
PAC : Program Analysis for
Approximation-aware Compilation

Pooja Roy
∗

School of Computing
National University of

Singapore
pooja.roy@amd.com

Jianxing Wang
School of Computing
National University of

Singapore
wang1988@comp.nus.edu.sg

Weng Fai Wong
School of Computing
National University of

Singapore
wongwf@comp.nus.edu.sg

ABSTRACT
Approximate computing is a paradigm for trading off pro-
gram accuracy to save energy in memory or computational
resources. However, determining feasible program approx-
imations is difficult to achieve. Popular solutions involve
programmer in annotating instructions or data that can be
approximated. Recently, program testing based techniques
have also been explored. But these are computationally ex-
pensive and time consuming as they require running the ap-
plications many times over. In this paper, we propose PAC
- Program Analysis for Approximation aware Compilation,
a compiler framework to extract feasible approximation in a
program. The state-of-the-art competitors only partition in-
structions or program data into accurate or approximable.
In PAC, instructions and program data are assigned with
a degree of accuracy required to maintain user specified
Quality-of-Service (QoS) of an application. Such informa-
tion allows the approximation to be fine-tuned in line with
changes in the QoS requirements.

Categories and Subject Descriptors
[ESS1.5]: Compilation strategies, code transformation and
parallelization techniques for embedded systems

Keywords
Approximate Computing, Code Generation, Program Anal-
ysis

1. INTRODUCTION
Approximate or inexact computing trades-off accuracy of

applications to save memory or computational resources,
and is especially attractive for power-constrained embedded
devices. Low power approximate adders produce inexact
sum of the inputs and introduce approximation in arithmetic
operations [9, 27, 6, 20, 10].

∗The author is currently working in AMD, India Pvt. Ltd.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Approximate memories operate at lower voltages saving
substantial energy at the risk of possibly compromising the
accuracy of the data stored [23, 13, 2]. Such approximate
circuits and devices require collaboration from the software
stack. Certain Instruction Set Architecture (ISA) extensions
enable approximate hardware to switch between accurate
and approximate computation during runtime [4].
However, identifying instructions or data of a program

where approximation could be allowed without a loss of in
the overall quality of service (QoS) of the application is a dif-
ficult task. The state-of-the-art methods rely on expressed
type-classifiers and pragmas to indicate critical and approx-
imable constructs in the source code [22, 1], thereby trans-
ferring the responsibility to the programmer. A few recent
works involving profiling and iterative testing of applica-
tions are, unfortunately, computationally intensive [14, 21].
Augmenting such techniques with a static analysis is com-
plementary and would reduce their runtime and overheads.
In this paper, we introduce PAC - Program Analysis for

Approximation aware Compilation, a compiler framework to
analyse and identify appropriate parts of a program where
approximation may be applied with an acceptable loss in
QoS. PAC computes a degree of accuracy (DoA) for each
program component, that is required to attain the QoS of
the program. The DoA is a metric for quantifying the ap-
proximation of a program component. A program component
can be a variable, operation, instruction, function call, basic
block or a procedure. Section 2 elaborates on the notion of
DoA.
PAC outperforms the current state-of-the-art techniques

in the following ways -

• PAC is a purely static framework, and, therefore, does
not require computationally expensive runs to extract
approximable program constructs. For instance, ASAC
[21], Chisel [14] and ApproxIt [28] are techniques that
explores a search-space by running the application repet-
itively to achieve an acceptable approximation regime.
A program analyzed with PAC, can significantly re-
duce the search space and overheads of such dynamic
testing methods. Moreover, being a compile-time tech-
nique, PAC is easy to use and easily complements other
techniques.

• PAC takes an application and its QoS requirements
(translated as the DoA of the outputs) as input and
automatically computes the DoA of the program com-
ponents in the application. These in turn can be used
to automatically (or semi-automatically, keeping the

programmer in the loop) generate type-classifiers like
@approx, @endorse [22] and annotations [1] to facili-
tate approximation.

• PAC assigns a quantifiable measure of accuracy i.e.
the DoA metric, for each program component that in-
dicate their contribution to the overall QoS of the ap-
plication. Such non-binary classification of data and
instructions is more useful than the state-of-the-art
binary (approximable or accurate) classification. For
example, on reconfigurable devices, it is more useful
to know how many bits of data or an operation can
be approximated, than to merely know that it can be
approximated.

