
1

Guest lecture for CS2306S, 31/1/07

Invariants Underlying
Relational Databases & Queries

Limsoon Wong
Guest Lecture for CS2306S

31 January 2007

2

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

What is an invariant?

• Suppose you have a bag of x red beans and y
green beans

• Repeat the following:
– Remove 2 beans
– If both green, discard both
– If both red, discard one, put back one
– If one green and one red, discard red, put back

green
• If one bean is left behind, can you predict its

colour?

2

3

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Plan
• Database Design

– Relational data model
– Dependencies
– Normal forms

• Transaction Management
– Serializable Schedules
– Two-Phase Locking

• Query Languages
– Relational Algebra
– Query Optimization
– Expressive Power
– Beyond Relational

Algebra

Guest lecture for CS2306S, 31/1/07

Database Design

3

5

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Relational Data Model

• Data are represented as a two-dimensional table

• It is a logical representation, not a physical
representation
– Ordering of the rows is irrelevant
– Ordering of the columns is irrelevant
– How the rows and columns of a table are stored is

irrelevant
– …

6

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Example

Color 1241977Star Wars

Color 951992Wayne’s World

Color 1041991Mighty Ducks

Film TypeLength Year Title

Beverly HillsHarrison Ford

BrentwoodMark Hamill

HollywoodCarrie Fisher

Address Name

$$$Star WarsFoxHarrison Ford3

$$$Star WarsFoxMark Hamill2

$$$Star WarsFoxCarrie Fisher1

Salary Title Studio Star Contract No

Contracts

Stars

Movies

4

7

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Design Issues

• How many possible alternate ways to represent
movies using tables?

• Why this particular set of tables to represent
movies?

• Indeed, why not use this alternative single table
below to represent movies?

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

8

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Anomalies

• What’s wrong with the “Wrong Movies” table?

• Redundancy: Unnecessary repetition of info
• Update anomalies: If Star Wars is 125 min, we

might carelessly update row 1 but not rows 2 & 3
• Deletion anomalies: If Emilio Estevez is deleted

from stars of Mighty Ducks, we lose all info on
that movie

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

5

9

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Functional Dependency

• Functional dependency (A1, …, An B1, …, Bm)
– If two tuples of a table R agree on attributes A1, …,

An, then they must also agree on attributes B1, …, Bm

• Example: Title, Year Length, Film Type, Studio

• FD (A1, …, An B1, …, Bm) is trivial if a Bi is an Aj

10

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Can you identify the FD’s here?

• Some FD’s:
– Title, Year Length
– Title, Year Film Type
– Title, Year Studio

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

6

11

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Keys

• Key
– A minimal set of attributes {A1, …, An} that

functionally determine all other attributes of a table
– A key is trivial if it comprises the entire set of

attributes of a table

• Superkey
– A set of attributes that contains a key

12

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Can you identify the keys here?

Color 1241977Star Wars

Color 951992Wayne’s World

Color 1041991Mighty Ducks

Film TypeLength Year Title

Beverly HillsHarrison Ford

BrentwoodMark Hamill

HollywoodCarrie Fisher

Address Name

$$$Star WarsFoxHarrison Ford3

$$$Star WarsFoxMark Hamill2

$$$Star WarsFoxCarrie Fisher1

Salary Title Studio Star Contract No

Contracts

Stars

Movies

7

13

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Can you identify the superkeys here?

• Superkeys :
– Any set of attributes that contains {Title, Year,

Star} as a subset

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies

14

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Boyce-Codd Normal Form

• A relation R is in Boyce-Codd Normal Form iff
whenever there is a nontrivial FD (A1, …, An B1,
…, Bm) for R, it is the case that {A1, …, An} is a
superkey for R

• Theorem A1 (Codd, 1972)

A database design has no anomalies due to FD iff
all its relations are in Boyce-Codd Normal Form

8

15

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

How is BCNF violated here?

• A nontrivial FD:
– Title, Year Length, Film Type, Studio
– The LHS not superset of the key {Title,Year, Star}
⇒ Violate BCNF!

