If one bean is left behind,
can you predict its colour?

• When the parity of green
beans is even, it remains
even…

• Start with y=2n

• y=2n ���� y=2n-2

• y=2n ���� y=2n

• y=2n ���� y=2n

• It must be red!

8

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Bet on color of the last bean … and win!

• Suppose you have a bag
of x red beans and y green
beans

• Repeat the following:

– Remove 2 beans

– If both green, discard

both

– If both red, discard one,

put back one

– If one green and one red,

discard red, put back

green

• If one bean is left behind,
can you predict its colour?

• If you start with odd #
(even #) of green beans,
there will always be an odd
(even #) of green beans
in the bag

⇒ Parity of green beans is
invariant

⇒ Bean left behind is green
iff you start with odd # of
green beans

5

9

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

• What have we just seen?

• Problem solving by logical reasoning
on invariants

10

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

What makes a list
a sorted list?

• What is a sorted list?

A list L is sorted iff L[i] ≤≤≤≤
L[j] for all adjacent
positions i, j

• So how do you make a list
M become sorted?

While M[i] > M[j] for some
adjacent positions i, j {

swap M[i], M[j]

}

6

11

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Sorting a list

• Invariant of sorted lists

A list L is sorted iff L[i] ≤≤≤≤
L[j] for all adjacent
positions i, j

• Making a list M become
sorted:

While M[i] > M[j] for some
adjacent positions i, j {

swap M[i], M[j]

}

• Find violation of the
invariant

• Fix it

• When no more violation,
the list must be sorted!

12

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

• What have we just seen?

• Problem solving by rectifying
violation of invariants

7

13

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Exponentiation

• What does this program
do?

F(a, 0) = 1

F(a, n+1) = a * F(a, n)

• We see that

F(a, n) = an

14

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Playing the invariant…

• What does this program
do?

F(a, 0) = 1

F(a, n+1) = a * F(a, n)

• We see that

F(a, n) = an

• Then

• F(a, 2*n) = a2*n

= an * an

= y * y where y = F(a, n)

• F(a, 2*n+1) = a2*n+1

= a * an * an

= a * y * y where F(a, n)

• So we get …

invariant

defn

by inv

by inv

by inv

by inv

8

15

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

What’s the difference?

• Original program:

F(a, 0) = 1

F(a, n+1) = a * F(a, n)

• New program:

F(a, 0) = 1

F(a, 1) = a

F(a, n) = if n is odd

then a * y * y

else y * y

where y = F(a, n div 2)

• Cost of F(a, n) = n

• Cost of F(a, n) = log2 n

125310

125311

12439

12438

call sequencelog nn

16

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

• What have we just seen?

• Optimizing a solution by preserving
invariant

9

CS2305s, Guest lecture on 1 November 2007

Where do Polynesians
come from?

150000
years ago

100000
years ago

50000
years ago

present

African Asian Papuan European

Root

18

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Do Polynesians come from

Asia or America?

189, 217, 247, 261

189, 217

189, 217, 261

10

19

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

In the course of evolution…

20

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

What is the invariant?

• Mitochrondrial DNA accumulates 1 mutation
about every 10,000 years

• Human history is not so long relative to this

⇒ When a nucleotide in mitochrondrial DNA is
mutated it stays mutated through future
generations

11

21

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Origin of Polynesians

• Common mitochondrial
control seq from
Rarotonga have variants at
positions 189, 217, 247,
261. Less common ones
have 189, 217, 261

• Seq from Taiwan natives
have variants 189, 217

• Seq from regions in betw
have variants 189, 217,
261.

• More 189, 217 closer to
Taiwan. More 189, 217, 261
closer to Rarotonga

• 247 not found in America

⇒ Polynesians came from
Taiwan!

• Taiwan seq sometimes
have extra mutations not
found in other parts

⇒ These are mutations that
happened since
Polynesians left Taiwan!

22

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Are Europeans descended purely

from Cro Magnons? Purely from

Neanderthals? Or mixed?

Neanderthal
Cro Magnon

12

23

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Neanderthal vs Cro Magnon

• Based on palaeontology,
Neanderthal & Cro Magnon
last shared an ancestor
250,000 yrs ago

• Mitochondrial DNA
accumulates 1 mutation
per 10,000 yrs

⇒ If Europeans have mixed
ancestry, the
mitochondrial DNA betw 2
Europeans should have
~25 diff w/ high probability

• The number of diff betw
Welsh is ~3, & at most 8.

• When compared w/ other
Europeans, 14 diff at most

⇒ Ancestor either 100%
Neanderthal or 100% Cro
Magnon

• Mitochondrial DNA from
Neanderthal have 26 diff
from Europeans

⇒ Ancestor must be 100%
Cro Magnon

24

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

• The invariant:

When a nucleotide in mitochrondrial DNA is
mutated it stays mutated through future
generations

• The lesson learned:

Figure out origins of Polynesians
and Europeans by logical
reasoning on invariant

13

CS2305s, Guest lecture on 1 November 2007

What is a good database design?

