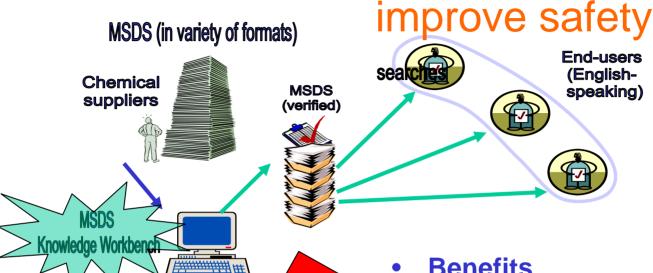
Exciting Media

Limsoon Wong

Plan


- I will discuss some made-in-Singapore innovations on the handling and processing of native media
 - New things that you can do with texts
 - New things that you can do with images
 - New things that you can do with audio
 - New things that you can do with video

New things that you can do with texts

Intelligent information extraction,

Extract chemical safety information from Materials **Safety Data Sheets (MSDS)**

Knowledge

encoding

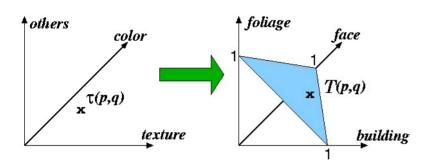
Check for conformance to standards

Benefits

- OHD: Check 100% of MSDS (currently < 10%) with same manpower
- Chemical Suppliers: Savings in distribution of MSDS as it is online
- End users of chemicals : Better quality MSDS, improved safety

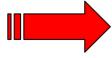
How is it done?

What's needed to get it done?


Erythropoietin stimulates transcription of the TAL1/SCL gene and phosphorylation of its protein Activation of the TAL1 (or SCL) gene, originally identified through its involvement by a recurrent chromosomal translocation, is the most frequent molecular lesion recognized in T-cell acute lymphoblastic leukemia. The protein products of this gene contain the basic-helix-loop-helix motif characteristic of a large family of transcription factors that bind to the canonical DNA sequence CANNTG as protein heterodimers. TAL1 expression by erythroid cells in vivo and in chemical-induced erythroleukemia cell lines in vivo s - IMIE | of erythropoi whether the e splenic erythr elicited a rapi Computational Information Machine stabilizing one **Semantics** Extraction **Translation** nuclear extra binding activit These results **Template** locus in Frien **Extraction** member of a Co-reference Resolution **Name Entity Parsing** Recognition

New things that you can do with images

Make computers easier to use



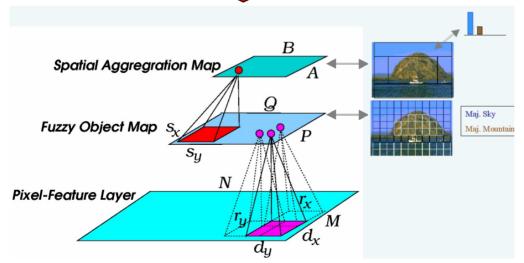
 Abstraction of image content allows interpretation & matching in semantic space

Search photos by visual keywords

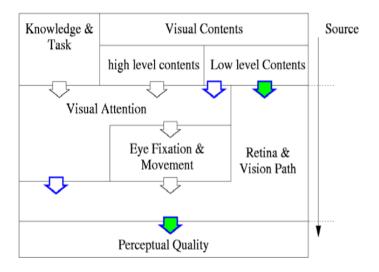
 Visual query language allows specification of what and where

How is it done? What's needed to get it done?

 Trained visual keywords for semantic detection and summarisation


 Automatic indexing using such keywords

Foliage:



Let machines perceive as we do

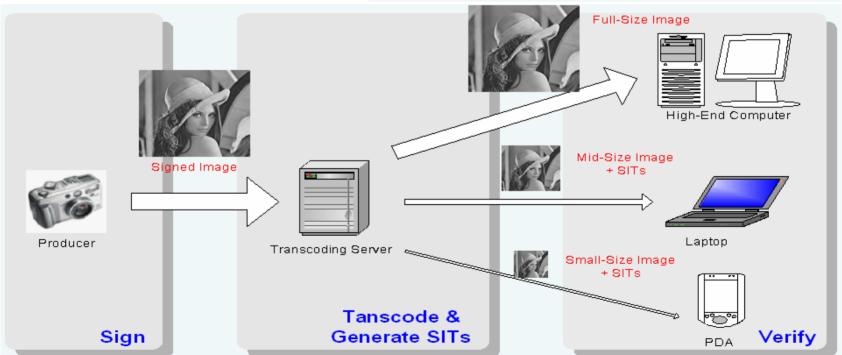
 Perceptual visual quality according to characteristics of human vision

 Adoption in video coding results in efficiency & quality improvement (other systems make compromise betw. the two)

Higher PSNR!

