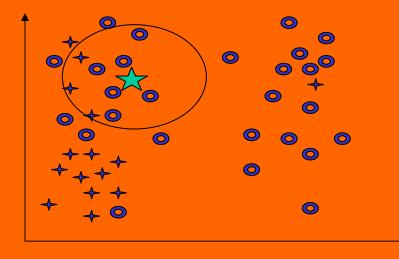
An Introduction to Knowledge Discovery Applications in Biomedical Sciences

Limsoon Wong

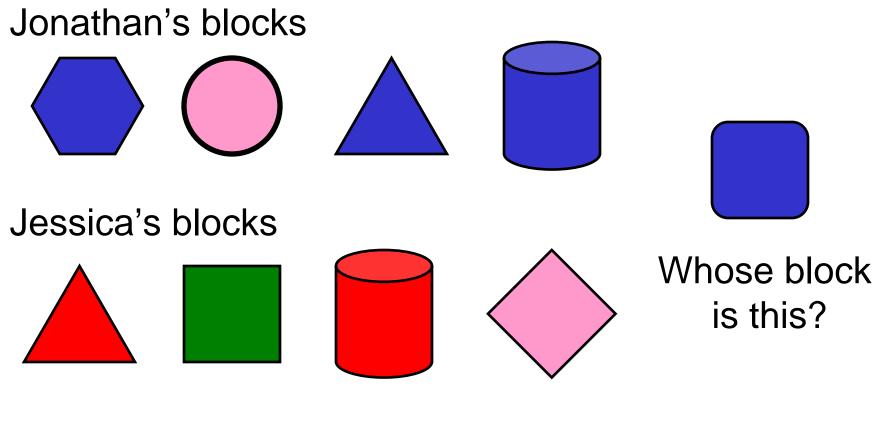
Invited talk at Taipei Medical University, June 2006

- Quick introduction to knowledge discovery
- Example applications
 - Translation Initiation Site Recognition
 - Protein subcellular localization prediction
 - Protein function inference
 - Treatment optimization of childhood ALL

Quick Intro to Knowledge Discovery



What is Knowledge Discovery?



Jonathan's rules Jessica's rules : Blue or Circle : All the rest

What is Knowledge Discovery?

Question: Can you explain how?

Main Steps of Knowledge Discover

- Training data gathering
- Feature generation
 - k-grams, colour, texture, domain know-how, ...
- Feature selection
 - Entropy, χ 2, CFS, t-test, domain know-how...
- Feature integration

classifier/

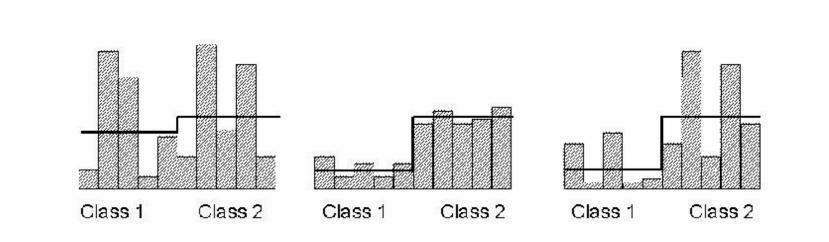
methods

Some

Invited talk at Taipei Medical University, June 2006

Feature Selection Statistics Principle

- Choose a feature w/ low intra-class distance
- Choose a feature w/ high inter-class distance



Classifier Learning/Operation Principle

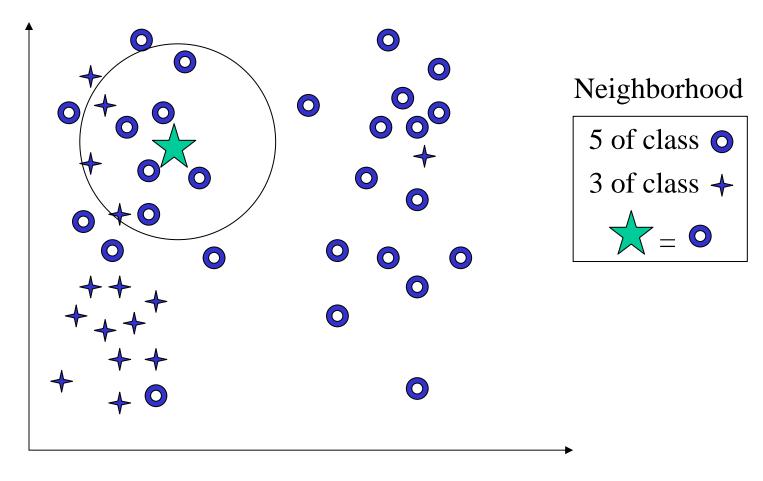
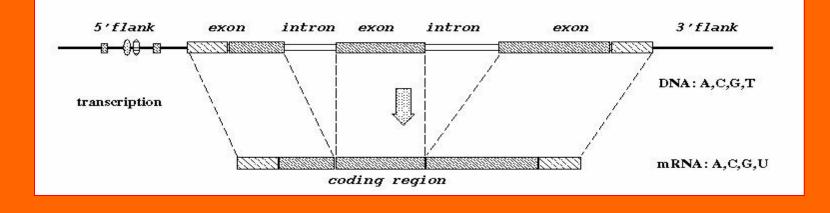
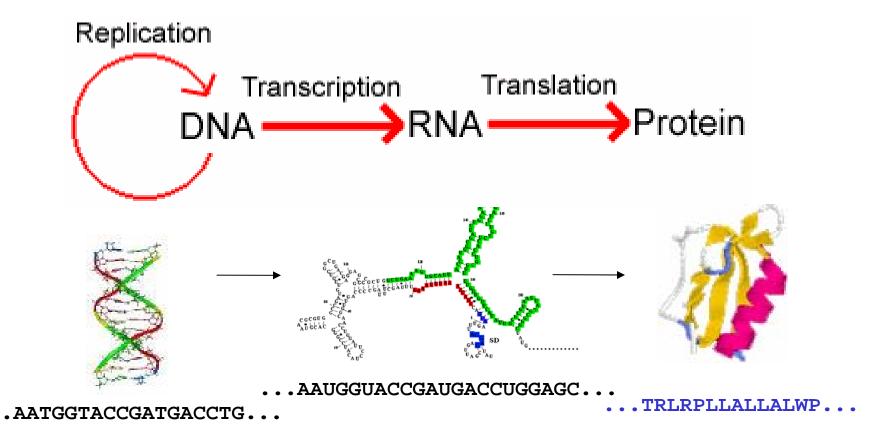