26

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Relational Data Model

• Data are represented as a two-dimensional table

• It is a logical representation, not a physical
representation

– Ordering of the rows is irrelevant

– Ordering of the columns is irrelevant

– How the rows and columns of a table are stored is

irrelevant

– …

14

27

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Example

Color 1241977Star Wars

Color 951992Wayne’s World

Color 1041991Mighty Ducks

Film TypeLength Year Title

Beverly HillsHarrison Ford

BrentwoodMark Hamill

HollywoodCarrie Fisher

Address Name

$$$Star WarsFoxHarrison Ford3

$$$Star WarsFoxMark Hamill2

$$$Star WarsFoxCarrie Fisher1

Salary Title Studio Star Contract No

Contracts

Stars

Movies

28

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Design Issues

• How many possible alternate ways to represent
movies using tables?

• Why this particular set of tables to represent
movies?

• Indeed, why not use this alternative single table
below to represent movies?

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

15

29

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Anomalies

• What’s wrong with the “Wrong Movies” table?

• Redundancy: Unnecessary repetition of info

• Update anomalies: If Star Wars is 125 min, we
might carelessly update row 1 but not rows 2 & 3

• Deletion anomalies: If Emilio Estevez is deleted
from stars of Mighty Ducks, we lose all info on
that movie

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

30

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Functional Dependency

• Functional dependency (A1, …, An ���� B1, …, Bm)

– If two tuples of a table R agree on attributes A1, …,
An, then they must also agree on attributes B1, …, Bm

• Example: Title, Year ���� Length, Film Type, Studio

• FD (A1, …, An ���� B1, …, Bm) is trivial if a Bi is an Aj

16

31

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Can you identify the FD’s here?

• Some FD’s:

– Title, Year � Length

– Title, Year � Film Type

– Title, Year � Studio

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

32

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Keys

• Key

– A minimal set of attributes {A1, …, An} that
functionally determine all other attributes of a table

– A key is trivial if it comprises the entire set of

attributes of a table

• Superkey

– A set of attributes that contains a key

17

33

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Can you identify the keys here?

Color 1241977Star Wars

Color 951992Wayne’s World

Color 1041991Mighty Ducks

Film TypeLength Year Title

Beverly HillsHarrison Ford

BrentwoodMark Hamill

HollywoodCarrie Fisher

Address Name

$$$Star WarsFoxHarrison Ford3

$$$Star WarsFoxMark Hamill2

$$$Star WarsFoxCarrie Fisher1

Salary Title Studio Star Contract No

Contracts

Stars

Movies

34

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Can you identify the superkeys here?

• Superkeys :

– Any set of attributes that contains {Title, Year,

Star} as a subset

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

18

35

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Boyce-Codd Normal Form

• A relation R is in Boyce-Codd Normal Form iff
whenever there is a nontrivial FD (A1, …, An ���� B1,
…, Bm) for R, it is the case that {A1, …, An} is a
superkey for R

• Theorem A1 (Codd, 1972)

A database design has no anomalies due to FD iff

all its relations are in Boyce-Codd Normal Form

36

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

How is BCNF violated here?

• A nontrivial FD:

– Title, Year � Length, Film Type, Studio

– The LHS not superset of the key {Title,Year, Star}

⇒ Violate BCNF!

• Anomalies are due to FD’s whose LHS is not
superkey

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

19

37

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

Towards a Better Design

• Use an offending FD (A1, …, An ���� B1, …, Bm) to
decompose R(A1, …, An, B1, …, Bm, C1, …, Ch) into
2 tables

– R1(A1, …, An, B1, …, Bm)

– R2(A1, …, An, C1, …, Ch)

No

redundant

info

No update

anomaly

No

deletion

anomaly

38

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

• The invariant:

FD’s (A1, …, An ���� B1, …, Bm) are “invariants” of
the database, as {A1, …, An} determines {B1, …,
Bm}

• The lesson learned:

Deliver a better database design by
fixing violated invariants

20

CS2305s, Guest lecture on 1 November 2007

What have we learned?

40

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

What have we learned?

• Invariant is a fundamental property of many
problems

• Paradigms of problem solving

– Problem solving by logical reasoning on invariants

– Problem solving by rectifying violation of invariants

– Solution optimization by preserving invariants

21

41

CS2305s, Guest lecture on 1 November 2007 Copyright 2007 © Limsoon Wong

I didn’t get to telling you yet, but …

• Every time you write a loop in a program, it
involves an invariant

• Every time you do a recursive function call, it
involves an invariant

• Every time you do an induction proof, it involves
an invariant

• … Computing is about discovering,
understanding, exploiting, and having fun with
invariants!

