Improving coverage and consistency of MS-based proteomics

Limsoon Wong
(Joint work with Wilson Wen Bin Goh)

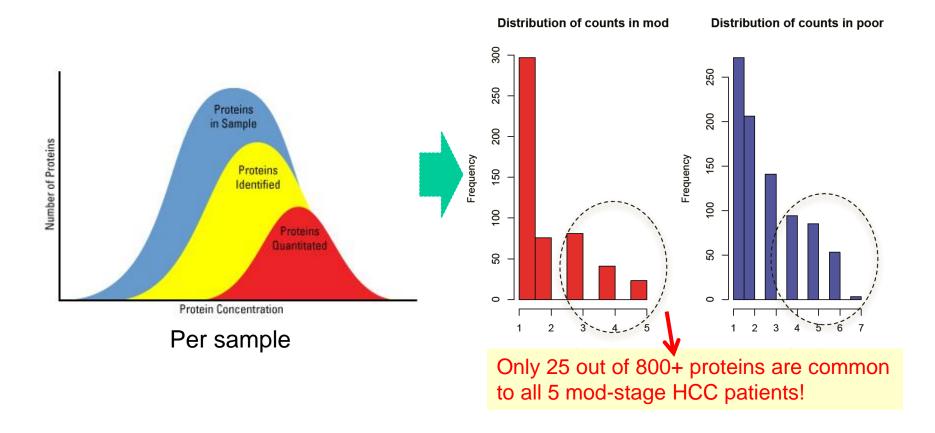
Proteomics vs transcriptomics

- Proteomic profile
 - Which protein is found in the sample
 - How abundant it is
- Similar to gene
 expression profile. So
 typical gene
 expression profile
 analysis methods can
 be applied in theory...

- Key differences
 - Profiling
 - Complexity: 20k genes vs 500k proteins
 - Dynamic range: > 10
 orders of magnitude in
 plasma. Proteins
 cannot be amplified
 - Analysis
 - Much fewer features
 - Difficult to reproduce
 - Much fewer samples
 - Unstable quantitation

Issues in proteomics: Coverage and consistency

Technical incompleteness How it affects real data

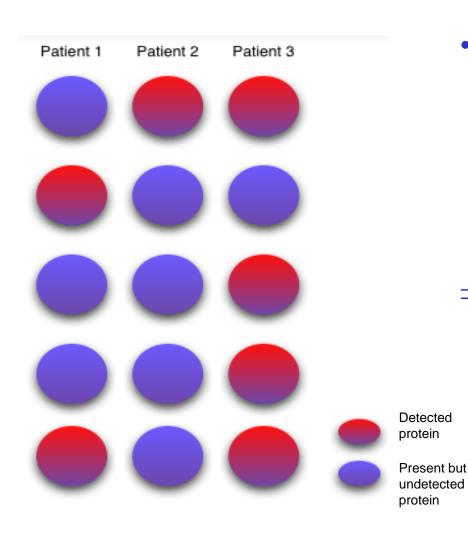


Using protein complexes to enhance proteomics: Basic ideas

A postulate and some math

- Postulate: The chance of a protein complex being present in a sample is proportional to the fraction of its constituent proteins being correctly reported in the sample
- Suppose proteomics screen has 75% reliability; a complex comprises proteins A, B, C, D, E; and screen reports A, B, C, D only
- \Rightarrow Complex has 60% (= 0.75 * 4 / 5) chance to be present
- ⇒ The unreported protein E also has ≥ 60% chance to be present, as presence of the complex implies presence of all its constituents
 ⇒ improving coverage
- ⇒ Each of the reported proteins (A, B, C, and D) individually has 90% (= 100% * 0.6 + 75% * 0.4) chance of being true positive, whereas a reported protein that is isolated has a lower 75% chance of being true positive
 - ⇒ removing noise

An intuition



- Suppose the failure to form a protein complex causes a disease
 - If any component protein is missing, the complex can't form
- ⇒ Diff patients suffering from the disease can have a diff protein component missing
 - Construct a profile based on complexes?

