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What is an invariant?

• Suppose you have a bag of x red beans and y 
green beans

• Repeat  the following:
– Remove 2 beans 
– If both green, discard both
– If both red, discard one, put back one
– If one green and one red, discard red, put back 

green
• If one bean is left behind, can you predict its 

colour?
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Plan 
• Database Design

– Relational data model 
– Dependencies
– Normal forms

• Transaction Management
– Serializable Schedules
– Two-Phase Locking

• Query Languages
– Relational Algebra 
– Query Optimization
– Expressive Power
– Beyond Relational 

Algebra
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Database Design
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Relational Data Model

• Data are represented as a two-dimensional table

• It is a logical representation, not a physical 
representation
– Ordering of the rows is irrelevant
– Ordering of the columns is irrelevant
– How the rows and columns of a table are stored is 

irrelevant
– …
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Example

Color 1241977Star Wars

Color 951992Wayne’s World

Color 1041991Mighty Ducks

Film TypeLength Year Title

Beverly HillsHarrison Ford

BrentwoodMark Hamill

HollywoodCarrie Fisher

Address Name 

$$$Star WarsFoxHarrison Ford3

$$$Star WarsFoxMark Hamill2

$$$Star WarsFoxCarrie Fisher1

Salary Title Studio Star Contract No

Contracts 

Stars 

Movies  
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Design Issues

• How many possible alternate ways to represent 
movies using tables?

• Why this particular set of tables to represent 
movies?

• Indeed, why not use this alternative single table 
below to represent movies?

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies
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Anomalies 

• What’s wrong with the “Wrong Movies” table?

• Redundancy: Unnecessary repetition of info
• Update anomalies: If Star Wars is 125 min, we 

might carelessly update row 1 but not rows 2 & 3
• Deletion anomalies: If Emilio Estevez is deleted 

from stars of Mighty Ducks, we lose all info on 
that movie

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies
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Functional Dependency

• Functional dependency (A1, …, An B1, …, Bm)
– If two tuples of a table R agree on attributes A1, …, 

An, then they must also agree on attributes B1, …, Bm

• Example: Title, Year Length, Film Type, Studio

• FD (A1, …, An B1, …, Bm) is trivial if a Bi is an Aj
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Can you identify the FD’s here? 

• Some FD’s: 
– Title, Year Length
– Title, Year Film Type
– Title, Year Studio

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies
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Keys

• Key
– A minimal set of attributes {A1, …, An} that 

functionally determine all other attributes of a table
– A key is trivial if it comprises the entire set of 

attributes of a table

• Superkey
– A set of attributes that contains a key
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Can you identify the keys here?

Color 1241977Star Wars

Color 951992Wayne’s World

Color 1041991Mighty Ducks

Film TypeLength Year Title

Beverly HillsHarrison Ford

BrentwoodMark Hamill

HollywoodCarrie Fisher

Address Name 

$$$Star WarsFoxHarrison Ford3

$$$Star WarsFoxMark Hamill2

$$$Star WarsFoxCarrie Fisher1

Salary Title Studio Star Contract No

Contracts 

Stars 

Movies  
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Can you identify the superkeys here? 

• Superkeys : 
– Any set of attributes that contains {Title, Year, 

Star} as a subset

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle

Wrong Movies
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Boyce-Codd Normal Form

• A relation R is in Boyce-Codd Normal Form iff
whenever there is a nontrivial FD (A1, …, An B1, 
…, Bm) for R, it is the case that {A1, …, An} is a 
superkey for R

• Theorem A1 (Codd, 1972)

A database design has no anomalies due to FD iff
all its relations are in Boyce-Codd Normal Form
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How is BCNF violated here? 

• A nontrivial FD: 
– Title, Year Length, Film Type, Studio
– The LHS not superset of the key {Title,Year, Star}
⇒ Violate BCNF!

• Anomalies are due to FD’s (and MVD’s) whose 
LHS is not superkey

Emilio EstevezDisney Color 1041991Mighty Ducks

Harrison FordFox Color 1241997Star Wars

Mark HamillFox Color 1241997Star Wars

Carrie FisherFox Color 1241997Star Wars

Star Studio Film TypeLengthYearTitle
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Towards a Better Design

• Use an offending FD (A1, …, An B1, …, Bm) to 
decompose R(A1, …, An, B1, …, Bm, C1, …, Ch) into 
2 tables
– R1(A1, …, An, B1, …, Bm)
– R2(A1, …, An, C1, …, Ch)

No 
redundant 

info

No update 
anomaly

No 
deletion 
anomaly
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What about this table?

