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Plan

• Quick introduction to knowledge discovery
• Example applications

– Translation Initiation Site Recognition
– Protein subcellular localization prediction
– Protein function inference
– Treatment optimization of childhood ALL
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Quick Intro to Knowledge Discovery
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Jonathan’s rules : Blue or Circle
Jessica’s rules : All the rest

What is Knowledge Discovery?

Whose block 
is this?

Jonathan’s blocks

Jessica’s blocks
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What is Knowledge Discovery?

Question: Can you explain how?
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Main Steps of Knowledge Discovery 

• Training data gathering
• Feature generation

– k-grams, colour, texture, domain know-how, ...
• Feature selection

– Entropy, χ2, CFS, t-test, domain know-how...
• Feature integration

– SVM, ANN, PCL, CART, C4.5, kNN, ...

Some
classifier/
methods
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Feature Selection Statistics Principle

• Choose a feature w/ low intra-class distance
• Choose a feature w/ high inter-class distance
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Neighborhood

5 of class
3 of class

=

Classifier Learning/Operation Principle

Image credit: Zaki
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Translation Initiation Site Recognition
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...AATGGTACCGATGACCTG... ...TRLRPLLALLALWP...
...AAUGGUACCGAUGACCUGGAGC...

Central Dogma
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Translation Initiation Site
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A Sample cDNA

• What makes the second ATG the TIS?

299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG      80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA     160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA     240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT
............................................................    80
................................iEEEEEEEEEEEEEEEEEEEEEEEEEEE 160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE    240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
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Approach 

• Training data gathering
• Signal generation

– k-grams, distance, domain know-how, ...
• Signal selection

– Entropy, χ2, CFS, t-test, domain know-how...
• Signal integration

– SVM, ANN, PCL, CART, C4.5, kNN, ...
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Training & Testing Data 

• Vertebrate dataset of Pedersen & Nielsen [ISMB’97]

• 3312 sequences
• 13503 ATG sites
• 3312 (24.5%) are TIS
• 10191 (75.5%) are non-TIS
• Use for 3-fold x-validation expts
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Signal Generation

• K-grams (ie., k consecutive letters)
– K = 1, 2, 3, 4, 5, …
– Window size vs. fixed position
– Up-stream, downstream vs. any where in window
– In-frame vs. any frame

0

0.5

1

1.5

2

2.5

3

A C G T

seq1
seq2
seq3
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Signal Generation: An Example

• Window = ±100 bases
• In-frame, downstream

– GCT = 1, TTT = 1, ATG = 1…
• Any-frame, downstream

– GCT = 3, TTT = 2, ATG = 2…
• In-frame, upstream

– GCT = 2, TTT = 0, ATG = 0, ...

299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA     240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT
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Too Many Signals

• For each value of k, there are 4k * 3 * 2 k-grams

• If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 
1536 + 6144 = 8184 features!

• This is too many for most machine learning 
algorithms
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Sample K-grams Selected by CFS

• Position –3
• in-frame upstream ATG
• in-frame downstream 

– TAA, TAG, TGA, 
– CTG, GAC, GAG, and GCC

Kozak consensus Leaky scanning

Stop codon

Codon bias?
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Results (3-fold x-validation)

TP/(TP + FN) TN/(TN + FP) TP/(TP + FP) Accuracy

Naïve Bayes 84.3% 86.1% 66.3% 85.7%

SVM 73.9% 93.2% 77.9% 88.5%

Neural Network 77.6% 93.2% 78.8% 89.4%

Decision Tree 74.0% 94.4% 81.1% 89.4%
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ATGpr

Our
method

Validation Results (on Chr X and Chr 21)

• Using top 100 features selected by entropy and 
trained on Pedersen & Nielsen’s
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Protein Subcellular
Localization 
Prediction
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Compartments and Sorting

• Eukaryotic cells requires 
proteins be targeted to 
their subcellular
destinations

• Protein sorting is 
determined by 
specific amino acid 
sequences, or 
“signals”, within the 
protein

• Secretory pathway 
targets proteins to 
plasma membrane, 
some membrane-
bound organelles 
such as lysosomes, 
or to export proteins 
from the cell
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Amino acid 
composition of 

proteins 
residing in 

different sites 
are different



24

Invited talk at Taipei Medical University, June 2006 Copyright 2006 © Limsoon Wong

Amino Acid Composition Differences

• each cellular location has 
own characteristic physio-
chemical environment

• proteins in each location 
have adapted thru 
evolution to that 
environment

• thus reflected in the 
protein structure and 
amino acid composition

• If the above is true, the 
amino acid composition 
differences wrt cellular 
location sites should be 
more pronounced on 
protein surfaces than 
protein interior

• Exercise: Why?
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Adaptation of Protein Surfaces
Andrade et al., JMB, 1998

• To test the 
theory of 
adaptation of 
protein surfaces 
to subcellular
localization, we 
do a plot of 3 
types of 
composition 
vectors along 
their first two 
principal 
components

Proportion of
jth amino acid 
type in ith protein
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Adaptation of Protein Surfaces 
Andrade et al., JMB, 1998

• Clearly total & surface 
composition vectors show 
better separation than 
interior composition 
vectors

Total amino acid
composition vector

Interior amino acid
composition vector

Surface amino acid
composition vector

nuclear
cyto
extracell
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Amino Acid Composition

• This means can use amino acid composition 
vectors, especially those from protein surfaces, 
to predict subcellular localization!

