Identifying Protein Complexes from
Protein Interactome Maps

Motivation

e Nature of high-throughput e Can aprotein interact with
PPI expts S0 many proteins

— Proteins are taken out of simultaneously?

their natural context!

A big “hub” and its
“spokes” should probably
be decomposed into
subclusters

— Each subcluster is a set
proteins that interact in
the same space and time

— Viz., a protein complex
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* Motivation and Approaches
* PPI Network Cleansing based on PPI Topology

* Impact of Cleansing on PPI-based Protein
Complex Prediction Methods

Approaches
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Approaches to PPI-Based ._.'E'.._L_E
Protein Complex Prediction

RNSC MCODE MCL
Type Clustering, Local Flow
local search neighborhood |simulation
cost based density search
Multiple No Yes No
assignment
of protein
Weighted No No Yes
edge

* And several other methods....
* Recall vs precision is poor

S9NUS
Cause of Low Recall/Precision ——

Experimental method category* MNumber of interacting pairs Co-localization” (%) Co-cellular-role® (%)
All: All methods 9347 64 49
A: Small scale Y2H 1861 73 62
AD: GY2ZH Uetz et al. (published results) 956 66 45
Al: GY2ZH Uetz et al. (unpublished results) 516 53 33
A2 GYZH lto et al. (core) 798 64 40
A3 GY2H Ito et al. (all) 3655 41 15
B: Physical methods 71 98 95
C: Genetic methods 1052 77 75
D1: Biochemical, in vitro 614 87 79
D2: Biochemical, chromatography 648 93 88
El: Immunological, direct 1025 a0 a0
E2: Immunological, indirect 34 100 a3
2M: Two different methods 3 87 85
3M: Three different methods 1212 92 94
4M: Four different methods 570 95 93

- N
Sprinzak et al., JMB, 327:919-923, 2003 Large disagreement betw methods

e High level of noise
= Need to clean up before protein complex prediction
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e Trouble with “non-ball-like”
complexes

= Clique merging? Relative density?
Core-n-attachment?

PPI Network Cleansing
based on PPI Topology




Measures that correlate with function 8z ._-'E'.._'“_E

homogeneity and localization coherence

e Two proteins participating
in same biological process
are more likely to interact }
» CD-distance

+ Two proteins in the same * FS-Weight
cellular compartments are
more likely to interact

CD-distance & FS-Weight: Based on concept that two proteins with many
interaction partners in common are likely to be in same biological process &
localize to the same compartment
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Czekanowski-Dice Distance gmunetal, 2005

» Given a pair of proteins (u, v) in a PPI network
— N, = the set of neighbors of u
— N, = the set of neighbors of v

2|NuﬁNv|
|Nu|+|Nv|

e CD(u,v)=

» Consider relative intersection size of the two neighbor
sets, not absolute intersection size

— Case 1: [N | = 1, [N |= 1, [IN,AN,|=1, CD(u,v)=1
— Case 2: |N,| = 10, |N,|= 10, |[N,AN,|=10, CD(u,v)=1
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FSWeight (chuaetal, 2006) '-'-""'-"‘-"""

* Try to overcome weakness of CD-distance
2|NuﬂNv| 2|Nuva|

° = X
FS(u,v) |Nu|+|NuﬂNv|+/1u |Nv|+|Nuva|+/1v
* ), and A, penalize proteins with few neighbors
3 INK| D INK
— U = max{0, & _IN |}, AV = max{O,L_l Ny |}
V| V|

Suppose average degree is 4, then
— Case 1: I[Ny =1, IN,J= 1, IN,ON,|=1, FS(u,v)=4/25=0.16
— Case 2: |N,| =10, IN,|= 10, IN,nN,|=10, FS(u,v)=1

Comrelation with Functional Similarity Correlation with Expression Profile
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Correlation with Multiple Observations
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Correlation with Subcellular Localization
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A simpler formulation seems to work too...

1

NUS
lterated CD-Distance (i etal, 2008) ——

» Variant of CD-distance that penalizes proteins with
few neighbors

2| Nu Nvl
WL(Uv) = | Nu | +ﬂu+| Nv | +Av
A, = max{0, ;l NXl—I NuI}, A, = max{0, ;l NXl—l NVI}
V| V|

e Suppose average degree is 4, then
— Case 1: [Ny | =1, IN,J= 1, [IN,oN,|=1, wL(u,v)=0.25
— Case 2: |N| =10, IN,|= 10, IN,nN,|=10, wL(u,v)=1
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A thought... ==
2 | Nu Ny
WL(U’V) - | ‘\-Tu +;w«'+ | 4\':*’ | +;""