Image credit: Zaki

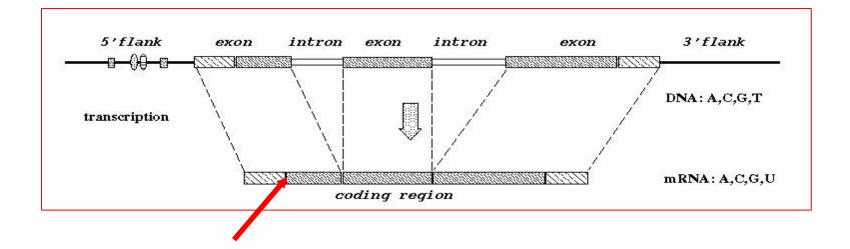
Translation Initiation Site Recognition



Central Dogma



Translation Initiation Site



A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC <u>ATG</u> GCTGAACACTGACTCCCAGCTGTG	80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC <u>ATG</u> GCTTTTGGCTGTCAGGGCAGCTGTA	160
GGAGGCAG <mark>ATG</mark> AGAAGAGGGAG <mark>ATG</mark> GCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

• What makes the second ATG the TIS?

Approach

- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ 2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

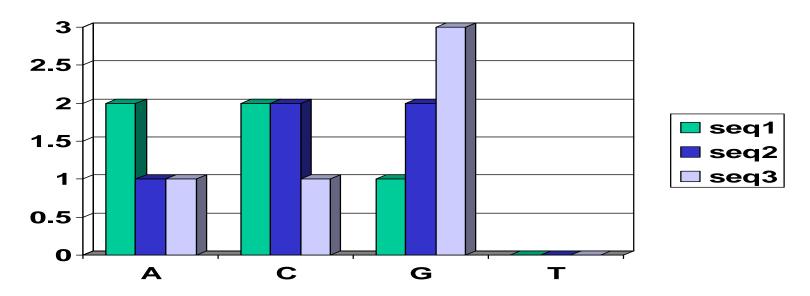
Training & Testing Data

- Vertebrate dataset of Pedersen & Nielsen [ISMB'97]
- 3312 sequences
- 13503 ATG sites
- 3312 (24.5%) are TIS
- 10191 (75.5%) are non-TIS
- Use for 3-fold x-validation expts

NUS National University of Singapore

Signal Generation

- K-grams (ie., k consecutive letters)
 - $K = 1, 2, 3, 4, 5, \dots$
 - Window size vs. fixed position
 - Up-stream, downstream vs. any where in window
 - In-frame vs. any frame