Reference complexes

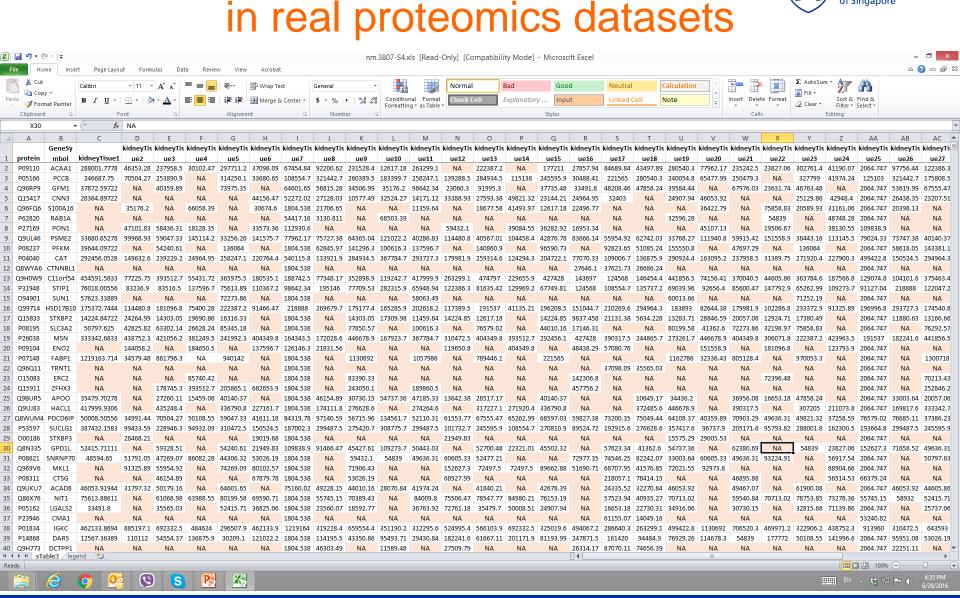
 In this talk, human complexes (of size at least 5) from CORUM are used as reference complexes

 It is possible to use subnets generated from pathway and PPI databases. However these such subnets vary significantly depending on network databases and subnet-generation algo used

So I do not consider these...

Improving coverage in proteomic profiles

Guo et al. Nature Medicine, 21, 407, 2015 Lots of missing values



Missing values are not due mostly to lowabundance

proteins

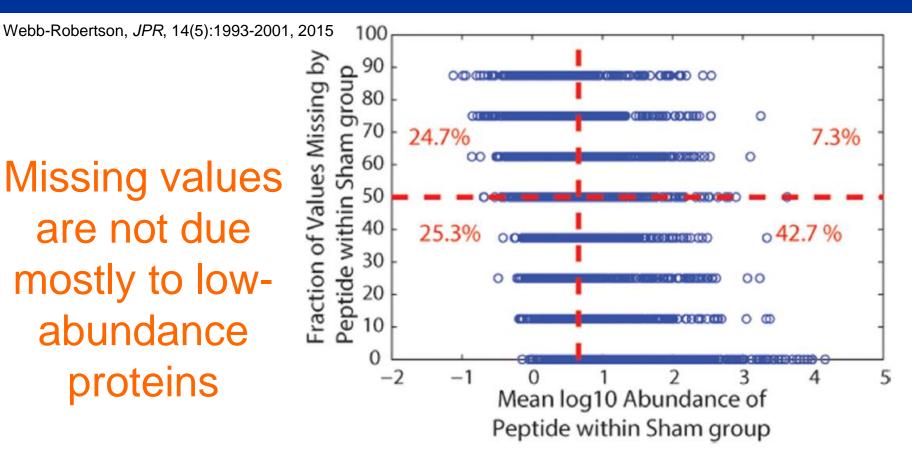


Figure 1. Average log₁₀ intensity as measured by peptide peak area in the control group versus fraction of missing values and peptide counts associated with bins corresponding to the fraction of missing data comparing phenotypes and exposures for datasets from (A) human plasma and (B) mouse lung. The control group for the human plasma is the normal glucose tolerant (NGT) samples, and the sham group for the mouse lung is the regular weight mice with no lipopolysaccharide (LPS) exposure. The vertical red line represents median average intensity, and the horizontal red line represents the point that 50% of the values are missing.

