SOC Summer School 2017 A logical introduction to computational biology

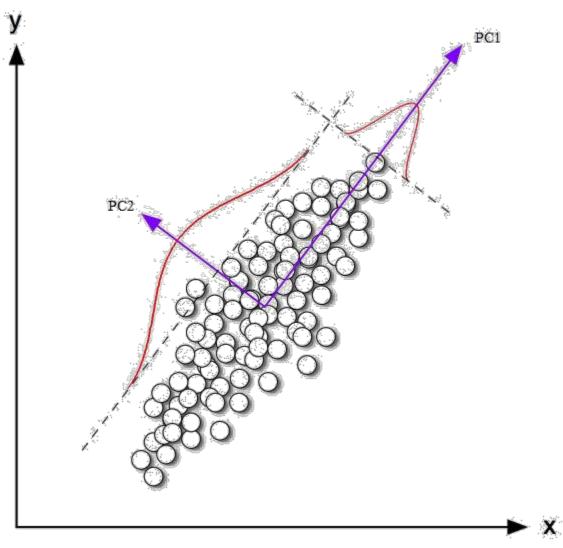
Limsoon Wong

Let us now work on a couple of simple projects for you to practice using logical analysis to solve problems in computational biology...

A couple of projects to round things up

DISCOVERING INVARIANTS

SOC Summer School 2017


4

Copyright 2017 © Limsoon Wong

We have talked quite a bit about logical analysis and exploitation of invariants

Let us now learn one simple way for discovering invariants

Principal component analysis (PCA)

PCA, a la Pearson (1901)

)(98)(

. SULLE FUNZIONI BILINEARI

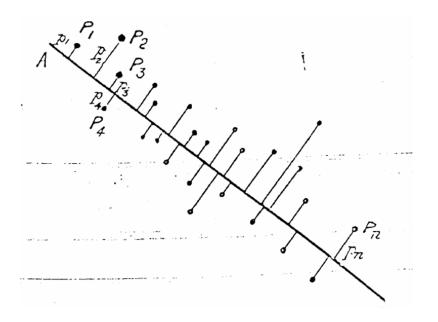
DI

E. BELTRAMI

LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. By KARL PEARSON, F.R.S., University College, London *.

(1) \mathbf{I}^{N} many physical, statistical, and biological investigations it is desirable to represent a system of points in plane, three, or higher dimensioned space by the "best-fitting" straight line or plane. Analytically this consists in taking

> $y = a_0 + a_1 x$, or $z = a_0 + a_1 x + b_1 y$, or $z = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_2 + \dots + a_n x_n$,


where $y, x, z, x_1, x_2, \ldots x_n$ are variables, and determining the "best" values for the constants $a_0, a_1, b_1, a_0, a_1, a_2, a_3, \ldots a_n$

For example:—Let $P_1, P_2, \ldots P_n$ be the system of points with coordinates $x_1, y_1; x_2, y_2; \ldots x_n y_n$, and perpendicular distances $p_1, p_2, \ldots p_n$ from a line A B. Then we shall make

 $U = S(p^2) = a$ minimum.

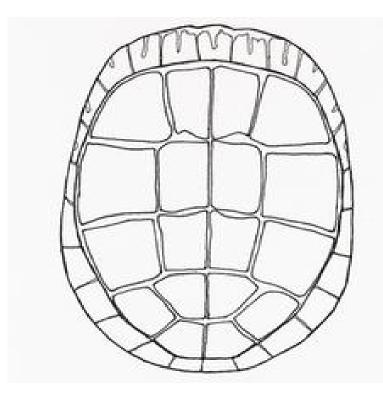
If y were the dependent variable, we should have made

 $S(y'-y)^2 = a$ minimum

Growth, 1960, 24, 339-354.

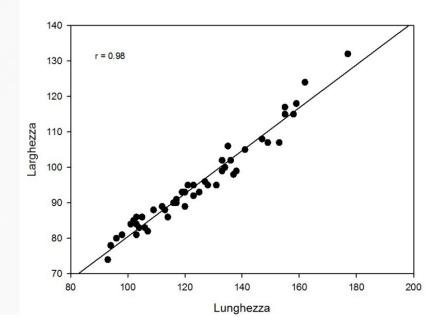
SIZE AND SHAPE VARIATION IN THE PAINTED TURTLE.¹ A PRINCIPAL COMPONENT ANALYSIS

PIERRE JOLICOEUR AND JAMES E. MOSIMANN²


Walker Museum, University of Chicago and Institut de Biologie, Université de Montréal

(Received for publication July 11, 1960)

	24 Males			24 Females		
length	width	height	length	width	height	
93	74	37	98	81	38	
94	78	35	103	84	38	
96	80	35	103	86	42	
101	84	39	105	86	40	
102	85	38	109	88	44	
103	81	37	123	92	50	
104	83	39	123	95	46	
106	83	39	133	99	51	
107	82	38	133	102	51	
112	89	40	133	102	51	
113	88	40	134	100	48	
114	86	40	136	102	49	
116	90	43	137	98	51	
117	90	41	138	99	51	
117	91	41	141	105	53	
119	93	41	147	108	57	
120	89	40	149	107	55	
120	93	44	153	107	56	
121	95	42	155	115	63	
125	93	45	155	117	60	
127	96	45	158	115	62	
128	95	45	159	118	63	
131	95	46	162	124	61	
135	106	47	177	132	67	


TABLE 1 CARAPACE DIMENSIONS OF PAINTED TURTLES (Chrysemys picta marginata) IN MM.