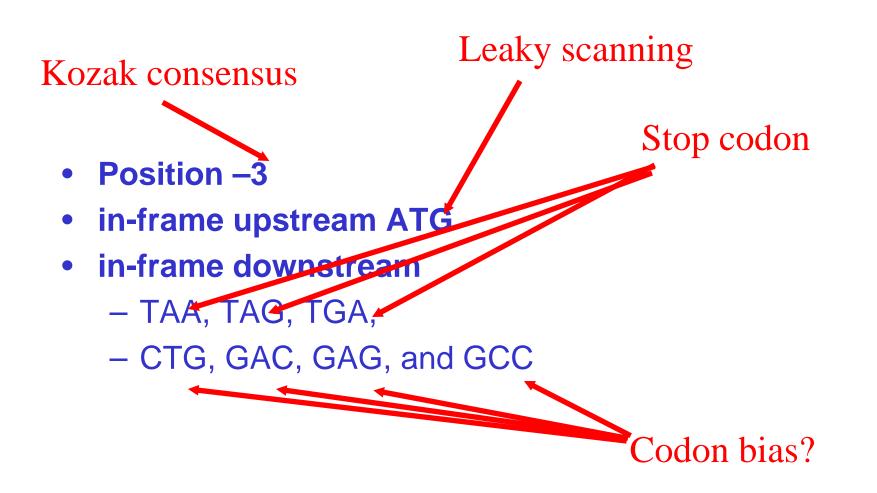
Copyright 2006 © Limsoon Wong

- Window = ± 100 bases
- In-frame, downstream
 - GCT = 1, TTT = 1, ATG = 1...
- Any-frame, downstream
 - GCT = 3, TTT = 2, ATG = 2...
- In-frame, upstream

- GCT = 2, TTT = 0, ATG = 0, ...

Too Many Signals

- For each value of k, there are 4^k * 3 * 2 k-grams
- If we use k = 1, 2, 3, 4, 5, we have 24 + 96 + 384 + 1536 + 6144 = 8184 features!
- This is too many for most machine learning algorithms



Results (3-fold x-validation)

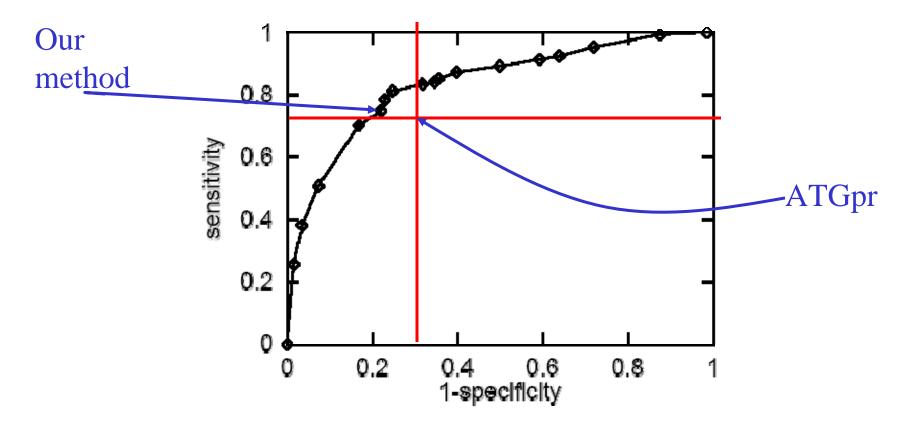
	predicted as positive	predicted as negative
positive	TP	FN
negative	FP	TN

	TP/(TP + FN)	TN/(TN + FP)	TP/(TP + FP)	Accuracy
Naïve Bayes	84.3%	86.1%	66.3%	85.7%
SVM	73.9%	93.2%	77.9%	88.5%
Neural Network	77.6%	93.2%	78.8%	89.4%
Decision Tree	74.0%	94.4%	81.1%	89.4%

Invited talk at Taipei Medical University, June 2006

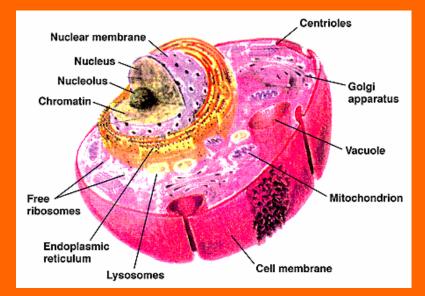
Copyright 2006 © Limsoon Wong

Validation Results (on Chr X and Chr 21)