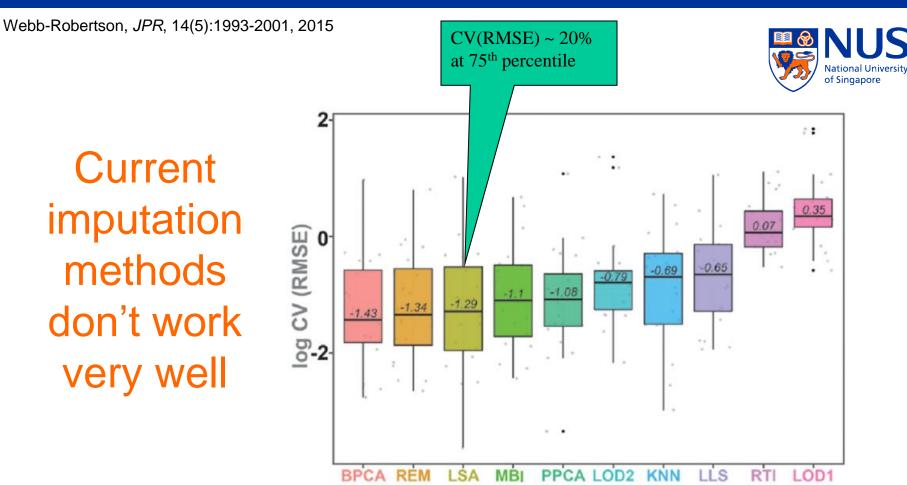
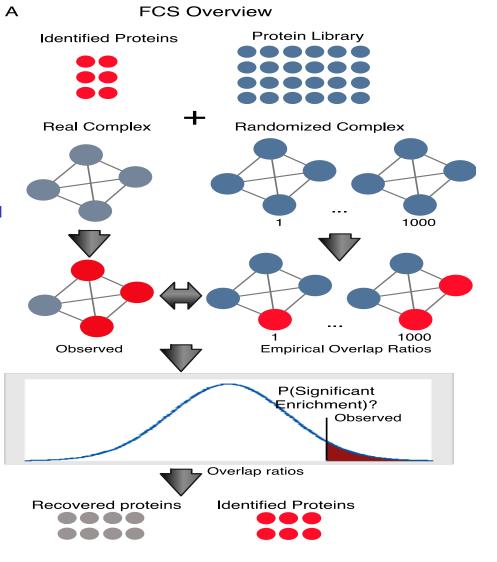


Figure 2. Boxplot of the average log_{10} CV(RMSE) for the imputed dilution series datasets (Table 1) at the (A) peptide and (B) protein levels. The lower line represents the 25th percentile, the upper line of the box represents the 75th percentile, and the inner line corresponds to the median log_{10} CV(RMSE).

Imputation

FCS

- Rescue undetected proteins from high-scoring protein complexes
- Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. JPR, 12(5):2116-2127, 2013



Other methods for rescuing missing proteins

CEA

- Generate cliques from PPIN
- Rescue missing proteins from cliques containing lots of high-confidence proteins
- Li et al. Network-assisted protein identification and data interpretation in shotgun proteomics. *Mol. Syst. Biol.*, 5:303, 2009

MaxLink

- Map high-confidence proteins ("seeds") to PPIN
- Rescue proteins that interact many seeds but few non-seeds
- Goh et al. Int J Bioinformatics Research and Applications, 8(3/4):155-170, 2012

PEP

- Map high-confidence proteins to PPIN
- Extract neighbourhood & predict protein complexes using CFinder
- Rescue undetected proteins from high-ranking predicted complexes
- Goh et al. A Network-based pipeline for analyzing MS data---An application towards liver cancer. *J. Proteome Research*, 10(5):2261-2272, 2011

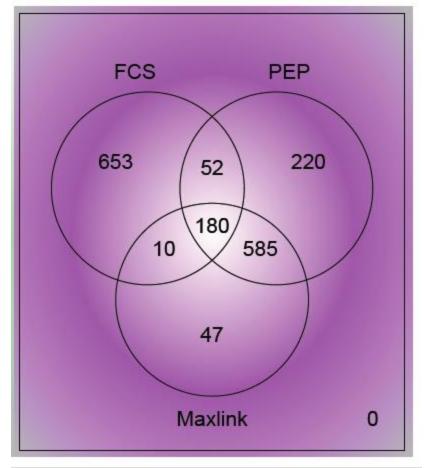
Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. *JPR*, 12(5):2116-2127, 2013

iTRAQ experiment

- Valporic acid (VPA)-treated mice vs control
 - VPA or vehicle injected every 12 hours into postnatal day-56 adult mice for 2 days
 - Role of VPA in epigenetic remodeling
- MS was scanned against IPI rat db in round #1
 - 291 proteins identified
- MS was scanned against UniProtkb in round #2
 - 498 additional proteins identified
- All recovery methods ran on round #1 data and the recovered proteins checked against round #2

Moderate level of agreement of reported proteins between various recovery methods