Pearson Correlation Coefficients,

	length	width	neight
length	1.00000	0.97831	0.96469
width	0.97831	1.00000	0.96057
height	0.96469	0.96057	1.00000

Width = 19,94 + 0,605*Length

Credit: Alessandro Giuliani

NUS National University of Singapore

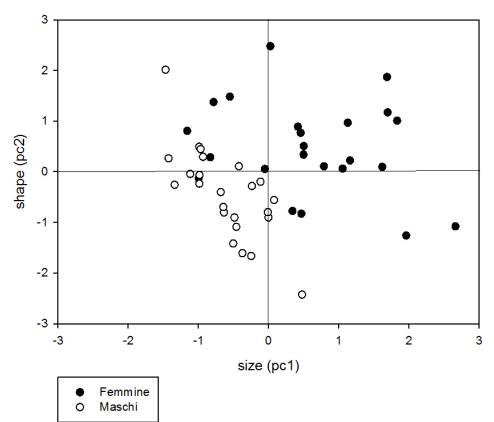
Interesting info are often in the 2nd principal component

	PC1 (98%)	PC2 (1.4%)
Length	0,992	-0,067
Width	0,990	-0,100
Height	0,986	0,168

PC1= 33.78*Length +33.73*Width + 33.57*Height

PC2 = -1.57*Length - 2.33*Width + 3.93*Height

- Presence of an overwhelming size component explaining system variance comes from the presence of a 'typical' common shape
- Displacement along pc1 = size variation (all positive terms)
- Displacement along pc2 = shape deformation (both positive and negative terms)


unit		l eacth	Width	Llaicht	PC1(size)	PC2(shape)
T25	sex F	Length 98	81	Height 38	-1,15774	0,80754832
T25	F	103	84	38	-0,99544	-0.1285916
T27	F	103	86	38 42	-0,99544	1,37433475
T28	F	103	86	42	-0,7822	0,28526912
T29	F	109	88	44	-0,55001	1,4815252
T30	F	123	92	50	0,027368	2,47830153
T31	F	123	95	46	-0,05281	0,05403839
T32	F	133	99	51	0,418589	0,88961967
T33	F	133	102	51	0,498425	0,33681756
T34	F	133	102	51	0,498425	0,33681756
T35	F	134	100	48	0,341684	-0,774911
T36	F	136	102	49	0,467898	-0,8289156
T37	F	137	98	51	0,457949	0,76721682
T38	F	138	99	51	0,501055	0,50628189
T39	F	141	105	53	0,790215	0,10640554
T40	F	147	108	57	1,129025	0,96505915
T41	F	149	107	55	1,055392	0,06026089
T42	F	153	107	56	1,161368	0,22145593
T43	F	155	115	63	1,687277	1,86903869
T44	F	158	115	62	1,696753	1,17117077
T45	F	159	118	63	1,833086	1,00956637
T46	F	162	124	61	1,962232	-1,261771
T47	F	177	132	67	2,662548	-1,0787317
T48	F	155	117	60	1,620491	0,09690818
T1	м	93	74	37	-1,46649	2,01289241
T2	м	94	78	35	-1,42356	0,26342486
Т3	м	96	80	35	-1,33735	-0,258445
T4	м	101	84	39	-0,98842	0,49260881
T5	м	102	85	38	-0,98532	-0,2361914
T6	м	103	81	37	-1,11528	-0,0436547
T7	м	104	83	39	-0,96555	0,44687352
Т8	м	106	83	39	-0,93257	0,29353841
Т9	м	107	82	38	-0,98269	-0,066727
T10	м	112	89	40	-0,63393	-0,8042059
T11	м	113	88	40	-0,64405	-0,6966061
T12	м	114	86	40	-0,68078	-0,4047389
T13	м	116	90	43	-0,42133	0,10845233
T14	м	117	90	41	-0,48485	-0,9039457
T15	M	117	91	41	-0,45824	-1,0882131
T16	м	119	93	41	-0,37202	-1.610083
T17	M	120	89	40	-0,50198	-1,4175463
T18	M	120	93	44	-0,23552	-0,2831547
T19	M	120	93 95	44	-0,23552	-1,6640875
T19 T20	M	121	95	42 45	-0,24581	-1,6640875
T20 T21	M	125	93 96	45 45	-0,11305	-0,1986272
T21 T22	M	127	96 95	45 45	-0,00023	-0,9047645 -0,7971646
T22					0,079136	-0,7971848
T23	M	131 135	95 106	46 47	0,079136	-0,559302 -2,4250481
124	IVI	133	100	47	0,477040	-2,4200401