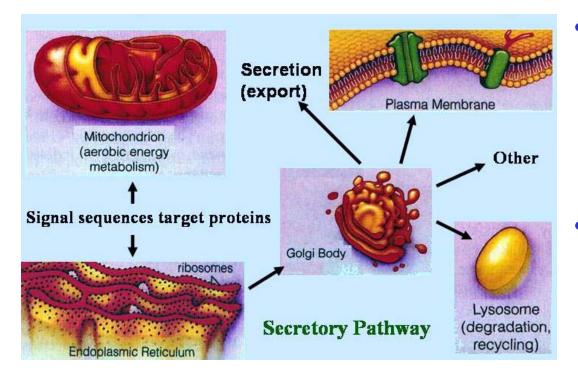


• Using top 100 features selected by entropy and trained on Pedersen & Nielsen's

Protein Subcellular Localization Prediction



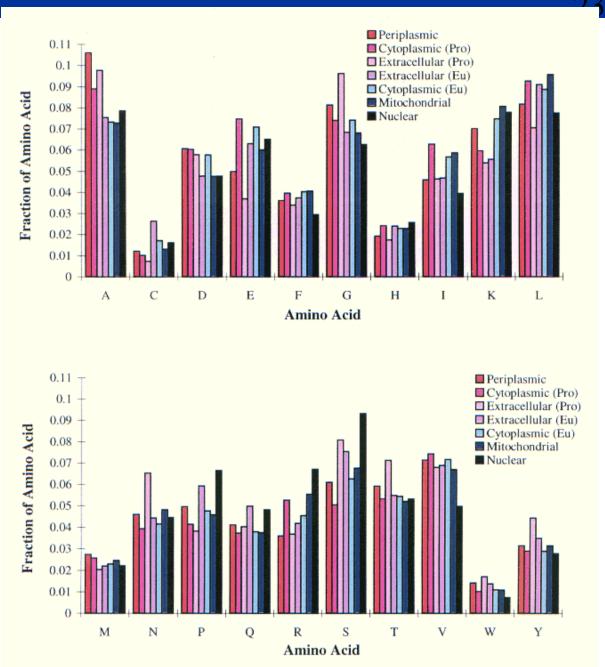
Compartments and Sorting



• Eukaryotic cells requires proteins be targeted to their subcellular destinations

- Protein sorting is
 determined by
 specific amino acid
 sequences, or
 "signals", within the
 protein
- Secretory pathway targets proteins to plasma membrane, some membranebound organelles such as lysosomes, or to export proteins from the cell

Amino acid composition of proteins residing in different sites are different



Invited talk at Taipei Medical University, June 2006

Amino Acid Composition Differences

- each cellular location has own characteristic physiochemical environment
- proteins in each location have adapted thru evolution to that environment
- thus reflected in the protein structure and amino acid composition
- If the above is true, the amino acid composition differences wrt cellular location sites should be more pronounced on protein surfaces than protein interior
- Exercise: Why?

Adaptation of Protein Surfaces Andrade et al., *JMB*, 1998

To test the theory of adaptation of protein surfaces to subcellular localization, we do a plot of 3 types of composition vectors along their first two principal components

composition vectors were calculated tor all proteins; these were then used to define a sample variance–co-variance matrix, **S**, as follows:

$$\mathbf{S} = \{s_{jk}\} = \left\{\sum_{i=1}^{n} (c_{ij} - \bar{c}_j)(c_{ij} - \bar{c}_k)/n\right\}$$
(2)

where:

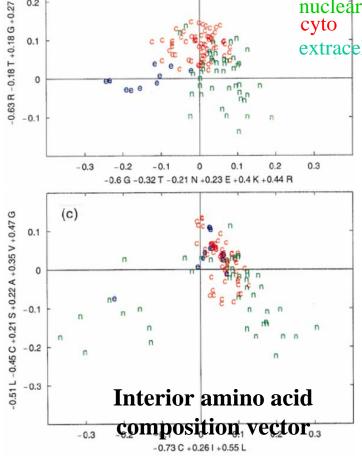
 $\bar{c}_j = \frac{1}{n} \sum_{i=1}^n c_{ij}$ Proportion of $j^{\text{th}} \text{ amino acid}$ type in ith protein(3)

is the average composition of the *j*th amino acid type over the *n* proteins in the data set. The principal components of the set of composition vectors are then the Eigenvectors of S

Adaptation of Protein Surfaces

Andrade et al., JMB, 1998 **Total amino acid** Surface amino acid +0.43 L +0.46 V (a) (b) composition vector EXTRA-CELLULAR SPACE composition vector -0.63 R -0.18 T +0.18 G +0.27 D +0.63 K 0.3 0.2 0.36 C -0.29 H -0.19 Q +0.21 I +0.4 D 0.1 0.2 nuclear cyto 0 0.1 extracell -0.1 0 n -0.2 NUCLEUS -0.1 0.3 -0.3 -0.2 -0.1 0 0.1 0.2 CYTOPLASM -0.1 0 0.1 0.2 0.3 -0.3 -0.2 -0.62 G -0.26 V +0.25 K +0.32 E +0.54 R -0.6 G -0.32 T -0.21 N +0.23 E +0.4 K +0.44 R

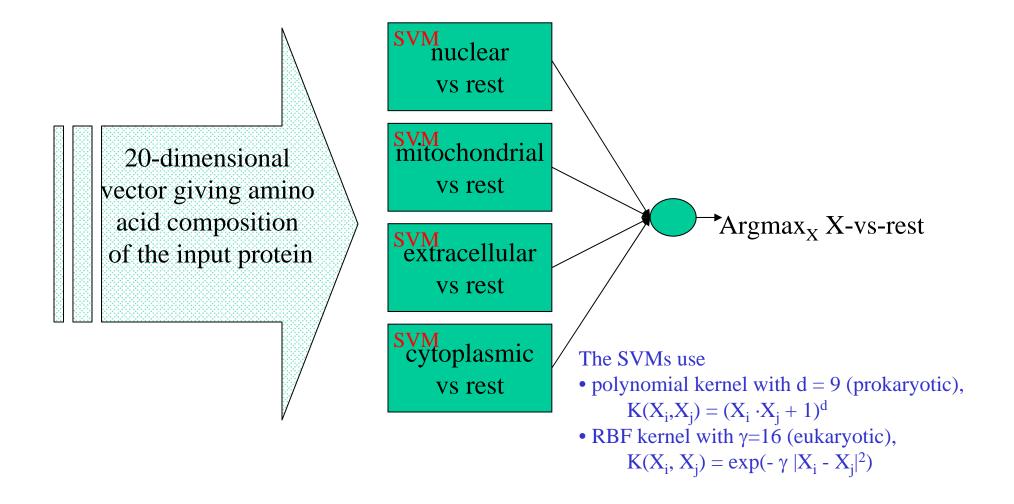
 Clearly total & surface composition vectors show better separation than interior composition vectors



National University of Singapore

Amino Acid Composition

- This means can use amino acid composition vectors, especially those from protein surfaces, to predict subcellular localization!
- Let's see how this turn out....