• Anomalies are due to FD’s (and MVD’s) whose
LHS is not superkey

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

16

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Towards a Better Design

• Use an offending FD (A1, …, An B1, …, Bm) to
decompose R(A1, …, An, B1, …, Bm, C1, …, Ch) into
2 tables
– R1(A1, …, An, B1, …, Bm)
– R2(A1, …, An, C1, …, Ch)

No
redundant

info

No update
anomaly

No
deletion
anomaly

9

17

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

What about this table?

• No nontrivial FD here. So no BCNF violation
• Yet lots of anomalies
• What’s happening?
• Addresses are independent of movie titles!

1983Return of the JediMalibuLocust LnCarrie Fisher

1983Return of the JediHollywoodMaple StCarrie Fisher

1980Empire Strikes BackMalibuLocust LnCarrie Fisher

1980Empire Strikes BackHollywood Maple StCarrie Fisher

1997Star WarsMalibu Locust LnCarrie Fisher

1977Star WarsHollywoodMaple StCarrie Fisher

Year Title City Street Star

18

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Multivalued Dependency

• Multivalued dependency (A1, …, An B1, …, Bm)
– If restricted to rows of R that have fixed values of A1,

…, An, then the values of B1, …, Bm are independent
of attributes not among A1, …, An, B1, …, Bm

• MDV (A1, …, An B1, …, Bm) is trivial if a Bi is an
Aj or {A1, …, An, B1, …, Bm} are all of R’s attributes

10

19

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Can you identify the MVD’s here?

• Some MVD’s
– Star Street, City
– Star Title, Year

• These MVD’s say
– A star can live in several places
– A star can act in several movies

1983Return of the JediMalibuLocust LnCarrie Fisher

1983Return of the JediHollywoodMaple StCarrie Fisher

1980Empire Strikes BackMalibuLocust LnCarrie Fisher

1980Empire Strikes BackHollywood Maple StCarrie Fisher

1997Star WarsMalibu Locust LnCarrie Fisher

1977Star WarsHollywoodMaple StCarrie Fisher

Year Title City Street Star

20

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

4th Normal Form

• A relation R is in 4th Normal Form iff whenever
there is a nontrivial MVD (A1, …, An B1, …,
Bm) for R, it is the case that {A1, …, An} is a
superkey for R

• Theorem A2 (Fagin, 1977)

A database design has no anomalies due to MVD
iff all its relations are in 4th Normal Form

• Theorem A3 (Fagin, 1977)

Every database design in 4th Normal Form is also
in Boyce-Codd Normal Form

11

21

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

How is 4NF violated here?

• Some nontrivial MVD’s
– Star Street, City
– Star Title, Year
– Star is not a key, so Violate 4NF

• Anomalies are due to FD’s (and MVD’s) whose
LHS is not superkey

1983Return of the JediMalibuLocust LnCarrie Fisher

1983Return of the JediHollywoodMaple StCarrie Fisher

1980Empire Strikes BackMalibuLocust LnCarrie Fisher

1980Empire Strikes BackHollywood Maple StCarrie Fisher

1997Star WarsMalibu Locust LnCarrie Fisher

1977Star WarsHollywoodMaple StCarrie Fisher

Year Title City Street Star

22

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Toward a Better Design

• Use an offending MVD (A1, …, An B1, …, Bm)
to decompose R(A1, …, An, B1, …, Bm, C1, …, Ch)
into 2 tables
– R1(A1, …, An, B1, …, Bm)
– R2(A1, …, An, C1, …, Ch)

12

23

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

• FD’s (A1, …, An B1, …, Bm) are “invariants” of
the database, as {A1, …, An} determines {B1, …,
Bm}

• Paying attention such invariants leads to better
database design

24

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

References
• E. F. Codd, “A relational model for large shared data

banks”, CACM, 13(6):377-387, 1970

• E. F. Codd, “Further normalization of the database
relational model”, in Database Systems, Prentice Hall, 1972

• R. Fagin, “Multivalued dependencies and a new normal
form for relational databases”, ACM TODS, 2(3):262-278,
1977

13

Guest lecture for CS2306S, 31/1/07

Transaction Management

26

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Transaction

• In real-life applications, when we need to update a
db, we often need to do it in multiple steps

• E.g., Buying air ticket involves
– Find empty seat
– Buy the ticket

• The sequence of steps is called a transaction

14

27

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

“ACID” Properties of Transactions

• Atomicity
– All-or-nothing execution of a transaction

• Consistency
– All transactions should preserve any consistency

& integrity constraints specified on the db
• Isolation

– Each transaction must appear to be executed as if
no other transactions are running