Credit: Alessandro Giuliani

SOC Summer School 2017

Female turtles are larger and have more exaggerated height ©

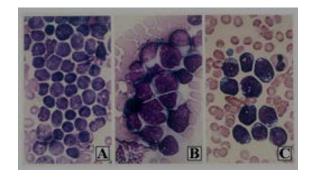
Copyright 2017 © Limsoon Wong

Exercise

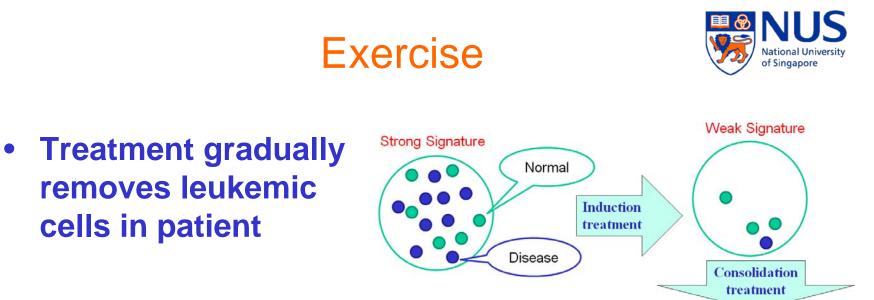
 Madrid and Warsaw are at almost the same distance to Latium cities

Are Madrid and Warsaw near each other?