SubLoc: Performance

Location (Eukaryotic)	NNPSL	Markov model	SubLoc
	Accuracy (%)	Accuracy (%)	Accuracy (%)
Cytoplasmic	55	78.1	76.9
Extracellular	75	62.2	80.0
Mitochondrial	61	69.2	56.7
Nuclear	72	74.1	87.4
Total accuracy	66	73.0	79.4

Dataset: Reinhardt & Hubbard, NAR, 1998

SubLoc: Robustness of

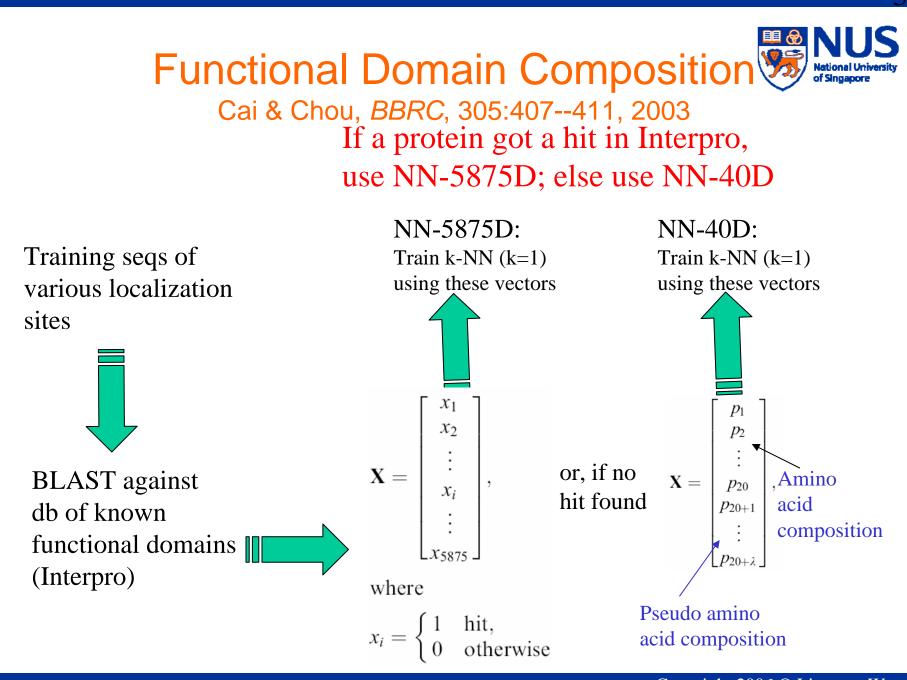
Amino Acid Composition Approach

	Accuracy (%)				
	Total	Cyto	Extra	Mito	Nuclear
COMPLETE	78.3	76.7	77.2	56.4	86.0
CUT-10	77.2	74.0	77.8	52.7	86.1
CUT-20	76.3	73.2	78.5	51.4	84.8
CUT-30	76.1	72.5	76.3	50.5	85.8
CUT-40	75.3	71.5	74.2	46.7	86.3

- Amazingly, accuracy of SubLoc is virtually unaffected when the first 10, 20, 30, & 40 amino acids in a protein are deleted
- Amino acid composition is a robust indicator of subcellular localization, and is insensitive to errors in N-terminal sequences

Amino Acid Composition: Taking it Further

- How about pairs of consecutive amino acids? (a.k.a 2-grams) How about 3-grams, ..., k-grams?
- How about pseudo amino acid composition?
- How about presence of entire functional domains? (I.e. think of the presence/absence of a functional domain as a summary of amino acid sequence info...)



Invited talk at Taipei Medical University, June 2006

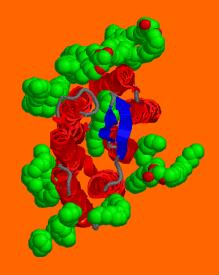
Copyright 2006 © Limsoon Wong

Functional Domain Composition: Performance

Investigators	Prokaryotic set ^b		Eukaryotic set ^e		
	Re-substitution (%)	Jackknife (%)	Re-substitution (%)	Jackknife (%)	
Chou and Elrod [6]	90.4	86.5	N/A	N/A	
Yuan [22]	N/A	89.1	N/A	73.0	
Cai and Chou [23]	96.1	84.4	95.6	70.6	
Feng [24]	93.5	89.2	N/A	N/A	
Feng and Zhang [25]	97.7	90.4	N/A	N/A	
Hua and Sun [26]	N/A	91.4	N/A	79.4	
Authors of this paper	100	89.3	100	90.4	