FCS (Real Complexes)



Performance comparison

Method	Novel Suggested Proteins	Recovered proteins	Recall	Precision
PEP	1037	158	0.317	0.152
Maxlink	822	226	0.454	0.275
FCS (predicted)	638	224	0.450	0.351
FCS (complexes)	895	477	0.958	0.533

 Looks like running FCS on real complexes is able to recover more proteins and more accurately

SWATH experiment

- If there are technical replicates, they should have reported the same proteins. So we can run FCS on one replica, and see whether the predicted missing proteins show up in other replicas
- If there are multiple biological replicates (i.e. patients of the same phenotype), we can run FCS on one of them, and check on the others
- Proteomics data used: Renal cancer
 - Guo et al. Nature Medicine, 21(4):407-413, 2015
 - 6 pairs of normal vs cancer ccRCC tissues
 - SWATH in duplicates

~20% of predicted missing proteins are supported by ≥1 reported peptide in the screen

A Strategy 1 (complex to proteins in the peptide list back to self)

Sample	N T1-> N T1	N T2 -> N T2		C T2 -> C T2
1	0.203 0	0.220 0	0.186 0.001	0.191 0
	985 200	937 206	823 153	911 174
2	0.204 0	0.222 0	0.194 0.004	0.215 0
	936 191	889 197	904 175	918 197
3	0.197 0	0.212 0	0.241 0	0.225 0
	972 191	950 201	849 205	840 189
4	0.223 0	0.232 0	0.215 0.001	0.211 0
	943 210	948 220	925 199	930 196
5	0.225 0	0.201 0	0.209 0	0.185 0
	912 205	964 194	877 183	904 167
6	0.249 0	0.215 0	0.233 0	0.241 0
	883 220	977 210	886 206	927 223

~20% of predicted missing proteins are supported by ≥1 reported peptide in the replicate

B Strategy 2 (complex to proteins in the peptide list in the other replicate)

Sample	N T1-> N T2	N T2 -> N T1	C T1-> C T2	C T2 -> C T1
1	0.212 0	0.210 0	0.198 0	0.182 0
	985 209	937 197	823 163	911 166
2	0.213 0	0.216 0	0.205 0	0.202 0.001
	936 199	889 192	904 185	918 185
3	0.212 0	0.196 0	0.218 0	0.249 0
	972 206	950 186	849 185	840 209
4	0.224 0	0.233 0	0.197 0.002	0.222 0
	943 211	948 221	925 182	930 206
5	0.188 0.002	0.235 0	0.185 0	0.209 0
	912 171	964 227	877 162	904 189
6	0.224 0	0.246 0	0.227 0	0.249 0
	883 198	977 240	886 201	927 231

But ~25% of predicted missing proteins are supported by peptides in the screen or replicate

C Strategy 3 (complex to proteins in the peptide list union of self and other replicate)

Sample	N T1-> N T12	N T2 -> N T12	C T1-> C T12	C T2 -> C T12
1	0.248 0	0.258 0	0.238 0	0.229 0.001
	985 244	937 242	823 196	911 209
2	0.248 0	0.260 0	0.225 0	0.234 0.001
	936 232	889 231	904 203	918 215
3	0.243 0	0.241 0	0.274 0	0.281 0
	972 236	950 229	849 233	840 236
4	0.268 0	0.280 0	0.251 0	0.263 0
	943 253	948 265	925 232	930 245
5	0.254 0	0.267 0	0.241 0	0.238 0
	912 232	964 257	877 211	904 215
6	0.280 0	0.275 0	0.269 0	0.283 0
	883 247	977 269	886 238	927 262

~25% FCS-predicted missing protein are supported by peptides in screen/replicate. Can we do better?

Recall this postulate:

The chance of a protein complex being present is proportional to the fraction of its protein members being correctly reported in the screen

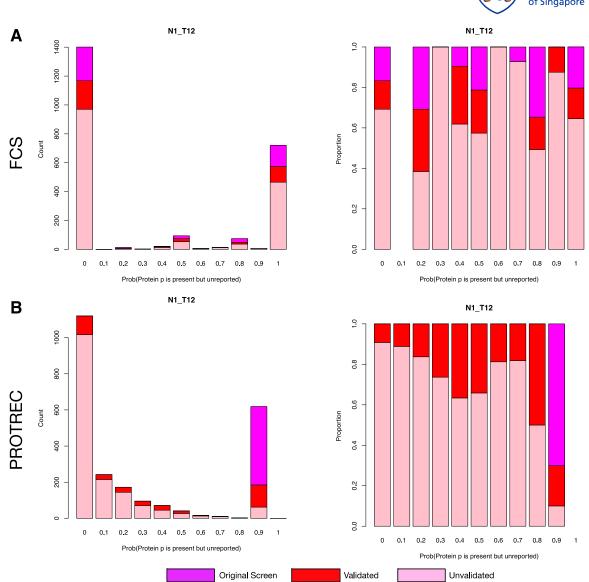
Presence of complex implies presence of all member proteins