Giuliani et al., Physics Letters A, 247:47-52, 1998


Amsterdam430447449415409Athens347321331346364Barcelona283305293292271Beograd227222236220238Berlin393400409374373Bern227249247220205Bonn353370372339330Bruselles388406406371365Bucharest364355368359378Budapest268261274246259Calais418448446418405Copenhagen510522527492491Dublin622645641615600Edinburgh637655655625615Frankfurt318333336302295Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow78277378575974		Rome	Latina	Frosinone	Viterbo	Rieti
Barcelona283305293292271Beograd227222236220238Berlin393400409374373Bern227249247220205Bonn353370372339330Bruselles388406406371365Bucharest364355368359378Budapest268261274246259Calais418448446418405Copenhagen510522527492491Dublin622645641615600Edinburgh637655655625615Frankfurt318333336302295Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645 <td>Amsterdam</td> <td>430</td> <td>447</td> <td>449</td> <td>415</td> <td>409</td>	Amsterdam	430	447	449	415	409
Beograd 227 222 236 220 238 Berlin 393 400 409 374 373 Bern 227 249 247 220 205 Bonn 353 370 372 339 330 Bruselles 388 406 406 371 365 Bucharest 364 355 368 359 378 Budapest 268 261 274 246 259 Calais 418 448 446 418 405 Copenhagen 510 522 527 492 491 Dublin 622 645 641 615 600 Edinburgh 637 655 655 625 615 Frankfurt 318 333 336 302 295 Hamburg 435 448 453 417 414 Helsinki 727 729 739	Athens	347	321	331	346	364
Berlin393400409374373Bern227249247220205Bonn353370372339330Bruselles388406406371365Bucharest364355368359378Budapest268261274246259Calais418448446418405Copenhagen510522527492491Dublin622645641615600Edinburgh637655655625615Frankfurt318333336302295Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290 <td>Barcelona</td> <td>283</td> <td>305</td> <td>293</td> <td>292</td> <td>271</td>	Barcelona	283	305	293	292	271
Bern 227 249 247 220 205 Bonn 353 370 372 339 330 Bruselles 388 406 406 371 365 Bucharest 364 355 368 359 378 Budapest 268 261 274 246 259 Calais 418 448 446 418 405 Copenhagen 510 522 527 492 491 Dublin 622 645 641 615 600 Edinburgh 637 655 655 625 615 Frankfurt 318 333 336 302 295 Hamburg 435 448 453 417 414 Helsinki 727 729 739 706 713 Istanbul 452 430 443 443 464 Lisbon 615 637 622	Beograd	227	222	236	220	238
Bonn 353 370 372 339 330 Bruselles 388 406 406 371 365 Bucharest 364 355 368 359 378 Budapest 268 261 274 246 259 Calais 418 448 446 418 405 Copenhagen 510 522 527 492 491 Dublin 622 645 641 615 600 Edinburgh 637 655 655 625 615 Frankfurt 318 333 336 302 295 Hamburg 435 448 453 417 414 Helsinki 727 729 739 706 713 Istanbul 452 430 443 443 464 Lisbon 615 637 622 624 604 Luxembourg 325 346 346	Berlin	393	400	409	374	373
Bruselles 388 406 406 371 365 Bucharest 364 355 368 359 378 Budapest 268 261 274 246 259 Calais 418 448 446 418 405 Copenhagen 510 522 527 492 491 Dublin 622 645 641 615 600 Edinburgh 637 655 655 625 615 Frankfurt 318 333 336 302 295 Hamburg 435 448 453 417 414 Helsinki 727 729 739 706 713 Istanbul 452 430 443 443 464 Lisbon 615 637 622 624 604 London 474 494 493 464 456 Luxembourg 325 346 346 <td>Bern</td> <td>227</td> <td>249</td> <td>247</td> <td>220</td> <td>205</td>	Bern	227	249	247	220	205
Bucharest 364 355 368 359 378 Budapest 268 261 274 246 259 Calais 418 448 446 418 405 Copenhagen 510 522 527 492 491 Dublin 622 645 641 615 600 Edinburgh 637 655 655 625 615 Frankfurt 318 333 336 302 295 Hamburg 435 448 453 417 414 Helsinki 727 729 739 706 713 Istanbul 452 430 443 443 464 Lisbon 615 637 622 624 604 London 474 494 493 464 456 Luxembourg 325 346 315 307 Madrid 449 470 458 460	Bonn	353	370	372	339	330
Budapest 268 261 274 246 259 Calais 418 448 446 418 405 Copenhagen 510 522 527 492 491 Dublin 622 645 641 615 600 Edinburgh 637 655 655 625 615 Frankfurt 318 333 336 302 295 Hamburg 435 448 453 417 414 Helsinki 727 729 739 706 713 Istanbul 452 430 443 443 464 Lisbon 615 637 622 624 604 London 474 494 493 464 456 Luxembourg 325 346 346 315 307 Madrid 449 470 458 460 440 Marseille 200 223 213 202 183 Moscow 782 773 785 759	Bruselles	388	406	406	371	365
Calais418448446418405Copenhagen510522527492491Dublin622645641615600Edinburgh637655655625615Frankfurt318333336302295Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Bucharest	364	355	368	359	378
Copenhagen510522527492491Dublin622645641615600Edinburgh637655655625615Frankfurt318333336302295Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Budapest	268	261	274	246	259
Dublin622645641615600Edinburgh637655655625615Frankfurt318333336302295Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Calais	418	448	446	418	405
Edinburgh637655655625615Frankfurt318333336302295Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Copenhagen	510	522	527	492	491
Frankfurt318333336302295Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Dublin	622	645	641	615	600
Hamburg435448453417414Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Edinburgh	637	655	655	625	615
Helsinki727729739706713Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Frankfurt	318	333	336	302	295
Istanbul452430443443464Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Hamburg	435	448	453	417	414
Lisbon615637622624604London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Helsinki	727	729	739	706	713
London474494493464456Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Istanbul	452	430	443	443	464
Luxembourg325346346315307Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Lisbon	615	637	622	624	604
Madrid449470458460440Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	London	474	494	493	464	456
Marseille200223213202183Moscow782773785759774Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Luxembourg	325	346	346	315	307
Moscow 782 773 785 759 774 Munich 230 245 250 216 213 Oslo 664 675 682 646 645 Paris 365 386 383 357 343 Prague 305 313 320 286 290 Sofia 294 273 286 280 301 Stockholm 653 658 668 632 636 Warsaw 435 433 444 413 421 Vienna 255 254 265 233 240	Madrid	449	470	458	460	440
Munich230245250216213Oslo664675682646645Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Marseille	200	223	213	202	183
Oslo 664 675 682 646 645 Paris 365 386 383 357 343 Prague 305 313 320 286 290 Sofia 294 273 286 280 301 Stockholm 653 658 668 632 636 Warsaw 435 433 444 413 421 Vienna 255 254 265 233 240	Moscow	782	773	785	759	774
Paris365386383357343Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Munich	230	245	250	216	213
Prague305313320286290Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Oslo	664	675	682	646	645
Sofia294273286280301Stockholm653658668632636Warsaw435433444413421Vienna255254265233240	Paris	365	386	383	357	343
Stockholm 653 658 668 632 636 Warsaw 435 433 444 413 421 Vienna 255 254 265 233 240	Prague	305	313	320	286	290
Warsaw 435 433 444 413 421 Vienna 255 254 265 233 240	Sofia	294	273	286	280	301
Vienna 255 254 265 233 240	Stockholm	653	658	668	632	636
	Warsaw	435	433	444	413	421
Zurich 227 246 246 214 205	Vienna	255	254	265	233	240
	Zurich	227	246	246	214	205

Exercise



- Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome rearrangements, Hyperdiploid>50
- Diff subtypes respond differently to same Tx
- Over-intensive Tx
 - Development of secondary cancers
 - Reduction of IQ
- Under-intensiveTx
 - Relapse

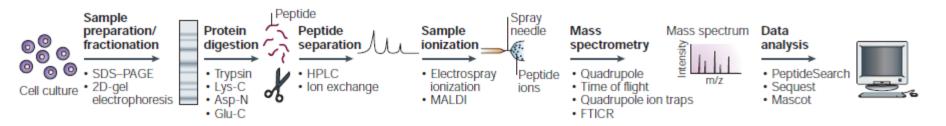
• The subtypes look similar

• Can we diagnosis the subtypes based on gene expression profiling?