• Durability
– The effect of the transaction on the db must never

be lost once the transaction has completed

28

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

How Things Can Go Wrong

• Real-life db executes many transactions
simultaneously

• If things are not carefully controlled, steps of
different transactions can overlap each other
dangerously …

User1 finds
empty seat X

User2 finds
empty seat X

User1 buys
empty seat X

User1 buys
empty seat X

time

15

29

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Serializability

• The execution of a set of transaction is
serializable if they behave as if they were run
serially

• Hard to require a db to run serially in practice
– Too many transactions
– Need parallelism to improve throughput

⇒Need mechanism to ensure serializability
– Even if transactions are not executed serially, the

result looks to users as if they were run serially

30

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Schedule

• Actions of transaction Ti

– Ri(X): Ti reads data element X
– Wi(X): Ti writes data element X

• Schedule S of a set of transactions Ts
– A sequence of actions of transactions in Ts
– For each Ti in Ts, the actions of Ti appear in S in

the same order they appear in Ti

16

31

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Serial Schedule

• R2(A); W2(A); R2(B);
W2(B); R1(A); W1(A);
R1(B); W1(B);

• The above is T2 before
T1, resulting in A = 150
and B = 150

• If T1 is run before T2,
we get A = (25 + 100) *
2 = 250 and B = (25 +
100) * 2 =250

32

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Serializable Non-Serial Schedule

• R1(A); W1(A); R2(A);
W2(A); R1(B); W1(B);
R2(B); W2(B)

• So A = 250 and B = 250

• This is a serializable
schedule, as it is same
as running T1 before T2

17

33

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Non-Serializable Schedule

• R1(A); W1(A); R2(A);
W2(A); R2(B); W2(B);
R1(B); W1(B)

• So A = 250 and B = 150

• This is diff from
running T1 before T2 (A
= B = 250) and from T2
before T1 (A = B = 150)

• So this schedule is
non-serializable

34

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Conflict Serializability

• A pair of consecutive actions in a schedule are in
conflict if the behavior of at least one of the
transactions involved can change if their order
are interchanged

• Two schedules are conflict equivalent if they can
be turned one into the other by a sequence of
nonconflicting swaps of adjacent actions

• A schedule is conflict serializable if it is conflict
equivalent to a serial schedule

18

35

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Conflicts
• Non-conflicts

– Ri(X); Rj(Y)
• Neither change value

of any data element
– Ri(X); Wj(Y), X ≠ Y

• Even if Tj writes Y
before Ti reads X, the
value of X is not
changed

– Wi(X); Rj(Y), X ≠ Y
– Wi(X); Wj(Y), X ≠ Y

• Conflicts
– Ri(X);Wi(Y)

• Order of actions in a
transaction is fixed
and may not be
reordered by DBMS

– Wi(X);Wj(X)
• Value of X written by

Tj will be lost if we
swap the actions

– Ri(X); Wj(X)
• Value of X read by Ti

will be diff if we swap
the actions

– Wi(X); Rj(X)

Any two actions of different transactions may be
swapped unless
• They involve the same data element, and
• At least one is a write

36

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Example
• Recall this serializable

schedule:
– R1(A); W1(A); R2(A); W2(A);

R1(B); W1(B); R2(B); W2(B)
⇒ R1(A); W1(A); R2(A); R1(B);

W2(A); W1(B); R2(B); W2(B)
⇒ R1(A); W1(A); R1(B); R2(A);

W2(A); W1(B); R2(B); W2(B)
⇒ R1(A); W1(A); R1(B); R2(A);

W1(B); W2(A); R2(B); W2(B)
⇒ R1(A); W1(A); R1(B); W1(B);

R2(A); W2(A); R2(B); W2(B)
• Same as running T1 before T2
• Thus it is conflict serializable

19

37

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Conflict Serializability vs Serializability

• Proposition B1
Every conflict serializable schedule is
serializable, but some serializable schedule is not
conflict serializable

S1: W1(Y); W1(X); W2(Y); W2(X); W3(X)
S2: W1(Y); W2(Y); W2(X); W1(X); W3(X)