Dataset: Reinhardt & Hubbard, NAR, 1998

Protein Function Prediction



Invited talk at Taipei Medical University, June 2006

Function Assignment to Protein Sequence

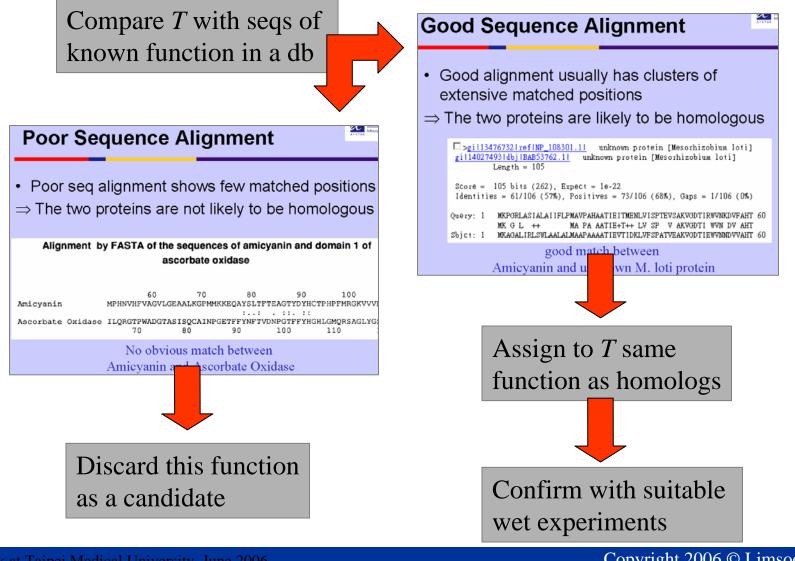
SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE VT

• How do we attempt to assign a function to a new protein sequence?

Guilt-by-Association

- Compare the target sequence T with sequences
 S₁, ..., S_n of known function in a database
- Determine which ones amongst S₁, ..., S_n are the mostly likely homologs of T
- Then assign to T the same function as these homologs
- Finally, confirm with suitable wet experiments

Guilt-by-Association



Invited talk at Taipei Medical University, June 2006

Copyright 2006 © Limsoon Wong

38

What if no homolog of known function is found?

SVM-Pairwise Framework

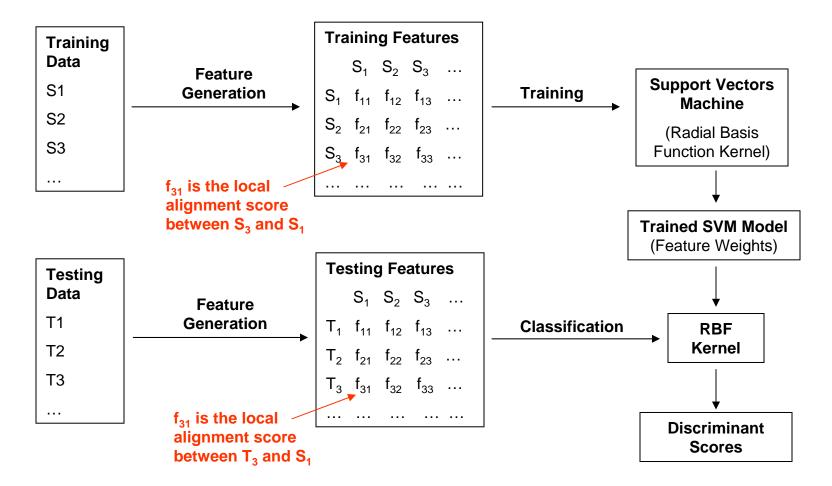
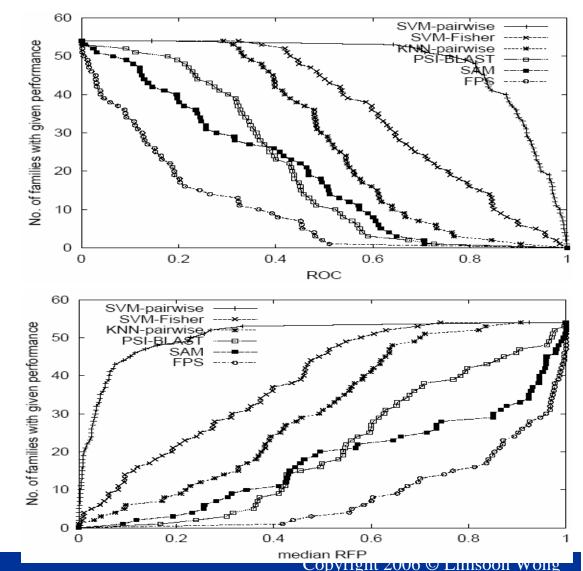


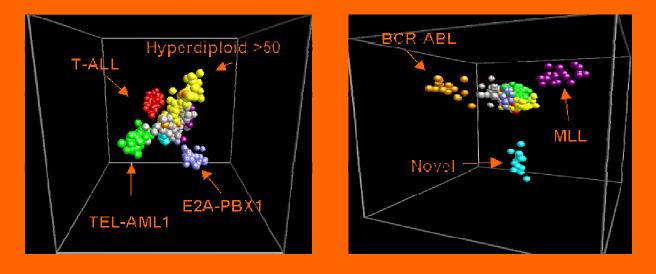
Image credit: Kenny Chua

Performance of SVM-Pairwise

- Receiver Operating
 Characteristic (ROC)
 - The area under the curve derived from plotting true positives as a function of false positives for various thresholds.
- Rate of median False Positives (RFP)
 - The fraction of negative test examples with a score better or equals to the median of the scores of positive test examples.