Detectable Signature

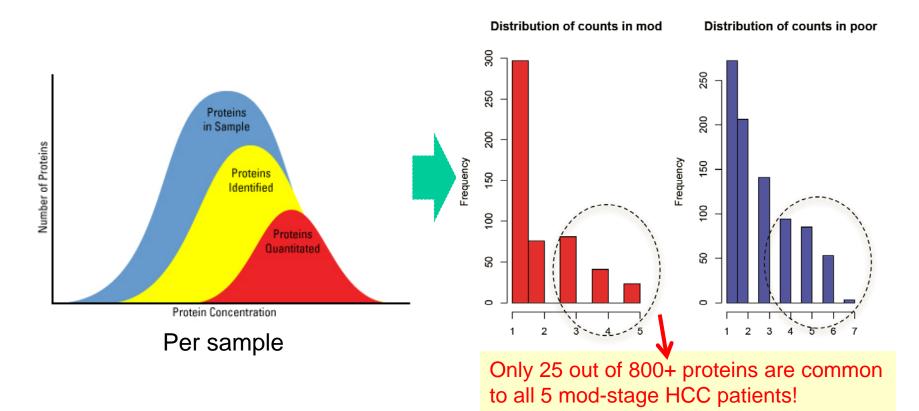
- Diagnostic GEP captures leukemic subtype signature
- Hypothesis: Poor genetic response suggests high risk of relapse
- Suggest a leukemia relapse prediction model based on gene expression profiling

Relapse


Signature

MISSING PROTEINS IN PROTEOMIC PROFILES

Proteomics profiling



- Proteomic profile
 - Which protein is found in the sample
 - How abundant it is
- Difficulties
 - Complexity: 20k genes vs 500k proteins
 - Dynamic range: > 10 orders of magnitude in plasma. Proteins cannot be amplified

Issues in proteomics: Coverage and consistency

Technical incompleteness How it affects real data

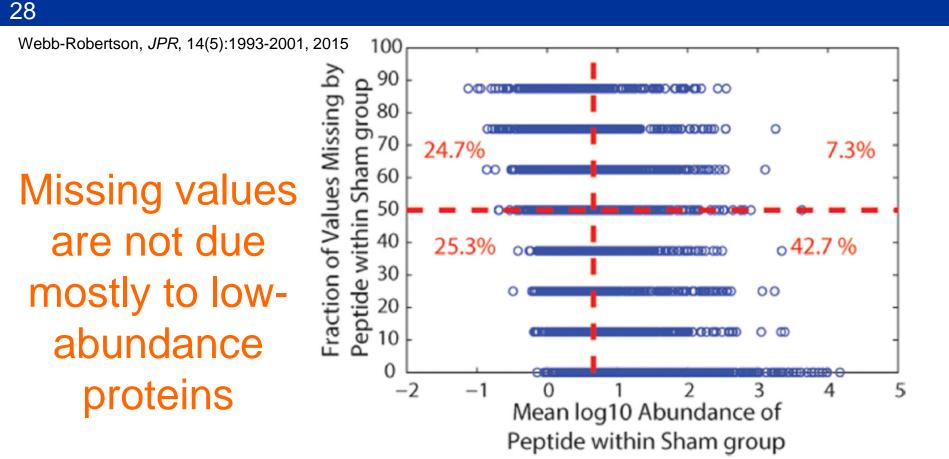
Guo et al. Nature Medicine, 21, 407, 2015 Lots of missing values in real proteomics datasets