PROTREC: Rank predicted missing proteins by

Prob(Protein p is present but unreported) =

Max_{complex C contains p} Prob(p is present | C is present) * Prob(C is present) + Prob(p is present | C is absent) * Prob(C is absent)

Ranking by PROTREC significantly improves precision of FCS predictions



Improving consistency in proteomic profile analysis

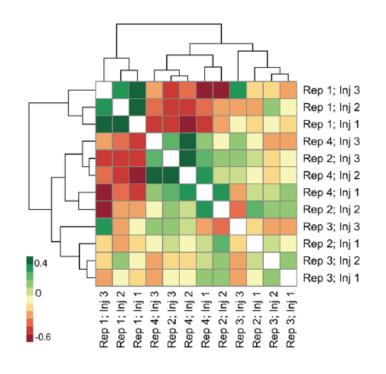
Proteomic profiles generally not NUS National University of Singapore consistent, even for technical replicates

A human kidney tissue

- Guo et al. Nature Medicine, 21(4):407-413, 2015
- Digested in quadruplicates
- Analyzed in triplicates

Clustering by proteins

- Correlation betw replicates is not good (~0.4)
- Technical replicates of the same biological replicate are not tightly clustered



qPSP

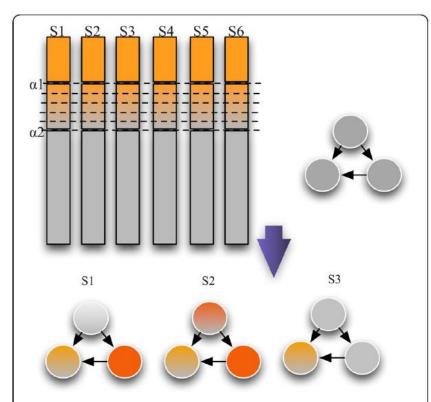
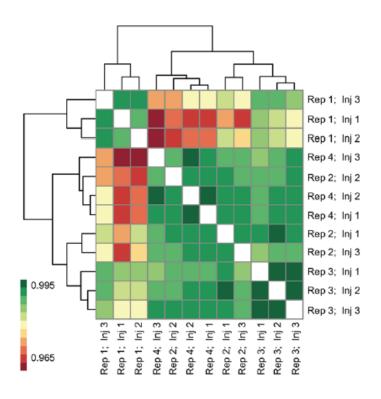


Fig. 1 Schematic demonstrating qPSP's fuzzification procedure. First, alpha1 at top 10 % was defined. An alpha2 was defined from top 10-20 %. To place less confidence in the lower-scoring alpha2, proteins that fall within this range were grouped into 5 bins with descending weights. The modulated hit-rates for each sample could then be used for generating each sample's proteomic signature profile

- Features are complexes
- Feature values are fuzzy weighted proportion of proteins in a complex
 - $score(C,S_i) = \Sigma_{p \in C} fs(p,S_i) / |C|$
- Complex C is significant if {score(C,S_i) | S_i ∈ A} is very different by t-test from {score(C,S_i) | S_i ∈ B}

Consistency of qPSP

- Clustering of benchmarking control data based on protein complexes (i.e. qPSP)
 - Correlation betw replicates is >0.95
 - Cf. 0.4 based on proteins
 - Technical replicates are better clustered