New perceptual metric perceives correctly.

	Comparison with MOS (Mean Opinion Score)		
	Pearson Correlation	Spearman Correlation	
PSNR metric	0.66	0.69	
New metric	0.83	0.81	



Protect authenticity and integrity of data in a robust way

 Third Party Publication: Sign Once, Verify Many Ways

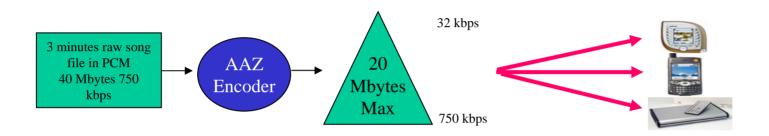
New things that you can do with audio

Let machines listen as we do Automatic speech recognition **PSTN Business Logic** Text-to-speech **Multilingual** Semantic Text categorization, voice---Speech enhancement,voice mining, **Natural language** outputs **Noise reduction** Speech & dialogue processing

processing

To build a mobile audio industry

... analogous to the graphics industry


Sound Technologies							
	Naturalness	Ease of Use	Memory & Bandwidth	Ease of new development	Ease of repurposing	Render time flexibility	
Recordings	Excellent	Excellent	Poor	Studio recording is expensive	Poor	Poor	
Current Sound Models	Very good for a limited few, otherwise poor	Medium	Medium	Expensive, laborious human effort	Medium	Medium	
New Sound Models	Very good in general	Very good	Excellent	Easy with the right tools	Excellent	Excellent	

- Synthesis-directed analysis of sounds
 - how would you model a lion's roar?
- Algorithms for synthetic sound generation
- Tools for sound model automation and support
- Cross-platform audio synthesis engine with a small footprint and low compute requirements

Advanced Audio Zip Scaleable-to-Lossless Audio Codec

State-of-the-Art	AAZ	
Encode ONE bit-rate, decode ONE bit-rate	Encode once, decode ANY bit-rate	
Dead zones in quality due to unstable QoS resulting in mismatch bit-rates	Variable bit-rates, fine-grain bit- layering quality on demand. No Dead zones.	