» Weight of interaction reflects its reliability

— Can we get better results if we use this weight to re-
calculate the score of other interactions?

| SoNUS
lterated CD-Distance (i et al, 2006) -
e wL%u,v) =1if (u,v)eG, otherwise wL°u,v)=0
| NuﬁNv|+| NuﬁNvl
° 1 =
wi (U,V) | Nu | +Au+ | Nv | +Av
. WLk V) = X h%:ﬂ\q/\vuk‘l(u,xhX N%:w\f\vuk‘l(v, X)
DU, x) + A D W (v, x) + A
XxeNu XeNv
D> W (x,y)
° )\,ku = maX{O, %_ ZWLk_l(U,X) }
xeNu
D> wE(x,y)
° }"kv = max{O, XeV yelev | _XEZN:‘/Wkal(v, X) }
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Validation &z

* DIP yeast dataset

— Functional homogeneity is 32.6% for PPIs where
both proteins have functional annotations and
3.4% over all possible PPIs

— Localization coherence is 54.7% for PPIs where
both proteins have localization annotations and
4.9% over all possible PPIs

e Let’'s see how much better iterated CD-distance
is over the baseline above, as well as over the
original CD-distance/FS-weight

FINUS
How many iteration is enough? ——

Cf. ave functional homogeneity of protein pairs in DIP < 4%
ave functional homogeneity of PPl in DIP < 33%

Functicnal homogeneity
[=]
[=5)
Functicnal homogeneity
o
(=]

o 0.1 0.2 0.3 0.4 0.5 0.8 a 1000 2000 3000 4000 5000
Coverage #oredicted interactions

» [terated CD-distance achieves best performance
wrt functional homogeneity at k=2

» Ditto wrt localization coherence (not shown)
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How many iteration is enough? ""‘""‘"‘"’

noise level| k |Fcommon PPIs | avg_rank diff | avg_score _diff

100% 1 3669 540.21 0.10
2 5870 144.86 0.02

20 3840 67.00 0.01

300% 1 5322 881.77 0.18
2 5664 36745 0.06

20 5007 240 85 0.02

500% 1 5081 1013.14 0.23
2 5502 62546 0.12

20 5008 317.33 0.05

1000% | k=1 4472 1187.10 0.28
k=2 5101 1021.69 0.27

k=20 3264 614.66 0.13

» lterative CD-distance at diff k values on noisy network
—=# of iterations depends on amt of noise

TINUS
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Identifying False Positive PPIs ==

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%
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» Iterated CD-distance is an improvement over
previous measures for assessing PPI reliability
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|dentifying False Negative PPIs ""*"-'"’""

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%
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» Iterated CD-distance is an improvement over
previous measures for predicting new PPIs

[Tk at OSCADDOS, IMTECH, 22-26 March 2009. Copyright © 2009 by Limsoonwong |
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5-Fold Cross-Validation ——
e DIP core dataset
— Ave # of proteins in 5 groups: 986

— Ave # of interactions in 5 training datasets: 16723

— Ave # of interactions in 5 testing datasets: 486591
— Ave # of correct answer interactions: 307

e Measures:
— sensitivity =TP/(TP + FN)
— specificity =TN/(TN + FP)

» #negatives >> #positives, specificity is always high
» >97.8% for all scoring methods

— ﬁrecision :TP/ETP + FPi



5-Fold X-Validation

AdjustCD (k=2) — % —
AdjustCD (k=1) &

FSweight — <
CD-distance —v—

Precision

0 0.1 0.2 0.3 0.4 0.5
Sensitivity
» l|terated CD-distance is an improvement over
previous measures for identifying false positive &
false negative PPIs

Impact of Cleansing on PPI-Based
Protein Complex Prediction Methods

12



FINUS
PPI-Based Complex Prediction Algg” =

RNSC MCODE MCL
Type Clustering, Local Flow
local search neighborhood |simulation
cost based density search
Multiple No Yes No
assignment
of protein
Weighted No No Yes
edge

» Issue: recall vs precision has to be improved
* Does a“cleaner” PPI network help?
 How to capture non-ball-like complexes?