Application to renal & colorectal cancers

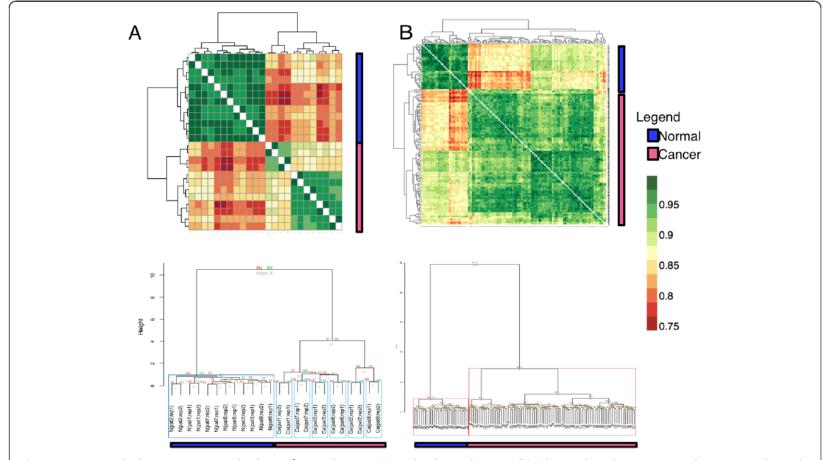


Fig. 3 qPSP strongly discriminates sample classes for renal cancer (**a**) and colorectal cancer (**b**). Clustered similarity maps at the top row showed specific and consistent segregation of non-cancer and cancer samples. The trees below the heatmaps are from bootstrap analysis (PVCLUST), which demonstrates that the discrimination between sample classes based on qPSP hit-rates is highly stable

Further improving consistency, as well as catching significant low-abundance complexes

ESSNet, adapted for proteomics

- Let g_i be a protein in a given protein complex
- Let p_i be a patient
- Let q_k be a normal
- Let $\Delta_{i,j,k} = \text{Expr}(g_i,p_j) \text{Expr}(g_i,q_k)$
- Test whether $\Delta_{i,j,k}$ is a distribution with mean 0

- Null hypothesis is "Complex C is irrelevant to the difference between patients and normals, and the proteins in C behave similarly in patients and normals"
- No need to restrict to most abundant proteins
- ⇒ Potential to reliably detect low-abundance but differential proteins

Lim et al. A quantum leap in the reproducibility, precision, and sensitivity of gene expression profile analysis even when sample size is extremely small. *JBCB*, 13(4):1550018, 2015

Five methods to compare with

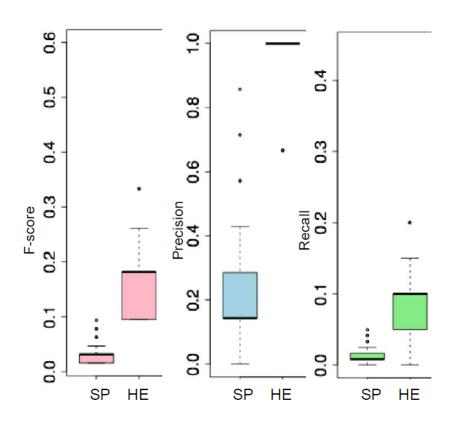
- Network-based methods
 - Hypergeometric enrichment (HE)
 - Direct group analysis (DG), similar to GSEA
 - qPSP, Goh et al., *Biology Direct*, 10:71, 2015
 - PFSNET, Goh & Wong, JBCB, 14(5):16500293, 2016
- Standard t-test on individual proteins (SP)

Simulated data

- Simulated datasets from Langley and Mayr
 - D.1.2 is from study of proteomic changes resulting from addition of exogenous matrix metallopeptidase (3 control, 3 test)
 - D2.2 is from a study of hibernating arctic squirrels (4 control, 4 test)
- Both D1.2 and D2.2 have 100 simulated datasets, each with 20% significant features
 - Effect sizes of these differential features are sampled from one out of five possibilities (20%, 50%, 80%, 100% and 200%), increased in one class and not in the other
- Significant artificial complexes are constructed with various level of purity (i.e. proportion of significant proteins in the complex)
 - Equal # of non-significant complexes are constructed as well

SP shows poor performance on simulated data.

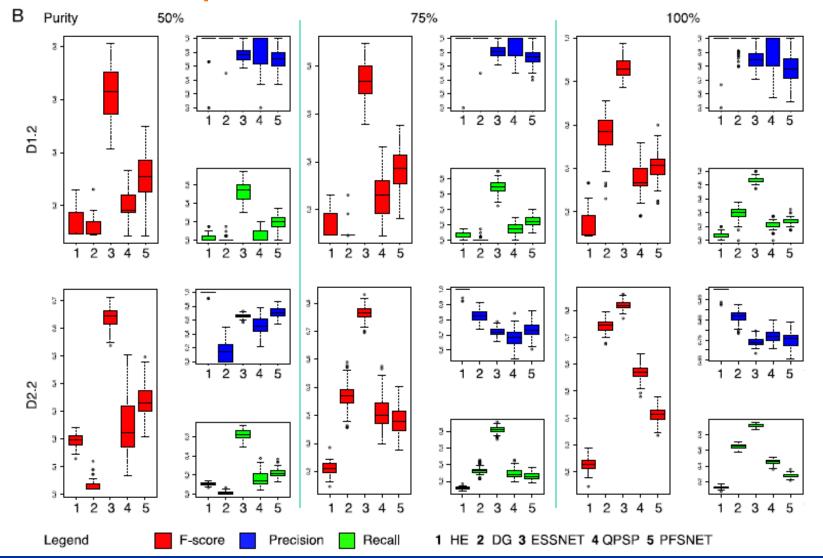
Can networkbased methods do better?