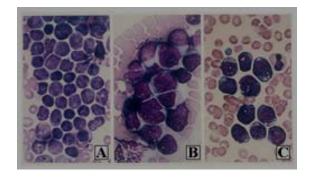
Treatment Optimization of Childhood Leukemia



Childhood ALL

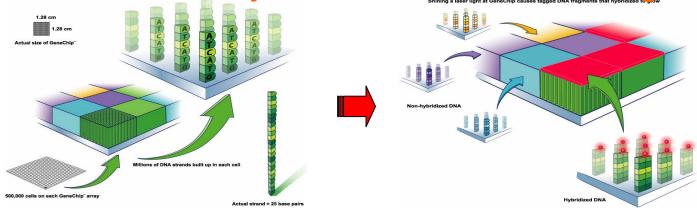
- Major subtypes are: T-ALL, E2A-PBX, TEL-AML, MLL genome rearrangements, Hyperdiploid>50, BCR-ABL
- Diff subtypes respond differently to same Tx
- Over-intensive Tx
 - Development of secondary cancers
 - Reduction of IQ
- Under-intensiveTx
 - Relapse

The subtypes look similar



- Conventional diagnosis
 - Immunophenotyping
 - Cytogenetics
 - Molecular diagnostics
- Unavailable in most
 ASEAN countries

Single-Test Platform of Microarray & Machine Learning

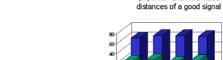


(II) Intra-class distance is too large

Class A

				-		
			-			
	00-0586-U	00-0586-U	00-0586-U	00-0586-U	00-0586-U	Descriptions
	Positive	Negative	Pairs InAv	Avg Diff	Abs Call	
AFFX-Murl	5	2	19	297.5	A	M16762 Mouse in
AFFX-Murl	3	2	19	554.2	A	M37897 Mouse in
AFFX-Murl	4	2	19	308.6	A	M25892 Mus mus
AFFX-Murf	1	3	19	141	A	M83649 Mus mus
AFFX-BioE	13	1	19	9340.6	P	J04423 E coli bio
AFFX-BioE	15	0	19	12862.4	Р	J04423 E coli bio
AFFX-BioE	12	0	19	8716.5	Р	J04423 E coli bio
AFFX-BioC	17	0	19	25942.5	Р	J04423 E coli bio(
AFFX-BioC	16	0	20	28838.5	Р	J04423 E coli bio
AFFX-BioD	17	0	19	25765.2	Р	J04423 E coli biol
AFFX-BioD	19	0	20	140113.2	Р	J04423 E coli bio[
AFFX-Cre>	20	0	20	280036.6	Р	X03453 Bacteriop
AFFX-Cre>	20	0	20	401741.8	Р	X03453 Bacteriop
AFFX-BioE	7	5	18	-483	A	J04423 E coli biol
AFFX-BioE	5	4	18	313.7	A	J04423 E coli bio
AFFX-BioE	7	6	20	-1016.2	A	J04423 E coli bioE