• No nontrivial FD here. So no BCNF violation
• Yet lots of anomalies
• What’s happening?
• Addresses are independent of movie titles!

1983Return of the JediMalibuLocust LnCarrie Fisher

1983Return of the JediHollywoodMaple StCarrie Fisher

1980Empire Strikes BackMalibuLocust LnCarrie Fisher

1980Empire Strikes BackHollywood Maple StCarrie Fisher

1997Star WarsMalibu Locust LnCarrie Fisher

1977Star WarsHollywoodMaple StCarrie Fisher

Year Title City Street Star
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Multivalued Dependency

• Multivalued dependency (A1, …, An B1, …, Bm)
– If restricted to rows of R that have fixed values of A1, 

…, An, then the values of B1, …, Bm are independent 
of attributes not among A1, …, An, B1, …, Bm

• MDV (A1, …, An B1, …, Bm) is trivial if a Bi is an 
Aj or {A1, …, An, B1, …, Bm} are all of R’s attributes
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Can you identify the MVD’s here?

• Some MVD’s
– Star Street, City
– Star Title, Year

• These MVD’s say
– A star can live in several places
– A star can act in several movies

1983Return of the JediMalibuLocust LnCarrie Fisher

1983Return of the JediHollywoodMaple StCarrie Fisher

1980Empire Strikes BackMalibuLocust LnCarrie Fisher

1980Empire Strikes BackHollywood Maple StCarrie Fisher

1997Star WarsMalibu Locust LnCarrie Fisher

1977Star WarsHollywoodMaple StCarrie Fisher

Year Title City Street Star
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4th Normal Form

• A relation R is in 4th Normal Form iff whenever 
there is a nontrivial MVD (A1, …, An B1, …, 
Bm) for R, it is the case that {A1, …, An} is a 
superkey for R

• Theorem A2 (Fagin, 1977)

A database design has no anomalies due to MVD 
iff all its relations are in 4th Normal Form

• Theorem A3 (Fagin, 1977)

Every database design in 4th Normal Form is also 
in Boyce-Codd Normal Form
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How is 4NF violated here?

• Some nontrivial MVD’s
– Star Street, City
– Star Title, Year
– Star is not a key, so Violate 4NF

• Anomalies are due to FD’s (and MVD’s) whose 
LHS is not superkey

1983Return of the JediMalibuLocust LnCarrie Fisher

1983Return of the JediHollywoodMaple StCarrie Fisher

1980Empire Strikes BackMalibuLocust LnCarrie Fisher

1980Empire Strikes BackHollywood Maple StCarrie Fisher

1997Star WarsMalibu Locust LnCarrie Fisher

1977Star WarsHollywoodMaple StCarrie Fisher

Year Title City Street Star
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Toward a Better Design

• Use an offending MVD (A1, …, An B1, …, Bm) 
to decompose R(A1, …, An, B1, …, Bm, C1, …, Ch) 
into 2 tables
– R1(A1, …, An, B1, …, Bm)
– R2(A1, …, An, C1, …, Ch)
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The “Invariant” Perspective

• FD’s (A1, …, An B1, …, Bm) are “invariants” of 
the database, as {A1, …, An} determines {B1, …, 
Bm}

• Paying attention such invariants leads to better 
database design
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Transaction Management
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Transaction 

• In real-life applications, when we need to update a 
db, we often need to do it in multiple steps

• E.g., Buying air ticket involves
– Find empty seat
– Buy the ticket

• The sequence of steps is called a transaction



14

27

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

“ACID” Properties of Transactions

• Atomicity
– All-or-nothing execution of a transaction

• Consistency
– All transactions should preserve any consistency 

& integrity constraints specified on the db
• Isolation

– Each transaction must appear to be executed as if 
no other transactions are running

• Durability
– The effect of the transaction on the db must never 

be lost once the transaction has completed
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How Things Can Go Wrong

• Real-life db executes many transactions 
simultaneously

• If things are not carefully controlled, steps of 
different transactions can overlap each other 
dangerously …

User1 finds
empty seat X

User2 finds
empty seat X

User1 buys
empty seat X

User1 buys
empty seat X

time
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Serializability

• The execution of a set of transaction is 
serializable if they behave as if they were run 
serially

• Hard to require a db to run serially in practice
– Too many transactions
– Need parallelism to improve throughput

⇒Need mechanism to ensure serializability
– Even if transactions are not executed serially, the 

result looks to users as if they were run serially
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Schedule