Supplementary Figure 1 Single protein (SP) precision-recall performance on D1.2. The f-score

(pink), precision (blue) and recall (green) shows that SP performs abysmally on simulated data. HE is shown next to SP as a reference.

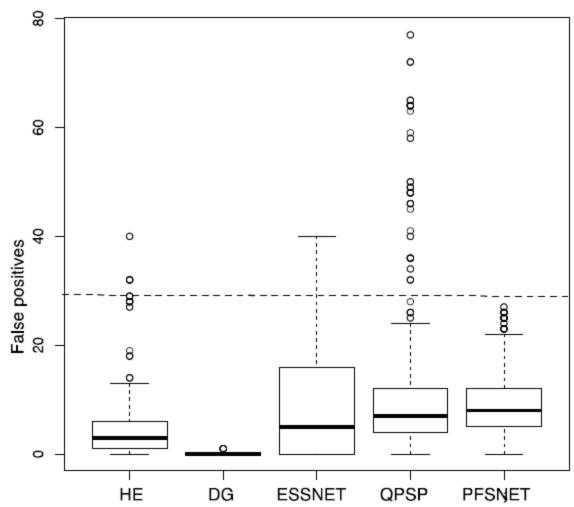
ESSNET shows excellent recall/precision on simulated data



Renal cancer control data (RCC) National University of Singapore

- 12 runs originating from a human kidney tissue digested in quadruplicates and analyzed in triplicates
- Excellent for evaluating false-positive rates of feature-selection methods
 - Randomly split the 12 runs into two groups.
 Report of any significant features between the groups must be false positives

All methods control false positives well



Dash line corresponds to expected # of false positives at alpha 0.05 (~30 complexes)

Renal cancer data (RC)

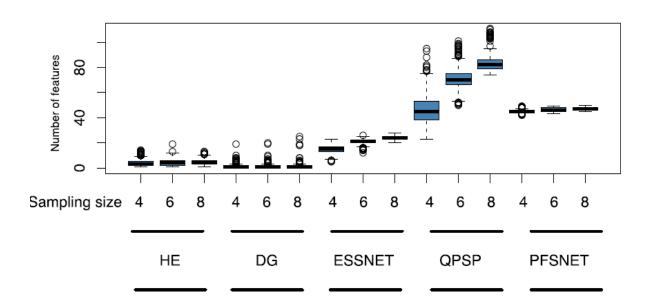
- 12 samples are run twice so that we have technical replicates over 6 normal and 6 cancer tissues
- Excellent opportunity for testing reproducibility of feature-selection methods
 - A good method should report similar feature sets between replicates
- Can also test feature-selection stability
 - Apply feature-selection method on subsamples and see whether the same features get selected

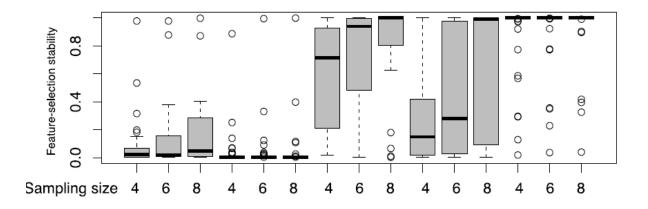
ESSNET & PFSNET show excellent reproducibility

Number of terms	НЕ	DG	ESSNET	QPSP	PFSNET
Replicate 1	4	1	35	86	45
Replicate 2	6	2	29	75	46
Overlaps	0.25	0.5	0.83	0.66	0.94

HE	DG	ESSNET	QPSP	PFSNET	_
1	0.5	0.71	0.86	0.71	HE
	1	1	1	1	DG
		1	0.93	0.98	ESSNET
This table is coron by applying	the		1	0.90	QPSP
methods on the dataset	Tull RC			1	PFSNET