	🚽 🤊 - (*	M = ↓									nm.	3807-S4.x	ls [Read-	Only] [Co	mpatibili	ty Mode]	- Microso	oft Excel										-	o ×
F	le Ho	me Inser	t Page Layo	ut Form	nulas Dat	ta Reviev	w View	Acrobat						,, ,		, ,												۵ 🌾) - # X
	🛯 🔏 Cut		Calibri	× 11	· A A	= = _	\$\$/~~	🖥 Wrap Te	xt	General	-			Normal		Bad	Goo	d	Neutral	C	alculation		-		Σ AutoSum		áñ.		
Pa	📕 📭 Cop										• •.0 .00 .00 →.0	Condition	nal Format	Check (Explanator			Linked			· · · ·		e Format	🐺 Fill 🔻	∑u Sort &	Eind &		
10.	🖺 💞 Forr	mat Painter	B <i>I</i> <u>U</u> ∗	- EE - 4	<u>2 · A</u> ·	e <mark>e</mark> 4		📲 Merge &	Center *	\$ - %	• 100 → 10	Formattin	g ∗ as Table	- CHECK C	.en	explanator	y Inpu	л	Linkeu		lote		* *	*	🖉 Clear 🔻	Filter * 1			
	Clipboard	<u> </u>	F	ont	Fai		Alignme	nt	Fa	Numb	er 🕠						Styles						Cells	5		Editing			
	X30	•	(<i>f</i> *	NA																									~
	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC 🔺
		GeneSy		kidneyTis	s kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTis	kidneyTi
1	protein	mbol	kidneyTisue1	ue2	ue3	ue4	ue5	ue6	ue7	ue8	ue9	ue10	ue11	ue12	ue13	ue14	ue15	ue16	ue17	ue18	ue19	ue20	ue21	ue22	ue23	ue24	ue25	ue26	ue27
2	P09110	ACAA1	288001.7778	46353.28	237958.5	30102.47	297711.2	37098.09	67454.84	92200.62	231528.4	12617.18	263299.1	NA	222387.2	NA	177211	27857.94	84689.84	43497.89	280540.3	77962.17	235242.5	23827.06	302761.4	41190.07	2064.747	97756.44	122386.3
3	P05166	PCCB	246687.75	70504.27	253890.9	NA	314250.1	33680.65	108554.7	321442.7	260389.5	183399.7	258247.1	139288.5	284934.5	115138	245595.9	30488.41	221565	280540.3	240054.8	65477.99	250479.3	NA	327799	41974.24	125103	321442.7	175808.5
4	Q96RP9	GFM1	37872.59722	NA	40359.89	NA	73975.35	NA	64601.65	56815.28	34506.99	35176.2	98642.34	23060.3	91995.3	NA	37735.48	33491.8	48208.46	47858.24	39584.44	NA	67976.03	23631.74	46763.48	NA	2064.747	53619.99	67555.47
5	Q15417	CNN3	28364.89722	NA	NA	NA	NA	44156.47	52272.02	27128.03	10577.49	32524.27	14171.12	33388.93	27593.38	49821.32	23144.21	24964.95	32403	NA	24907.94	46053.92	NA	NA	25129.86	42948.4	2064.747	26438.35	23207.51
6	Q96FQ6	S100A16	NA	35176.2	NA	66058.39	NA	30674.6	1804.538	21706.65	NA	NA	11359.64	NA	18677.58	41493.97	12617.18	22496.77	NA	NA	NA	36422.79	NA	75858.83	20589.93	31161.06	2064.747	20398.13	NA
7	P62820	RAB1A	NA	NA	NA	NA	NA	NA	54417.16	3130.811	NA	68503.39	NA	NA	NA	NA	NA	NA	NA	NA	32596.28	NA	NA	54839	NA	48748.28	2064.747	NA	NA
8	P27169	PON1	NA	47101.83	58436.31	18128.35	NA	33573.36	112930.6	NA	NA	NA	NA	59432.1	NA	39084.55	36282.92	16953.34	NA	NA	NA	45107.13	NA	19506.67	NA	38130.55	109838.9	NA	NA
9	Q9UL46	PSME2	33680.65278	99968.93	59047.33	145114.2	33256.26	141575.7	77962.17	75727.38	64365.04	121022.2	40286.83	114480.8	40567.01	104458.4	42876.78	83666.14	55954.92	62742.03	33768.27	111940.8	59915.42	151558.9	38443.16	113145.5	79024.33	73747.38	40140.37
10	P08237	PFKM	39644.09722	NA	54240.61	NA	136064	NA	1804.538	62845.97	141296.3	100616.3	137596.7	NA	140860.9	NA	96590.73	NA	92823.65	51085.24	155550.8	NA	47697.29	NA	136064	NA	2064.747	58618.05	143381.1
11	P04040	CAT	292456.0528	149632.6	239229.2	24964.95	258247.1	220764.4	540115.8	133921.9	284934.5	367784.7	293727.3	179981.9	259314.6	124294.3	204722.1	77070.33	109006.7	136875.9	290924.4	163095.2	237958.5	31389.75	271920.4	227900.3	499422.8	150524.5	294964.3
12	Q8WYA6	CTNNBL1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	27646.1	37621.73	26686.24	NA	NA	NA	NA	NA	NA	2064.747	NA	NA
13	Q9H0W9	C11orf54	454591.5833	77225.75	393512.7	55431.72	365975.5	180535.1	188742.5	77348.17	352898.9	119242.7	417999.9	263299.1	474797	229655.9	427428	143697	124568	146454.4	441856.5	74156.41	370040.5	44605.86	363784.6	187566.8	129074.8	104101.6	375463.4
14	P31948	STIP1	76018.00556	83236.9	83516.5	137596.7	75613.89	110367.2	98642.34	195146	77709.53	282315.9	65948.94	122386.3	81635.42	129969.2	67749.81	124568	108554.7	135737.2	69039.96	92656.4	85600.47	147792.9	65262.99	109273.7	91127.04	218888	122047.2
15	O94901	SUN1	57623.33889	NA	NA	NA	72273.86	NA	1804.538	NA	NA	NA	58063.49	NA	NA	NA	NA	NA	NA	NA	60013.66	NA	NA	NA	71252.19	NA	2064.747	NA	NA