• Actions of transaction Ti

– Ri(X): Ti reads data element X
– Wi(X): Ti writes data element X

• Schedule S of a set of transactions Ts
– A sequence of actions of transactions in Ts
– For each Ti in Ts, the actions of Ti appear in S in 

the same order they appear in Ti
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Serial Schedule

• R2(A); W2(A); R2(B); 
W2(B); R1(A); W1(A); 
R1(B); W1(B); 

• The above is T2 before 
T1, resulting in A = 150 
and B = 150

• If T1 is run before T2, 
we get A = (25 + 100) * 
2 = 250 and B = (25 + 
100) * 2 =250
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Serializable Non-Serial Schedule

• R1(A); W1(A); R2(A); 
W2(A); R1(B); W1(B); 
R2(B); W2(B)

• So A = 250 and B = 250

• This is a serializable
schedule, as it is same 
as running T1 before T2
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Non-Serializable Schedule

• R1(A); W1(A); R2(A); 
W2(A); R2(B); W2(B); 
R1(B); W1(B)

• So A = 250 and B = 150

• This is diff from 
running T1 before T2 (A 
= B = 250) and from T2
before T1 (A = B = 150)

• So this schedule is 
non-serializable
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Conflict Serializability

• A pair of consecutive actions in a schedule are in 
conflict if the behavior of at least one of the 
transactions involved can change if their order 
are interchanged

• Two schedules are conflict equivalent if they can 
be turned one into the other by a sequence of 
nonconflicting swaps of adjacent actions

• A schedule is conflict serializable if it is conflict 
equivalent to a serial schedule
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Conflicts 
• Non-conflicts

– Ri(X); Rj(Y) 
• Neither change value 

of any data element
– Ri(X); Wj(Y), X ≠ Y

• Even if Tj writes Y 
before Ti reads X, the 
value of X is not 
changed

– Wi(X); Rj(Y),  X ≠ Y
– Wi(X); Wj(Y), X ≠ Y

• Conflicts
– Ri(X);Wi(Y)

• Order of actions in a 
transaction is fixed 
and may not be 
reordered by DBMS

– Wi(X);Wj(X)
• Value of X written by 

Tj will be lost if we 
swap the actions

– Ri(X); Wj(X)
• Value of X read by Ti 

will be diff if we swap 
the actions

– Wi(X); Rj(X)

Any two actions of different transactions may be 
swapped unless
• They involve the same data element, and
• At least one is a write
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Example
• Recall this serializable

schedule:
– R1(A); W1(A); R2(A); W2(A); 

R1(B); W1(B); R2(B); W2(B)
⇒ R1(A); W1(A); R2(A); R1(B);

W2(A); W1(B); R2(B); W2(B)
⇒ R1(A); W1(A); R1(B); R2(A); 

W2(A); W1(B); R2(B); W2(B)
⇒ R1(A); W1(A); R1(B); R2(A);

W1(B); W2(A); R2(B); W2(B)
⇒ R1(A); W1(A); R1(B); W1(B); 

R2(A); W2(A); R2(B); W2(B)
• Same as running T1 before T2
• Thus it is conflict serializable
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Conflict Serializability vs Serializability

• Proposition B1
Every conflict serializable schedule is 
serializable, but some serializable schedule is not 
conflict serializable

S1: W1(Y); W1(X); W2(Y); W2(X); W3(X)
S2: W1(Y); W2(Y); W2(X); W1(X); W3(X)

• S1 is a serial schedule
• S2 is serializable (X and Y have same final value 

as S1) but not conflict serializable
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Enforcing Serializability by Locks

• A collection of transactions performing their 
actions in an uncontrolled manner is unlikely to 
result in a serializable schedule

• Need a mechanism to prevent orders of actions 
that lead to unserializable schedule…

⇒ Locks

A transaction obtains locks on data elements it 
accesses to prevent other transactions from 

accessing these elements at the same time, thus 
avoiding the risk of unserializability
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Locks 

• Li(X): Ti requests a lock on data element X
• Ui(X): Ti releases its lock on data element X

• Must satisfy
– Consistency of transactions: Whenever Ti has an 

action Ri(X) or Wi(X), there is a previous action 
Li(X) with no intervening Ui(X), and there is a 
subsequent Ui(X)

– Legality of schedules: Whenever there are actions 
Li(X) followed by Lj(X), there is a Ui(X) somewhere 
between these two actions
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Unfortunately …

• A legal schedule of consistent transactions is not 
necessarily serializable

• Example

Recall serial execution 
of T1 and T2 gives A = 
B = 250 or A = B = 150

T2 changes value 
of B, affecting 
what T1 sees
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Guaranteeing Serializability