• Let’s see how this turn out….
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Support Vector Machines: SubLoc
Hua & Sun, Bioinformatics, 17:721--728, 2001

extracellular
vs rest

nuclear
vs rest

cytoplasmic
vs rest

mitochondrial
vs rest

ArgmaxX X-vs-rest

SVM

SVM

SVM

SVM
The SVMs use 
• polynomial kernel with d = 9 (prokaryotic),

K(Xi,Xj) = (Xi ·Xj + 1)d

• RBF kernel with γ=16 (eukaryotic),
K(Xi, Xj) = exp(- γ |Xi - Xj|2)

20-dimensional 
vector giving amino 

acid composition 
of the input protein
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SubLoc:

Performance
NNPSL SubLoc

(Eukaryotic)

Dataset: Reinhardt & Hubbard, NAR, 1998
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SubLoc: Robustness of 
Amino Acid Composition Approach

• Amazingly, accuracy of SubLoc is virtually unaffected when the 
first 10, 20, 30, & 40 amino acids in a protein are deleted

• Amino acid composition is a robust indicator of subcellular
localization, and is insensitive to errors in N-terminal sequences
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Amino Acid Composition:
Taking it Further

• How about pairs of consecutive amino acids? 
(a.k.a 2-grams) How about 3-grams, …, k-grams?

• How about pseudo amino acid composition?
• How about presence of entire functional 

domains? (I.e. think of the presence/absence of a functional 
domain as a summary of amino acid sequence info...)
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Functional Domain Composition
Cai & Chou, BBRC, 305:407--411, 2003

Training seqs of 
various localization
sites

BLAST against
db of known 
functional domains
(Interpro)

NN-5875D:
Train k-NN (k=1) 
using these vectors

or, if no
hit found

Pseudo amino
acid composition

Amino
acid
composition

NN-40D:
Train k-NN (k=1) 
using these vectors

If a protein got a hit in Interpro,
use NN-5875D; else use NN-40D
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Functional Domain Composition:

Performance

Dataset: Reinhardt & Hubbard, NAR, 1998
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Protein Function Prediction
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Function Assignment to Protein Sequence

• How do we attempt to assign a function to a new 
protein sequence?

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
VT
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Guilt-by-Association

• Compare the target sequence T with sequences 
S1, …, Sn of known function in a database

• Determine which ones amongst S1, …, Sn are the 
mostly likely homologs of T

• Then assign to T the same function as these 
homologs

• Finally, confirm with suitable wet experiments
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Guilt-by-Association
Compare T with seqs of 
known function in a db

Assign to T same 
function as homologs

Confirm with suitable 
wet experiments

Discard this function
as a candidate
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What if no homolog of known 
function is found?
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SVM-Pairwise Framework

Training 
Data

S1

S2

S3

…

Testing 
Data

T1

T2

T3

…

Training Features

S1 S2 S3 …

S1 f11 f12 f13  …

S2 f21 f22 f23 …

S3 f31 f32  f33 …

… … … … …

Feature 
Generation

Trained SVM Model
(Feature Weights)

Training

Testing Features

S1 S2 S3 …

T1 f11 f12 f13  …

T2 f21 f22 f23 …

T3 f31 f32  f33 …

… … … … …

Feature 
Generation

Support Vectors 
Machine

(Radial Basis 
Function Kernel)

Classification

Discriminant
Scores 

RBF 
Kernel

f31 is the local 
alignment score 
between S3 and S1

f31 is the local 
alignment score 
between T3 and S1

Image credit: Kenny Chua
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Performance of SVM-Pairwise
• Receiver Operating 

Characteristic (ROC)
– The area under the 

curve derived from 
plotting true positives as 
a function of false 
positives for various 
thresholds. 

• Rate of median False 
Positives (RFP)
– The fraction of negative 

test examples with a 
score better or equals to 
the median of the scores 
of positive test 
examples.
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Treatment Optimization 
of Childhood Leukemia
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• The subtypes look similar

• Conventional diagnosis
– Immunophenotyping
– Cytogenetics
– Molecular diagnostics

• Unavailable in most 
ASEAN countries

Childhood ALL

• Major subtypes are: T-ALL, 
E2A-PBX, TEL-AML, MLL 
genome rearrangements, 
Hyperdiploid>50, BCR-ABL

• Diff subtypes respond 
differently to same Tx

• Over-intensive Tx
– Development of 

secondary cancers
– Reduction of IQ

• Under-intensiveTx
– Relapse
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Image credit: Affymetrix

Single-Test Platform of
Microarray & Machine Learning
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Childhood ALL Subtype 
Diagnosis Workflow

A tree-structured
diagnostic 
workflow was 
recommended by
our doctor 
collaborator
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Accuracy Various Classifiers)

The classifiers are all applied to the 20 genes selected 
by χ2 at each level of the tree
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Multidimensional Scaling Plot 
Subtype Diagnosis
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Is there a new subtype?

• Hierarchical 
clustering of 
gene expression 
profiles reveals 
a novel subtype 
of childhood 
ALL
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Conclusions
Conventional Tx:
• intermediate intensity to 
everyone
⇒ 10% suffers relapse
⇒ 50% suffers side effects
⇒ costs US$150m/yr

Our optimized Tx:
• high intensity to 10%
• intermediate intensity to 40%
• low intensity to 50%
• costs US$100m/yr 

•High cure rate of 80%
• Less relapse

• Less side effects
• Save US$51.6m/yr
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Any Question?
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