1.1 Novel Contributions in PAC
The key idea is to propagate the expected accuracy of

the output (QoS) to the entire program. Based on the def-
inition and usage of variables and interdependence of the
instructions, it computes the DoA for all program compo-
nents. Firstly, we introduce the Component Influence Graph
(CIG) that captures the relations between the various com-
ponents. CIG is a novel graphical representation of data
dependance in a polymorphic fashion. The CIG successfully
captures the relationship, especially the interdependence, of
program components. Using the CIG and dataflow equa-
tions, the analysis calculates the DoA.

Secondly, Lee et.al. [12] claimed that program variables
affecting the control flow such as conditional statements,
must always be accurate and approximation can only be in-
troduced in multimedia data. However, PAC comprises a
novel program transformation technique which allows cer-
tain conditional statements too, to be approximated.

Finally, PAC introduces the concept of a Degree of Accu-
racy of the program components that quantifies the extent
to which a program component can be approximated, with-
out user given QoS constraints.

1.2 Target Architectures
PAC is useful to architectures that supports approximate

computing. Kahng et.al. [9] proposes an accuracy config-
urable adder which can adaptively adjust during runtime
based on the required accuracy. As PAC provides the re-
quired accuracy of all addition or arithmetic operations, it
is possible to exploit the adaptive nature of such adders.
Thus, instead of only allowing an addition to be approxi-
mated, PAC can provide such adders with the DoA of that
particular addition i.e. how many bits can be approximated.
Memories that can control power supply at the bit level are
widely explored [11, 5, 8]. For such memories, it is impera-
tive to know how many bits of a variable is approximable.
We believe that such information can be derived from PAC’s
DoA.

1.3 Approximations in PAC
In PAC, approximations are not applied indiscriminately

to all data or operations. Rather, only data that does not
impact control flow or memory accesses are approximated.
In other words, pointers and memory addresses are never
approximated as they are considered critical. In addition,
other variables affecting control flow such as integer con-
stants, integer loop bounds are also regarded as non- ap-
proximable. Only variables and instructions that do not af-
fect the termination and behavior of a program are deemed

as approximable. This is a common practice in approximate
computing and PAC adheres to that.

1.4 Evaluation Summary
We compared PAC with the state-of-the-art techniques

proposed in [22, 21, 12, 26, 3, 24]. Compared to current
state-of-the-art techniques of approximate computing, PAC
achieves a high accuracy of 92% (compared to [22]) and 85%
(compared to [21]). In addition, runtime of PAC is ≈ 103×
less than ASAC [21]. When compared to [3], PAC achieves
an accuracy of 91% on average. A detailed presentation on
evaluation results are in Section 3.

2. PAC
The key idea of PAC is to propagate the accuracy (given

as user defined QoS margins) required by the output to all
the program components.
Formally, we define DoA it as follows -

Definition 2.1. Degree of Accuracy- For a variable v, DoA(v)
is the accuracy required to maintain the QoS margins of the
application. If DoA(v) = 1, it indicates that all the bits
belonging to variable v must be correct in order to remain
within the given QoS margins. Conversely, DoA(v) = 0
means that none of the bits of variable v matters to the pro-
gram output, such variables can be removed by dead code
elimination. In practice, the accuracy is usually 0 <DoA(v) ≤
1. For instance, for a 10-bit data, DoA can be easily trans-
lated as the number of bits that must not be incorrect (in-
verted).

The QoS of an application is required to be translated to
the DoA of output variable(s). PAC assumes that output
variable(s) and their DoA is available beforehand and the
translation is done apriori. The DoAs are propagated using
influence relations among the variables. The influence re-
lations connect variables via the def-use chains (du-chain)
such that an error in one variable impacts the other. A du-
chain consists of the definition of a variable and all its uses.
Formally we describe an Influence Relation as follows:

Definition 2.2. Influence Relation- Two variables u and v
share an influence relation iff an error in u may result an
error in v, or vice versa. We define two types of influence
relation - influenced by and influences. Variable u is influ-
enced by v if an error in v introduces error in u. We also
say variable v influences u.

2.1 Component Influence Graph (CIG)
The component influence graph captures the influence re-

lations of all the program variables. Each node in CIG is
a tuple consisting of a variable and a basic block identi-
fier. There are two types of edges in a CIG representing
the two types of influence relations mentioned above. Fig-
ure 1 illustrates a sample kernel of the FFT benchmark from
MiBench [7] and its corresponding CIG.
These two types of influence relations, though are corol-

lary to each other, are necessary to maintain the correctness
and termination of the dataflow analysis. This aspect will be
elaborated later in greater details. An ‘influenced by’ edge
in CIG, connecting two nodes, also contains information
about the operator that relates the variables of the nodes.
For example, in Figure 1b the edge [(D.1792,3),(cst2,3)] de-
notes the operator ‘=’. Any node together with its immedi-
ate child (or children) can be mapped to an instruction (eg.