• Two-Phase Locking (2PL): In every transaction, 
all lock requests should precede all unlock 
requests

• Theorem B2 
A conflict-equiv serial schedule for a schedule of 
2PL transactions is the one in which transactions 
are in the same order as their first unlocks

• Corollary B3
2PL guarantees that a legal schedule of 
consistent transactions is conflict serializable

42
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Example

T1 locks B 
before 

unlocking A

T2 tries to lock B, 
but has to wait till 

T1 releases the 
lock on B

T1 gets the 
value of B 
unaffected 

by T2



22

43

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

The “Invariant” Perspective

• “A conflict-equiv serial schedule for a schedule of 
2PL transactions is the one in which transactions 
are in the same order as their first unlocks”
(Theorem B2) is an invariant property of 2PL

• “Consistency of transactions”, “legality of 
schedules”, “conflict serializability” are all 
invariants maintained by DBMS via 2PL to 
guarantee ACID properties
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Query Languages
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Relational Algebra
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Closure & Composition

• Proposition C1
Operators of RA is closed over relations

• Corollary C2
Operators of RA can be composed to form 
complex queries

• Example: R |x|f S := σf (R ⊗ S)
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Select x.L from R as x where C(x)

• R ⊗ S := select x.*, y.* from R x, S y
• πL R := select x.L from R x
• σf R := select x.* from R x where f(x)

• R |x|f S := select x.*, y.* from R x, S y where f(x,y)

• R ∪ S := select x.* from R x union select y.* from S y
• R − S := select x.* from R x except select y.* from S y

A More Convenient Syntax
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Some Laws for Query Optimization

• σf (σg (S)) = σf AND g S
• σf OR g S = σf S ∪ σg S 
• σf (R ∪ S) = σf S ∪ σf S 
• σf (R − S) = σf (R) − S
• σf (R |x|g S) = σf (R) |x|g S, if R has all attributes 

mentioned in f
• σf (R |x|g S) = R |x|g σf (S), if S has all attributes 

mentioned in f

The RHS is usually more efficient than the LHS
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The “Invariant” Perspective

• The “laws” for query optimization are “invariants”
of RA

• Paying attention to them leads to more efficient 
queries
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Limit of Expressive 
Power of Relational 

Algebra
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Complexity of Typical Queries

• A typical query

• Expected complexity: O(N1 * log N2 * … * log Nn)

select x1.*, …, xn.*
from R1 x1, …, Rn xn
where x1.l1 = x2.l1 and x2.l2 = x3.l2 and … and xn-1.ln-1 = xn.ln-1
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Polynomiality of Relational Algebra

• Proposition D1
All queries definable in RA are in PTIME

• Is there a PTIME query that is RA inexpressible?

}{:
}{:},{:

vuSR
vSuR

×⊗}{:
}{:},{:

uSR
uSuR

− }{:
}{:},{:

uSR
uSuR

∪

}{:
}{: 21

ii uR
uuR

π
×

}{:
:},{:

uR
boolufuR

fσ
→



28

55

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Transitive Closure
• It is possible to define 

“great grand father to the 
nth generation” for any 
arbitrary “n” in RA

• But it is possible to define 
an “ancestor-descendent”
table in RA?

• If it is not possible, how do 
you prove this? (There are 
zillions of programs that 
you can write using RA. 
You can’t possible check 
them one by one!)

Grandfather(R) :=
select x.dad, y.son
from R x, R y
where x.son = y.dad

Greatgrandfather(R) :=
select x.dad, z.son
from R x, R y, R z
where x.son = y.dad
and y.son = z.dad
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Degrees of a Graph

• Think of the “father-son” table as a graph
– Each person is a node
– There is an edge from a father to each of his sons

• The “degree” of a node is the number of 
incoming and outgoing edges

• The degrees of a graph is the set of degrees of its 
nodes
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Number of Distinct Degrees

• Suppose R is such that each father has up to 2 
children

• Grandfather(R) is a graph with 4 distinct degrees
– 1: both x and y have 1 son, or x has 2 sons and 

one son has one son and one son has no son
– 2, 
– 3, 
– 4

• Given max number of children a father can have, 
can predict no. of distinct degrees in 
Grandfather(R), Greatgrandfather(R), …
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Number of Distinct Degrees

• Can’t predict what are the degrees in MessUp(R)

• Can predict that MessUp(R) has at most 2 distinct 
degrees regardless of what R is

MessUp(R) :=
select x.dad, y.son
from R x, R y
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Bounded Degree Property
A language L has bounded degree property if

for every function f, on graphs, definable in L, and
for any number k,

there is a number c such that 
for any graph G with deg(G) ⊆ { 0, 1, …, k},
it is the case that c ≥ card(deg(f(G))) 