FINUS
Cleaning PPI Network ——

@ O @ @)
e
* Modify existing PPI network as follow

— Remove level-1 interactions with low weight
— Add level-2 interactions with high weight

e Then run RNSC, MCODE, MCL, ..., as well as our
own method CMC

13
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Clustering based on Maximal Cliques ==

« Remove noise edges in input PPl network by
discarding edges having low iterated CD-distance

» Augment input PPI network by addition of
missing edges having high iterated CD-distance

» Predict protein complex by finding overlapping
maximal cliques, and merging/removing them

e Score predicted complexes using cluster density
weighted by iterated CD-distance

FINUS
Validation Experiments =

» Matching a predicted complex S with a true
complex C

— Vs: set of proteins in S
— Vc: set of proteins in C
— Overlap(S, C) = |Vs nVc| /|VsuVc|
— Overlap(S,C)>0.5
« Evaluation
— Precision = matched predictions / total predictions
— Recall = matched complexes / total complexes
» Datasets: combined info from 6 yeast PPI expts
— #interactions: 20461 PPI from 4671 proteins
— #interactions with >0 common neighbor: 11487
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Precision
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Effecting of Cleaning on CMC G
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» Cleaning by Iterated CD-distance improves recall

& precision of CMC

Noise Tolerance of CMC

aloy Jaccard0.50 cmplx

o S

FINUS

aloy Jaccard0.50 emplx

W o AUSICD k=20
* I""No addltion —+

50% added

ok i 100% added ¥

“pmy . 200% added O
Hg300% added

¥ \500% added o
H \_‘!IQOO% added

1 : : 1
A AdjustCD k=1
'*‘Jr“.‘ No addition —+
08 | ¥% -+,+\ 50% added 0.8
ped o 100% added *
B R 200% added O
06 o * wx, | 300%added o S 06
o P | SR || §
04 f = Rt o 04
@ »abpoo R
o s haa,00g o¥
0.2 r 990000000 Cog 02
0 4]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0

Recall

02 04 08 038 1 1.2 1.4

e If cleaning is done by iterating CD-distance 20
times, CMC can tolerate up to 500% noise in the

PPI network!
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Effect of Cleansing on MCL

aloy Jaccard0.50 cmplx
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 MCL benefits significantly from cleaning too

» Ditto for other protein complex prediction
methods

INUS
CMC vs Others O e

scoring method: AdjustCD matchthres=0.50
Aloy (#complexes: 63) MIPS (#complexes: 162)

clustering avg loc_ | #matched #matched #matched #matched
methods | k | #clusters | size | score | clusters | precision | complxes | recall | clusters prec | complxes | recall
CMC 0 172 083 | 0.823 33 0.308 53 0.841 42 0.244 35 0.340
1 121 042 | 0.897 30 0.413 40 0.778 41 0.339 51 0315
2 148 8.50 | 0.892 57 0.385 567 0.880 44 0.207 56~ 0.346
20 146 8.78 | 0.891 56 0.384 567 0.880 43 0.205 56~ 0.346
CFinder | 0 103 1384 [ 0528 39 0.379 38 0.603 34 0330 40 0247
1 76 1286 | 0.724 38 0.500 38 0.603 30 0.395 34 0210
2 95 11.66 | 0.713 44 0.463 43 0.683 36 0.379 46 0.284
20 95 11797 | 0.718 44 0.463 43 0.683 37 0.389 49 0.302
MCL 0 372 040 [ 0.638 27 0.073 2 0.420 30 0.081 37 0.228
1 120 10.18 | 0.848 49 0.408 49 0.778 40 0.333 51 0.315
2 116 1031 | 0.856 52 0.448 52 0.825 41 0.353 51 0.315
20 110 10.75 | 0.849 49 0.445 49 0.778 37 0.336 47 0.290
MCode 0 61 731 | 0849 20 0.328 2 0317 18 0.295 22 0.136
1 103 742 | 0.913 33 0.340 35 0.556 30 0.291 39 0.241
2 88 8.67 | 0.897 34 0.386 34 0.540 20 0.330 30 0.241
20 82 1028 | 0.838 20 0.354 2 0.460 23 0.280 32 0.198

Table 3. The impact of the iterative scaring method on the performance of four clustering methods. For CMC. MCL and CFinder. we retain only the top-6000

interactions, and no new interactions are added. For MCede, we retain all the interactions with non-zero score and add top-3000 new interactions with the
highest score. The 2nd column is the number of iterations k& of the iterative scoring method, and &=0 means the PPI network 1s umweighted. The 3rd column
is the number of clusters generated, the 4th and 5th column is the average size and co-localization score of generated clusters.
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Characteristics of Unmatched Cluste#s

e Atk=2 ...

» 85 clusters predicted by CMC do not match
complexes in Aloy and MIPS

* Localization coherence score ~90%

* 65/85 have the same informative GO term
annotated to > 50% of proteins in the cluster

= Likely to be real complexes

o

NUS
What have we learned? ——

» Guilt by association of common interaction
partners is useful for predicting

— PPI cellular localization
— Missing PPIs
— Protein complexes

* Acknowledgement
— Kenny Chua, Guimei Liu
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Any Question?
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