• S1 is a serial schedule
• S2 is serializable (X and Y have same final value

as S1) but not conflict serializable

38

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Enforcing Serializability by Locks

• A collection of transactions performing their
actions in an uncontrolled manner is unlikely to
result in a serializable schedule

• Need a mechanism to prevent orders of actions
that lead to unserializable schedule…

⇒ Locks

A transaction obtains locks on data elements it
accesses to prevent other transactions from

accessing these elements at the same time, thus
avoiding the risk of unserializability

20

39

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Locks

• Li(X): Ti requests a lock on data element X
• Ui(X): Ti releases its lock on data element X

• Must satisfy
– Consistency of transactions: Whenever Ti has an

action Ri(X) or Wi(X), there is a previous action
Li(X) with no intervening Ui(X), and there is a
subsequent Ui(X)

– Legality of schedules: Whenever there are actions
Li(X) followed by Lj(X), there is a Ui(X) somewhere
between these two actions

40

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Unfortunately …

• A legal schedule of consistent transactions is not
necessarily serializable

• Example

Recall serial execution
of T1 and T2 gives A =
B = 250 or A = B = 150

T2 changes value
of B, affecting
what T1 sees

21

41

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Guaranteeing Serializability

• Two-Phase Locking (2PL): In every transaction,
all lock requests should precede all unlock
requests

• Theorem B2
A conflict-equiv serial schedule for a schedule of
2PL transactions is the one in which transactions
are in the same order as their first unlocks

• Corollary B3
2PL guarantees that a legal schedule of
consistent transactions is conflict serializable

42

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Example

T1 locks B
before

unlocking A

T2 tries to lock B,
but has to wait till

T1 releases the
lock on B

T1 gets the
value of B
unaffected

by T2

22

43

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

• “A conflict-equiv serial schedule for a schedule of
2PL transactions is the one in which transactions
are in the same order as their first unlocks”
(Theorem B2) is an invariant property of 2PL

• “Consistency of transactions”, “legality of
schedules”, “conflict serializability” are all
invariants maintained by DBMS via 2PL to
guarantee ACID properties

44

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

References
• K. P. Eswaran et al, “The Notions of Consistency and

Predicate Locks in a Database System”, CACM, 19(11):624-
633, 1976

• H. T. Kung, J. T. Robinson, “Optimistic Concurrency
Control”, ACM TODS, 6(2):312-326, 1981

• P. A. Bernstein, N. Goodman, “Timestamp-Based
Algorithms for Concurrency Control in Distributed
Database Systems”, Proc. VLDB 1980, pp 285-300

• H. F. Korth, “Locking Primitives in a Database System”,
JACM, 30(1):55-79, 1983

23

Guest lecture for CS2306S, 31/1/07

Query Languages

46

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Relational Algebra

}{:
}{:},{:

vuSR
vSuR

×⊗}{:
}{:},{:

uSR
uSuR

−}{:
}{:},{:

uSR
uSuR

∪

}{:
}{: 21

ii uR
uuR

π
×

}{:
:},{:

uR
boolufuR

fσ
→

Color 1241977Star Wars

Color 951992Wayne’s World

Color 1041991Mighty Ducks

Film TypeLength Year Title 1977Star Wars

1992Wayne’s World

1991Mighty Ducks

Year Title

πTitle, Year

Color 1241977Star Wars

Film TypeLength Year Title

σYear =1997

24

47

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Closure & Composition

• Proposition C1
Operators of RA is closed over relations

• Corollary C2
Operators of RA can be composed to form
complex queries

• Example: R |x|f S := σf (R ⊗ S)

48

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Select x.L from R as x where C(x)

• R ⊗ S := select x.*, y.* from R x, S y
• πL R := select x.L from R x
• σf R := select x.* from R x where f(x)

• R |x|f S := select x.*, y.* from R x, S y where f(x,y)

• R ∪ S := select x.* from R x union select y.* from S y
• R − S := select x.* from R x except select y.* from S y

A More Convenient Syntax

25

49

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Some Laws for Query Optimization