<bb 2>:
 if (n <= 1)
 goto <bb 3>;
 else
 goto <bb 4>;
<bb 3>:
 D.1792 = 999;
 goto <bb 35>;
<bb 4>:
 D.1793 = (double) n;
 D.1794 = log (D.1793);
 D.1795 = log (2.0e+0);
 D.1796 = D.1794 / D.1795;
 iter = (int) D.1796;
 j = 1;
 i = 0;
 return iter;

fft1

main <bb 5>:
 flag = 0;
 chkerr = fft1 (n, flag);

(a) Example Code

(n,2)

(D.1792,3)

(D.1793,4)

(D.1794,4) (D.1795,4)

(D.1796,4)

(iter ,4)

(j ,4) (i ,4)

(flag,5)

(cst1, 2)
(cst2, 3)

(cst3, 4)

(cst5, 4)(cst4, 4)

(chkerr,5)

(n,5)

(fft,-1) (main,-2)

influencesinfluenced_by

(chkerr,5)

(fft,-1) (main,-2)

(D.1794,4) (D.1795,4)

(D.1796,4)
1

3

=2

(b) Corresponding CIG
Figure 1: A kernel and corresponding CIG from fft.c (MiBench)

group 1 in Figure 1b). Moreover, a sub-graph of all nodes
with the same basic block identifier captures the influence
relation for the entire basic block (eg. group 2 in Figure 1b).
Special nodes that are tuples consisting of a function name
and a negative integer each represents a procedure. Such
nodes are connected to the rest of the nodes in CIG via the
return value and the parameter variables (eg. group 3 in
Figure 1b). A node of CIG together with all its outgoing
edges is equivalent to the variables’ du-chains. Thus, the
CIG is the union of du-chains of all variables of a program.
In addition, CIG also contains interprocedural influence re-
lations consisting of CIG nodes that are return variables and
parameters of functions.

The CIG is constructed after the control-flow graph during
compilation. The detailed explanation of CIG construction
is given in Algorithm 1. For each assignment statement (line
6), a CIG node is created for the lhs of the assignment (line
8-10). It is assumed that assignment of a variable v in a
basic block bb is a unique pair (v, bb), as in SSA form. Af-
terwards, n ‘influenced by’ edges are created from this node
to the existing nodes in the CIG representing n operands of
the assignment statement (lines 12,14-17); 1 ≤ n ≤ 2 due
to SSA form. In addition, from the n operand nodes, one
‘influences’ edge is created, pointing back to the lhs node.
For conditional statements (line 19), ‘influences’ edges are
created from both operands of the condition to all the vari-
ables of the target basic blocks (lines 22-24). Note, that no
‘influenced by’ edges are created as any event of error in the
condition operands would result only in erroneous branching
and not errors in other variables of the target basic blocks.
Similarly, for function calls, edges are created between the
parameters passed and the return value of the function (lines
27-30). These nodes are variables and function identifier (in
negative integers) pairs instead of basic block (line 30).

2.2 Accuracy Equations
The CIG, together with a set of accuracy equations, is

used to generate the DoA(v) for each variable v. As dis-
cussed before, PAC expects the user to provide the DoA
of the output variable(s) using annotation. The accuracy
equations are then applied to all other variables having an
influence relation with the output variables. For example,
if DoA(O) is the accuracy of a variable O, then the DoA
of any variable V in an influence relation with O is derived

from DoA(O) and other variables influencing O. From the
runtime perspective, errors occurring in variables are non-
trivially dependent events. CIG of a program can easily
characterize this phenomena in the following way.

��

��

��

��
(a)

��

��

��

��
(b)

��

����

��

��	�

��	
�
��	
�

��	
�

(c)
Figure 2: An example of a CIG showing the ‘Error Indepen-
dence’ relations.

Definition 2.3. Error Independence - Two variables u and
v share an Error Independence relation if (a) u does not
appear in the sub-graph G ∈ CIG, where G consists of v
with all its children, and (b) v does not appear in the sub-
graph H ∈ CIG, where H consists of u and all its children.
Such variables are said to be error independent.