16	Q99714	HSD17B10		114480.8	181096.8	75400.28	222387.2	91466.47	218888	269679.7	179177.4	165285.9	202618.2	117389.5	191537	41135.21	196208.5	151044.7	210269.6	294964.3	183893	82644.38	179981.9	102286.8	233372.9	91325.89	196996.8	293727.3	174540.8
17	Q15833	STXBP2		24264.99			16316.33	NA	1804.538	NA		17309.98		14224.85	12617.18	NA	14224.85	9837.458	21131.38	5634.228				12924.71	17380.49	NA	2064.747		13166.66
18	P08195	SLC3A2	50797.625	42825.82				NA	1804.538	NA	77850.57	NA	100616.3	NA	76579.02	NA	44010.16		NA	NA	80199.58				75858.83	NA	2064.747	NA	76292.57
	P26038	MSN	333342.6833	438752.3		381249.5	241992.3	404349.8		172028.6	446678.9	167923.7	367784.7	310472.5	404349.8			427428	390317.5	244865.7	273261.7					423963.5	191537	182241.6	441856.5
20	P09104	ENO2	NA	144058.2		184650.5	NA	137596.7		21831.56	NA	NA	NA	119650.8	NA	404349.8	NA	48438.29	57080.76	NA	NA	151558.9	NA	181096.8	NA		2064.747	NA	NA
21	P07148	FABP1		34579.48		NA	940142	NA	1804.538	NA	1130692	NA	1057986	NA	789446.1	NA	221565	NA	NA	NA	1162786		805128.4	NA	970053.3	NA	2064.747	NA	1300718
	Q96Q11	TRNT1	NA	NA	NA	NA	NA	NA	1804.538	NA	NA	NA	NA	NA	NA	NA	NA	NA	37098.09	35565.03	NA	NA	NA	NA	NA	NA	2064.747	NA	NA
	015083	ERC2	NA	NA	NA	85740.42	NA	NA	1804.538	NA	83390.33	NA	NA	NA	NA	NA	NA	142306.8	NA	NA	NA	NA	NA	72396.48	NA	NA	2064.747	NA	70213.43
	Q15911	ZFHX3	NA	NA	178745.3			682653.9	1804.538	NA	243050.1	NA	189860.5	NA	NA	NA	NA	457756.2	NA	NA	NA	NA	NA	NA	NA	NA	2064.747	NA	252846.2
	Q9BUR5	APOO	35479.70278	NA	27260.11		40140.37	NA		46154.89				13642.38	28517.17	NA	40140.37	NA	NA	10649.17	34436.2	NA	36956.08		47858.24	NA			20057.06
	Q9UJ83	HACL1	417999.9306	NA	435248.4	NA FO108 FF		227161.7			276628.6	NA	274264.6	NA	317227.1			NA	NA	372485.6	446678.9	NA	390317.5	NA	307205	211073.8		169817.6	
	Q8WUM4		50008.50556	34991.44				41611.18						61553.77	67555.47		68597.03		73200.35	75049.44	64108.37						76579.02		37386.23
	P53597	SUCLG1	387432.1583	99433.59			310472.5	150524.5		299487.5				101732.7	245595.9	108554.7	270810.9	89524.72	192915.6		357417.6	96737.9				162300.5			245595.9
29 30	O00186	STXBP3 GPD1L	NA 52415.71111	28468.21 NA	NA 50228 51	NA NA	NA 54240 61	19019.68 21949.83		NA 91466.47	NA 45427.61	NA 109273.7	NA 50443.03	21949.83 NA	NA 52700.48	NA 22321.01	NA 45502.32	NA NA	NA	NA 41362.6	15575.29 54737.36	29005.53 NA	NA 62380.69	NA NA	NA 54839	NA 23827.06	2064.747	NA 71658.52	NA 49626-21
30	Q8N335 P08621	SNRNP70	48594.65	NA 51791.05	59328.51 47269.07		44306.32		109838.9	91466.47 NA	45427.61 59432.1	54839	50443.03 49636.31	NA 60605.33		22321.01 NA	45502.32 NA	NA 72977.35	57623.34 74546.25		33003.64		49636.31	NA 93224.91		23827.06 56917.54		71658.52 NA	49636.31
31	Q969V6	MKL1	48594.05 NA	91325.89		80082.28 NA	74269.09		1804.538	NA	71906.43	54839 NA	49030.31 NA	152627.3		72497.5	NA 89662.88	51690.71		41576.85		92973.8	49030.31 NA	93224.91 NA		88904.66		NA	NA
	P08311	CTSG	NA	91325.89 NA	46154.89	NA	74269.09 NA	67879.78	1804.538	NA	53026.19	NA	NA	68927.99	72497.5 NA	72497.5 NA	89662.88 NA	NA		78414.15	72021.55 NA	92973.8 NA	46895.88	NA	NA	56514.53		NA	NA
	Q9UKU7	ACAD8	46053.91944	31797.32		NA	64601.65	07879.78 NA					41974.24	08927.99 NA	41840.21	NA	42678.39	NA			46053.92	NA	40895.88	NA	61900.08		2064.747		44605.86
34	Q86X76	NIT1	75613.88611	31797.32 NA	61068.98					49228.15 55745.15	70389.43	28070.84 NA		75506.47	41840.21 78547.77	NA 84980.21	42078.39	NΔ			40053.92	NA NA	49467.07			73278.36		40053.92 58932	44005.80 52415.71
36	P05162	LGALS2	33491.8	NA	35565.03	NA		36825.06		23560.07	18592.77	NA	0100010	72761.18		50008.51		NA	16653.18		34916.06	NA	30730.15	NA		71139.86		NA	25737.06
	P03102 P23946	CMA1	NA	NA	NA	NA	NA	NA	1804.538	23300.07 NA	NA	NA	NA	72701.18 NA	NA	NA	24307.34 NA	NA	61155.07	14049.16	54510.00 NA	NA	NA	NA	NA		53240.82	NA	NA
38	P01834	IGKC	462133.8694	885197.1		484624		462133.9		319228.4							325019.6			263299.1	499422.8	1130692	706520.3			438752.3		310472.5	643593
	P14868	DARS	12567.36389	110112	54554.37		30209.1	121022.2		114195.5		95493.71		182241.6				247871.5	161420	94484.9	76929.26	114678.3	54839						53026.19
	Q9H773	DCTPP1	NA	NA	NA	NA	NA	NA		46303.49		11589.48		27509.79		NA	NA		87070.11		NA	NA	NA	NA	NA	NA		22251.11	NA V
		able3 / lege							250 110 50			22000.10		2,000,79] 4											•
Rea																											100%	Θ —	·
			- 6																										