• σf (σg (S)) = σf AND g S
• σf OR g S = σf S ∪ σg S
• σf (R ∪ S) = σf S ∪ σf S
• σf (R − S) = σf (R) − S
• σf (R |x|g S) = σf (R) |x|g S, if R has all attributes

mentioned in f
• σf (R |x|g S) = R |x|g σf (S), if S has all attributes

mentioned in f

The RHS is usually more efficient than the LHS

50

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

• The “laws” for query optimization are “invariants”
of RA

• Paying attention to them leads to more efficient
queries

26

51

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

References
• E. F. Codd, “A Relational Model for Large Shared Data

Banks”, CACM, 13(6):377-387, 1970
• M. M. Astrahan et al, “System R: A Relational Approach to

Data Management”, ACM TODS, 1(2):97-137, 1976

• E. Wong, K. Youssefi, “Decomposition---A Strategy for
Query Processing”, ACM TODS, 1(3):223-241, 1976

• P. Griffiths-Selinger et al, “Access Path Selection in a
Relational Database System”, Proc SIGMOD 1979, pp 23-34

• G. Graefe, “Special Issue on Query Processing in
Commercial DBMS”, Data Engineering, 16(4), 1993

• S. Chaudhuri, “An Overview of Query Optimization in
Relational Systems”, Proc PODS 1998, pp 34-43

Guest lecture for CS2306S, 31/1/07

A Twist in the Tale:
Limit of Expressive
Power of Relational

Algebra

27

53

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Complexity of Typical Queries

• A typical query

• Expected complexity: O(N1 * log N2 * … * log Nn)

select x1.*, …, xn.*
from R1 x1, …, Rn xn
where x1.l1 = x2.l1 and x2.l2 = x3.l2 and … and xn-1.ln-1 = xn.ln-1

54

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Polynomiality of Relational Algebra

• Proposition D1
All queries definable in RA are in PTIME

• Is there a PTIME query that is RA inexpressible?

}{:
}{:},{:

vuSR
vSuR

×⊗}{:
}{:},{:

uSR
uSuR

− }{:
}{:},{:

uSR
uSuR

∪

}{:
}{: 21

ii uR
uuR

π
×

}{:
:},{:

uR
boolufuR

fσ
→

28

55

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Transitive Closure
• It is possible to define

“great grand father to the
nth generation” for any
arbitrary “n” in RA

• But it is possible to define
an “ancestor-descendent”
table in RA?

• If it is not possible, how do
you prove this? (There are
zillions of programs that
you can write using RA.
You can’t possible check
them one by one!)

Grandfather(R) :=
select x.dad, y.son
from R x, R y
where x.son = y.dad

Greatgrandfather(R) :=
select x.dad, z.son
from R x, R y, R z
where x.son = y.dad
and y.son = z.dad

56

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Degrees of a Graph

• Think of the “father-son” table as a graph
– Each person is a node
– There is an edge from a father to each of his sons

• The “degree” of a node is the number of
incoming and outgoing edges

• The degrees of a graph is the set of degrees of its
nodes

29

57

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Number of Distinct Degrees

• Suppose R is such that each father has up to 2
children

• Grandfather(R) is a graph with 4 distinct degrees
– 1: both x and y have 1 son, or x has 2 sons and

one son has one son and one son has no son
– 2,
– 3,
– 4

• Given max number of children a father can have,
can predict no. of distinct degrees in
Grandfather(R), Greatgrandfather(R), …

58

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Number of Distinct Degrees

• Can’t predict what are the degrees in MessUp(R)

• Can predict that MessUp(R) has at most 2 distinct
degrees regardless of what R is

MessUp(R) :=
select x.dad, y.son
from R x, R y

30

59

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Bounded Degree Property
A language L has bounded degree property if

for every function f, on graphs, definable in L, and
for any number k,

there is a number c such that
for any graph G with deg(G) ⊆ { 0, 1, …, k},
it is the case that c ≥ card(deg(f(G)))

That is, L cannot define a function that produces
complex graphs from simple graphs

60

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

A Deep Invariant of RA Queries

• Theorem D2
RA has the bounded degree property

• Corollary D3
RA cannot define transitive closure. In fact, it
cannot even define transitive closure restricted to
chains

31

61

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

More Consequences
that are hard to prove otherwise …

• Proposition D4
RA can test whether a graph is a single cycle iff
RA can express transitive closure of a chain

• Corollary D5
RA cannot test whether a graph is a single cycle

62

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

• The bounded degree property is an “invariant” of
RA

• It points out the deep structure of all RA queries

• Exploiting it, we can readily solve many ad hoc
problems that are hard to solve otherwise

32

63

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

References
• L. Wong, “Normal Forms and Conservative Extension

Properties for Query Languages over Collection Types”,
JCSS, 52(3):495--505, 1996.