For instance, in Figure 2(a), an error in b would not result
in an error in d. However, an error in c would likely result
in an error in b. Note that in the CIG, a child node’s basic
block occurs earlier than its parent in program order. So,
Figure 2(b) shows that variables b and d are error indepen-
dent. However, a and b (or b and c) are not, as they appear
in each others’ sub-graph in the CIG. We broadly classify
instructions into three forms - copy statements, operation
statements and branching statements, and define the accu-
racy equations for each of them.

1. Copy Statements of form A = B..
For simple copy statements of this form, the DoAs are

calculated as -

DoA(A) = DoA(B) (1)

The propagation of DoAs is a backward dataflow analysis
(Section 2.3). So, DoA(B) is equal to the value of DoA(A),
which is already known. Thereafter, for copy statements

Algorithm 1 CIG Construction

Require: Source code of program
Ensure: dug head, a pointer to the first node of DUG
1: for all function in CFG do
2: cfun←current function
3: for all basic block in cfun do
4: bb← current basic block;
5: for all instructions in bb do
6: stmti ← assignment statement i in bb;
7: if stmti is assignment then
8: lhs=assigned variable;
9: rhs1=first operand; rhs2=second operand;
10: (lhs,bb)=create node(lhs);
11: if rhs1 is a constant then
12: (lhs,bb)→child=find node(cst,bb);
13: else
14: (lhs,bb)→left=(rhs1,bb);
15: (lhs,bb)→right=(rhs2,bb);
16: (rhs1,bb)→parent=(lhs,bb);
17: (rhs2,bb)→parent=(lhs,bb);
18: end if
19: else if stmti is conditional statement then
20: lhs=first operand; rhs=second operand;
21: for each edge Ej from bb do
22: bbj = Ej → dest → bb;
23: (lhs,bb)→parent= ∀var ∈ bbj ;
24: (rhs,bb)→parent= ∀var ∈ bbj ;
25: end for
26: else if stmtiis call statement then
27: call return =first operand;
28: callee=second operand(func name);
29: return=return value of callee;
30: (return,callee)→parent=(call return,cfun);
31: end if
32: end for
33: end for
34: end for

whereB is the left hand side expression, the value of DoA(B)
will be used to derive the DoA of the variable on the right
hand side. In such copy statements, it is said that A has a
direct error dependence on B.

2. Operation Statements of form A = B op C..
These are standard assignment statements where the error

dependencies between B and C are used to derive DoA(B)
and DoA(C).

DoA(A) = DoA(B|C)DoA(C) + DoA(C|B)DoA(B) (2)

where DoA(B|C) is the DoA of B given a DoA of C.
CASE I: B and C are error independent. In other words,

an error in B would not result in an error in C or vice versa.
Then, DoA(B|C) = DoA(B) and DoA(C|B) = DoA(C).
However, depending on the type of operator, the effect of the
error is different. Assuming the source of error is unbiased,
both B and C are equally likely to incur error. So,

DoA(B) = DoA(C) =

{√
DoA(A),when op ∈ {+,−}√
DoA(A)/2,when op ∈ {∗, /}

(3)
Taking the square root prevents the DoA of the operands
from diminishing in a long du chain. Moreover, it preserves

the notion of error accumulation. In other words, errors
in both B and C, would result in higher deviation of A.
Conversely, a given DoA of A (on the left hand side), would
imply that the DoA of the operands (the right hand side)
must be higher. The square root also achieves normalization,
i.e., 0 ≤ DoA(A) ≤ 1 always.
CASE II: B and C are not error independent. In this

case, B or C must exist in each other’s subtree in the CIG.
Therefore, there must exist a chain of influence relations
between B and C, such that B → Xi → C, where 0 ≤
i ≤ n for n nodes in the subtree. Also, because the DoAs
are propagated backward, the event of error in a variable
occurring in a statement is not dependent on an error event
occurring later in program order. So, for instance, if B is
defined at a program point earlier than C, then

(4)
DoA(C|B) = DoA(B,Xi) ∗
DoA(Xi|Xi+1) ∗ ... ∗DoA(Xi+n−1|C)

Note, that in certain sets of assignment statements, there
may exist cycles in the CIG. However, during the compu-
tation of DoAs as part of the dataflow analysis, we main-
tain record of already computed DoAs, to avoid diminishing
degrees of accuracy for such variables. Moreover, for our
preliminary implementation, we considered only statically
allocated variables. The analysis proposed however, can be
extended to aliased variables with minor amendments.