Image credit: Affymetrix



(I) Inter-class distance is too small

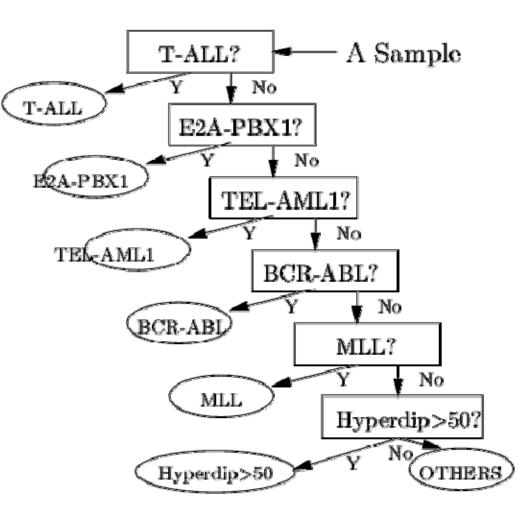
Class A

(III) Inter- and intra-class

National University of Singapore

Childhood ALL Subtype Diagnosis Workflow

A tree-structured diagnostic workflow was recommended by our doctor collaborator

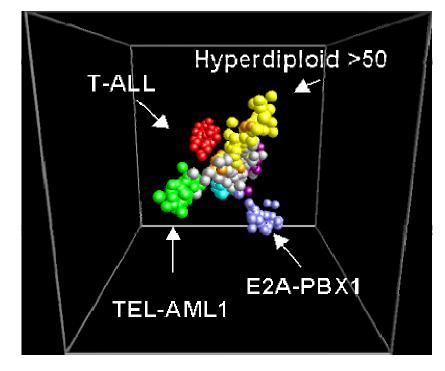


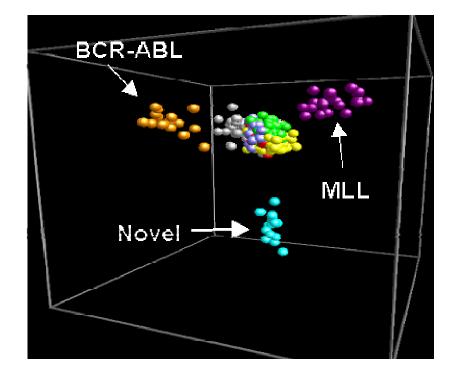
Accuracy Various Classifiers)

Testing Data	Error rate of different models					
	C4.5	SVM	NB	\mathbf{PCL}		
T-ALL vs OTHERS1	0:1	0:0	0:0	0:0		
E2A-PBX1 vs OTHERS2	0:0	0:0	0:0	0:0		
TEL-AML1 vs OTHERS3	1:1	0:1	0:1	1:0		
BCR-ABL vs OTHERS4	2:0	3:0	1:4	2:0		
MLL vs OTHERS5	0:1	0:0	0:0	0:0		
Hyperdiploid>50 vs OTHERS	2:6	0:2	0:2	0:1		
Total Errors	14	6	8	4		

The classifiers are all applied to the 20 genes selected by $\chi 2$ at each level of the tree

Multidimensional Scaling Plot **Subtype Diagnosis**





46

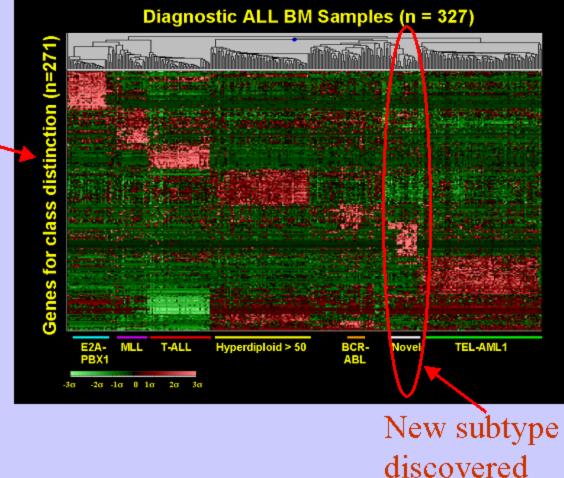
NUS National University

of Singapore

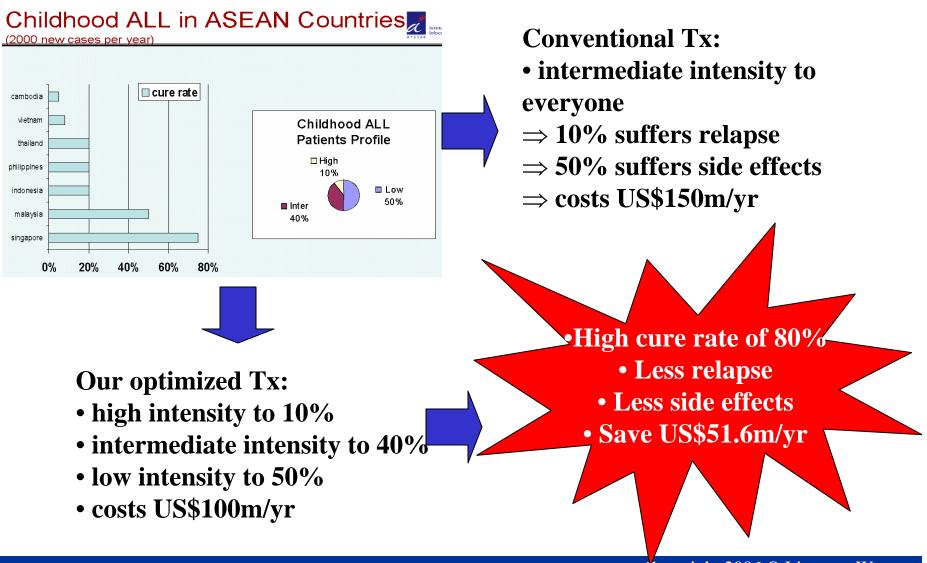
Is there a new subtype?

Genes selected by $\chi 2$

 Hierarchical clustering of gene expression profiles reveals a novel subtype of childhood ALL



Conclusions



Copyright 2006 © Limsoon Wong

Any Question?

Invited talk at Taipei Medical University, June 2006

Acknowledgements

- Huiqing Liu
- Fanfan Zeng
- Jinyan Li
- Allen Yeoh