PFSNET show excellent stability



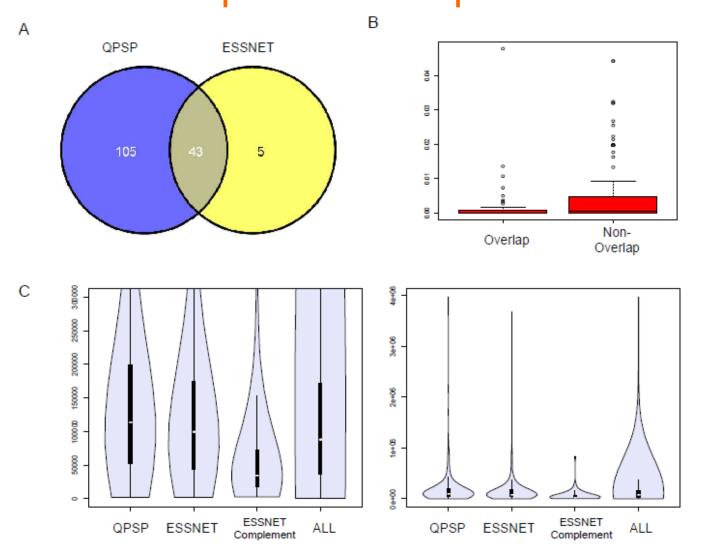


ESSNET & PFSNET show excellent

stability

	4	6	8	Mean
НЕ	0.022	0.016	0.047	0.030
DG	0.001	0.001	0.002	0.001
ESSNET	0.714	0.941	1.000	0.885
QPSP	0.149	0.282	0.991	0.470
PFSNET	1.000	1.000	1.000	1.000

ESSNET can assay low-abundan NUS National University of Singapore Complexes that qPSP cannot

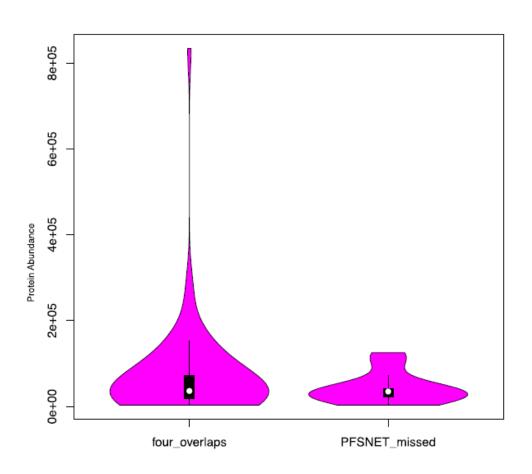


A: QPSP-ESSNET significant-complex overlaps

B: P-value distribution for overlapping and non-overlapping QPSP complexes.

C: Sampling abundance distribution. The left panel is a zoom-in of the right. The y-axis is the protein abundance while the four categories are the distribution of abundances of complexes found in QPSP, ESSNET. **ESSNET** unique (complement), and all proteins in RC.

ESSNET can assay low-abundant NUS National University of Singapore Complexes that PFSNET cannot



Of the 5 ESSNETunique complexes, PFSNET can detect 4; the missed complex consists entirely of lowabundance proteins.

If p-value threshold is adjusted by Benjamini-Hochberg 5% FDR, PFSNET can detect only 3 of the 5 ESSNET-unique complexes while ESSNET continues to detect them all.

Concluding Remarks

In conclusion...

Contextualization (into complexes) can deal with coverage and consistency issues in proteomics

References

- Goh & Wong. Integrating networks and proteomics: Moving forward. Trends in Biotechnology, in press
- [FCS] Goh et al. Comparative network-based recovery analysis and proteomic profiling of neurological changes in valporic acid-treated mice. Journal of Proteome Research, 12(5):2116-2127, 2013
- [qPSP] Goh et al. Quantitative proteomics signature profiling based on network contextualization. *Biology Direct*, 10:71, 2015
- [PFSNET] Goh & Wong. Evaluating feature-selection stability in next-generation proteomics. *Journal of Bioinformatics and Computational Biology*,14(5):1650029, 2016
- [ESSNET] Goh & Wong. Advancing clinical proteomics via analysis based on biological complexes: A tale of five paradigms. *Journal of Proteome Research*, 15(9):3167-3179, 2016
- [PROTREC] Goh & Wong. Recovering missing proteins based on biological complexes. In preparation