• L. Libkin, L. Wong, “Query Languages for Bags and
Aggregate Functions”, JCSS, 55(2):241--272, 1997.

• G. Dong, L. Libkin, L. Wong, “Local Properties of Query
Languages”, TCS, 239:277--308, 2000.

64

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

What have we learned?

• An invariant may reflect the deep structure of the
data ⇒ better database design

• An invariant may maintain serializability of
concurrent transactions ⇒ higher throughput

• An invariant may be a “law” for query
optimization ⇒ more efficient queries

• An invariant may reflect the deep structure of a
query language ⇒ easy solution to ad hoc
problems that are hard to solve otherwise

33

Guest lecture for CS2306S, 31/1/07

If we still have time, …

Beyond Relational Algebra

66

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Nested Relational Calculus (NRC)

34

67

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Explanation

• π1 e stands for the first component of the pair e
Eg: π1 (o1,o2) = o1

• ∪{e1 | x ∈ e2} stands for the set obtained by
combining the results of applying the function
f(x) = e1 to each element of e2

Eg: ∪{{x, x+1} | x ∈ {1,2,3}} = {1,2,3,4}

68

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Examples

• Relational projection
Π2(R) := ∪{{ π2 x} | x ∈ R}

• Relational selection
σ(p)(R) := ∪{if p(x) then {x} else {} | x ∈ R}

• Cartesian product
⊗(R,S) := ∪{∪{{(x,y)} | x ∈ R} | y ∈ S}

35

69

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Conservative Extension Property

A language L has conservative extension property if

for every function f definable in L,
there is an implementation of f in L such that

for any input i and corresponding output o,
each intermediate data item created
in the course of executing f on i to
produce o has nesting complexity less
than that of i and o

70

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Expressive Power of NRC

• Proposition E1 (Tannen, Buneman, Wong, ICDT92)

NRC has the same expressive power as
Schek&Scholl, Thomas&Fischer, etc.

• Theorem E2 (Wong, PODS93)

NRC has the conservative extension property at
all input/output types

• Corollary E3
Every function from flat relations to flat relations
expressible in NRC is expressible in RA

36

71

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Theoretical Reconstruction of SQL

72

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Example Aggregate Functions
• Count the number of records

count(R) := Σ{| 1 | x ∈ R |}

• Total the first column
total1(R) := Σ{| π1 x | x ∈ R |}

• Average of the first column
ave1(R) := total1(R) ÷ count(R)

• A totally generic query expressible in SQL but
inexpressible in RA

eqcard(R,S) := count(R) = count(S)

37

73

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Expressive Power of NRC(Q,+,•,–,÷,Σ,=, ≥Q)
• Proposition (Libkin, Wong, DBPL93)

NRC(Q,+,•,–,÷,Σ,=, ≥Q) captures “standard” SQL

• Theorem E4 (Libkin, Wong, PODS94)

NRC(Q,+,•,–,÷,Σ,=, ≥Q) has the conservative
extension property at all input/output types

• Corollary E5
Every function from flat relations to flat relations
is expressible in NRC(Q,+,•,–,÷,Σ,=, ≥Q) iff it is also
expressible in SQL

74

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Bounded Degree Property
A language L has bounded degree property if

for every function f, on graphs, definable in L, and
for any number k,

there is a number c such that
for any graph G with deg(G) ⊆ { 0, 1, …, k},
it is the case that c ≥ card(deg(f(G)))

That is, L cannot define a function that produces
complex graphs from simple graphs

38

75

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Expressive Power of NRC(Q,+,•,–,÷,Σ,=, ≥Q)
• Theorem E6 (Dong, Libkin, Wong, ICDT97)

NRC(Q,+,•,–,÷,Σ,=, ≥Q) has the bounded degree
property

• Corollary E7
– Transitive closure of unordered graphs cannot be

expressed in SQL
– Parity test on cardinality of unordered graphs

cannot be expressed in SQL
– Transitive closure of linear chains cannot be

expressed in SQL
– ...