SOC Summer School 2017

2

S


P

X

27

Copyright 2017 © Limsoon Wong

EN 🔺 🐯 🔁 🍽 🧌 4:35 PM

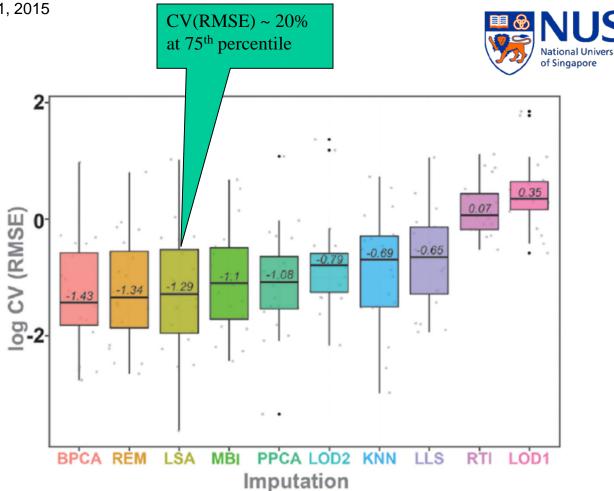


Figure 1.

Average log₁₀ intensity as measured by peptide peak area in the control group versus fraction of missing values and peptide counts associated with bins corresponding to the fraction of missing data comparing phenotypes and exposures for datasets from (A) human plasma and (B) mouse lung. The control group for the human plasma is the normal glucose tolerant (NGT) samples, and the sham group for the mouse lung is the regular weight mice with no lipopolysaccharide (LPS) exposure. The vertical red line represents median average intensity, and the horizontal red line represents the point that 50% of the values are missing.

Webb-Robertson, *JPR*, 14(5):1993-2001, 2015

Current imputation methods don't work very well

Figure 2.

Boxplot of the average $\log_{10} \text{CV}(\text{RMSE})$ for the imputed dilution series datasets (Table 1) at the (A) peptide and (B) protein levels. The lower line represents the 25th percentile, the upper line of the box represents the 75th percentile, and the inner line corresponds to the median $\log_{10} \text{CV}(\text{RMSE})$.

Exercise

 Postulate: The chance of a protein complex being present in a sample is proportional to the fraction of its constituent proteins being correctly reported in the sample

- Derive from the postulate above an approach/index for predicting which proteins are likely to be present in a sample even though the proteomic screen does not report it
- You may assume a list of protein complexes (and their constituent proteins) is available

• What experiments can you do to demonstrate that the proposed solution is effective in predicting missing proteins?

I HOPE YOU HAVE ENJOYED THESE EXERCISES ③

43