AAZ has been adopted by ISO as an MPEG4 international standard

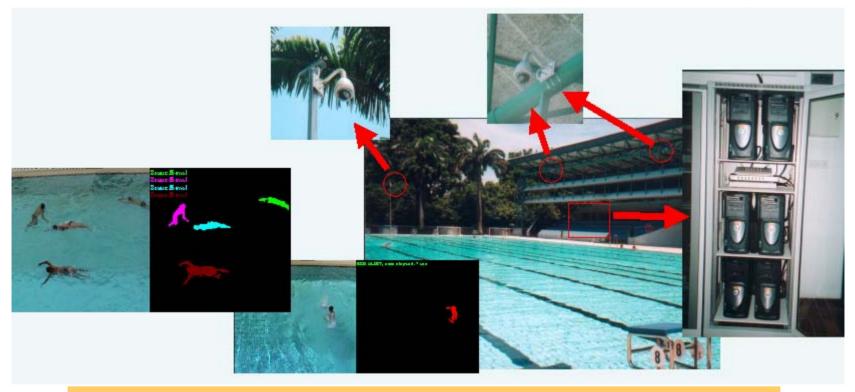
New things that you can do with video

Make home videos more fun: www.muvee.com

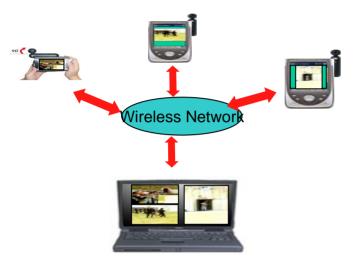
Select video frames

Cut to music

Decide on transitions



Prevent drowning, save lives

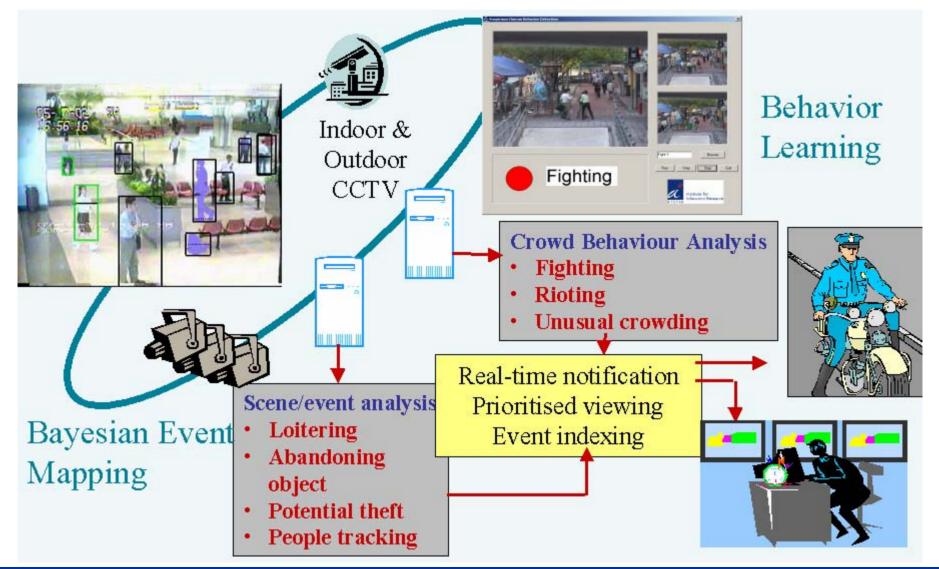


- Drowning Early Warning System
- tracks people in dynamic aquatic conditions
- intelligently detect water crises situations

Watch video any where, any time, on any device!

And improve quality at the same time!

How is it done? What's needed to get it done?


- Efficient implementation of MPEG-4 coding algo
 - Fast hexagonal-search motion estimation algo
 - Fast block matching using partial distortion comparison
 - Fast DCT/Quantization algo
 - Adv-detection of zero-DCT-coefficients (ADZDC technique)
- From 1 fps to 20 fps

- Adaptive rate/error control algorithms
 - Adaptive to available channel bandwidth
 - Adaptive to available computational resources
 - Adaptive to bit error rate

More intelligent CCTV, improve homeland security

Improve sophistication of our media industry

Existing pains

Nonintrusive virtual

"Intrusive" ads •pops out during play!

Tennis TV •manual

Tagged to camera h/w •costly •done *once* at source

Non-intrusive insertions detects non-play segment •non-interfering insertion

Enhanced tennis TV •auto-tracking •super-resolution

Software detection: •performed any-time •demographic Ads •cheap

Super Resolution: How is it done?

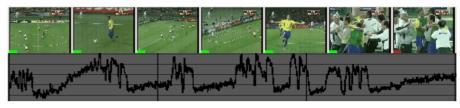
- Robust Scene Modeling and Camera calibration
 - Given a 2D court model of 3D scene that camera is capturing, identify 3D object positions robustly and accurately
- Super-Resolution Image Reconstruction from Video
 - Given a low resolution image sequence of an object far away from the camera, reconstruct a larger resolution image sequence
 - This is essentially an ill-posed problem, but we can apply domain info such as motion, pose, etc, to seek a good solution
- Robust Object and Landmark Detection
 - Real-time
 - Geometric invariance
- Deployment and Application Constrains
 - Real-time

Highlight Detection: How is it done?

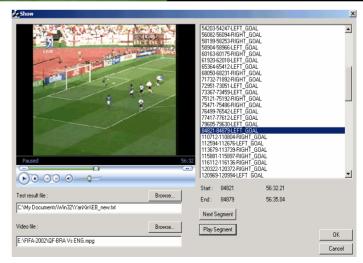
Audio

 Detect raised pitch in commentator

Visual


Detect goal-mouth appearances

Results


- 5-15% of original video length
- 100% goal detected

Application

- Set-top-box / digital video recorder (client-side)
- News summary (broadcast server-side)

Virtual Content Insertion: How is it done?

(eg, Ads)

Acknowledgements

All the innovations shown in this talk were made by researchers at

Institute for Infocomm Research
A*STAR