That is, L cannot define a function that produces 
complex graphs from simple graphs
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A Deep Invariant of RA Queries

• Theorem D2 
RA has the bounded degree property

• Corollary D3
RA cannot define transitive closure. In fact, it 
cannot even define transitive closure restricted to 
chains
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More Consequences 
that are hard to prove otherwise …

• Proposition D4
RA can test whether a graph is a single cycle iff
RA can express transitive closure of a chain

• Corollary D5
RA cannot test whether a graph is a single cycle
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The “Invariant” Perspective

• The bounded degree property is an “invariant” of 
RA

• It points out the deep structure of all RA queries

• Exploiting it, we can readily solve many ad hoc 
problems that are hard to solve otherwise
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What have we learned?

• An invariant may reflect the deep structure of the 
data ⇒ better database design

• An invariant may maintain serializability of 
concurrent transactions ⇒ higher throughput

• An invariant may be a “law” for query 
optimization ⇒ more efficient queries

• An invariant may reflect the deep structure of a 
query language  ⇒ easy solution to ad hoc 
problems that are hard to solve otherwise
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If we still have time, …

Beyond Relational Algebra
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Nested Relational Calculus (NRC)
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Explanation 

• π1 e stands for the first component of the pair e
Eg: π1 (o1,o2) = o1

• ∪{e1 | x ∈ e2} stands for the set obtained by 
combining the results of applying the function 
f(x) = e1 to each element of e2

Eg: ∪{{x, x+1} | x ∈ {1,2,3}} = {1,2,3,4}
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Examples 

• Relational projection
Π2(R) := ∪{{ π2 x} | x ∈ R}

• Relational selection
σ(p)(R) := ∪{if p(x) then {x} else {} | x ∈ R}

• Cartesian product
⊗(R,S) := ∪{∪{{(x,y)} | x ∈ R} | y ∈ S}
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Conservative Extension Property

A language L has conservative extension property if

for every function f definable in L, 
there is an implementation of  f in L such that

for any input i and corresponding output o,
each intermediate data item created 
in the course of executing  f on i to 
produce o has nesting complexity less 
than that of i and o
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Expressive Power of NRC

• Proposition E1 (Tannen, Buneman, Wong, ICDT92)

NRC has the same expressive power as 
Schek&Scholl, Thomas&Fischer, etc.

• Theorem E2 (Wong, PODS93)

NRC has the conservative extension property at 
all input/output types

• Corollary E3
Every function from flat relations to flat relations 
expressible in NRC is expressible in RA
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Theoretical Reconstruction of SQL
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Example Aggregate Functions
• Count the number of records

count(R) := Σ{| 1 | x ∈ R |}

• Total the first column
total1(R) := Σ{| π1 x | x ∈ R |}

• Average of the first column 
ave1(R) := total1(R) ÷ count(R)

• A totally generic query expressible in SQL but 
inexpressible in RA

eqcard(R,S) := count(R) = count(S)
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Expressive Power of NRC(Q,+,•,–,÷,Σ,=, ≥Q) 
• Proposition (Libkin, Wong, DBPL93)

NRC(Q,+,•,–,÷,Σ,=, ≥Q) captures “standard” SQL

• Theorem E4 (Libkin, Wong, PODS94)

NRC(Q,+,•,–,÷,Σ,=, ≥Q) has the conservative 
extension property at all input/output types

• Corollary E5
Every function from flat relations to flat relations 
is expressible in NRC(Q,+,•,–,÷,Σ,=, ≥Q) iff it is also 
expressible in SQL
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Bounded Degree Property
A language L has bounded degree property if

for every function f, on graphs, definable in L, and
for any number k,

there is a number c such that 
for any graph G with deg(G) ⊆ { 0, 1, …, k},
it is the case that c ≥ card(deg(f(G))) 

That is, L cannot define a function that produces 
complex graphs from simple graphs



38

75

Guest lecture for CS2306S, 31/1/07 Copyright 2007 © Limsoon Wong

Expressive Power of NRC(Q,+,•,–,÷,Σ,=, ≥Q) 
• Theorem E6 (Dong, Libkin, Wong, ICDT97)

NRC(Q,+,•,–,÷,Σ,=, ≥Q) has the bounded degree 
property

• Corollary E7
– Transitive closure of unordered graphs cannot be 

expressed in SQL
– Parity test on cardinality of unordered graphs 

cannot be expressed in SQL
– Transitive closure of linear chains cannot be 

expressed in SQL
– ...