3. Branching Statements.
Branching is a control flow decision. Every basic block

containing a conditional or branching statement, has two
successor basic block in the CFG. One of them is taken dur-
ing execution, while the instructions in the path not taken
remains unexecuted.
For example, in Figure 3, if the path taken is 1 → 2 → 4

then the instruction c=a+1; is never executed. This implies
that the instruction a=10; or the variable a in basic block
1 can be safely approximated. The branching probability
of the edges from a basic block to its successors depicts the
likelihood of the path being taken during runtime. This
information is easily obtained from the compiler (for exam-
ple, using the -fguess-branch-prob flag for GCC). The edge
with less probability (for example, 1 → 3), leads to the ba-
sic block containing instructions that are less likely to be
executed and thus, are more amenable to approximation.
Therefore, for all variables whose reachability is found to be
in either of the successor basic blocks and not in both, the
DoA is lowered using the branch probabilities. In our exper-
iments, only the branches with highly skewed probabilities
of taken/not-taken (i.e., 0.6/0.4 or more) are considered for
this. However, it is possible to include more branches for
this approximation using additional branch profiling infor-
mation.
Algorithm 2 elaborates on the method we apply, to handle

branching statements. First, the probabilities of each branch
edge is obtained (lines 3-4). Reachability of the variables are
calculated by applying a standard reachability analysis. For
every variable that reaches only one of the destination of the
current branching (line 6), the branch probabilities are mul-
tiplied with the DoA already obtained using the accuracy
equations mentioned earlier (line 9). Multiplication results
in lowering of the DoAs of the variables according to whether
the branch is taken.

Algorithm 2 Branching Statements’ Accuracy Propagation

Require: List of basic blocks with edge probabilities
Ensure: Updated DoAs of affected variables
1: for all branching statements do
2: bb←current basic block
3: dest major← target branch with higher edge proba-

bility e
4: dest minor← other branch with probability 1− e
5: for ∀ variables v∈ bb do
6: if (used(v)∈dest minor)∨(used(v)/∈dest major)

then
7: stmt← get use(v);
8: lhs = get lhs(stmt);
9: DoA(lhs)=DoA(lhs)*(1− e);
10: end if
11: end for
12: end for

b = b/2
c = b+1

a = 10
b = i

b = b/2
c = b+1

c = a+1

return c

0.8 0.2

c = a+1

return c

0.8 0.2

a = 10
b = i

1

2 3

4

Figure 3: DoA propagation for branching statements in a
CFG.

2.3 Analysis & Propagation
DoA propagation is modeled as a program analysis prob-

lem. The analysis is solved in an iterative manner where
each iteration has two phases. Phase 1 is a backward flow
analysis that considers the variables belonging to all state-
ments except conditional statements. Phase 2 is a forward
flow analysis for variables involved in conditional statements.

The flow of the analysis is represented in Equations 5 and
6. Phase 1 uses Equations 1 and 3 (Section 2.2). Phase
2 comprises of the technique described as ‘form 3’ in Sec-
tion 2.2. Each iteration of the analysis partially fills Equa-
tion 4 with the DoAs that are calculated in previous itera-
tions. The analysis attains a maximum fixed point (MFP)
solution when the assigned DoAs do not change between
successive iterations. This safe termination is ensured by
keeping track of variables that have obtained a value other
than Init in the lattice of the analysis. Init denotes the
initial state of the variables, which is Critical, i.e., a DoA of
1. The analysis results in lowering of the DoAs. Variables
with a DoA of 0, i.e., dead variable, will not be consider
further in the analysis.

(5)Out(B)

=

{
Init, for B = Exit∏

P∈Succ(B) F1,2(OUT(P)), ∀var ∈ B ∧ var /∈ COND

IN(B) =

{
Init, for B = Entry∏

P∈Pred(B)
F3(IN(P)), ∀var ∈ B ∧ COND

(6)

Algorithm 3 DF Analysis (Partial Algorithm)

Require: Control Flow Graph
1: BBe ← Entry basic block;
2: equation[]←set of unsolved accuracy equations;
3: for all basic blocks bb ∈ CFG do
4: if bb ∈ BBe then
5: dfin(bb) = Init;
6: else
7: dfin(bb) = �;
8: worklist = variables v∈ bb;
9: end if
10: end for
11: for all basic blocks bb ∈ CFG do
12: for ∀variables v∈ bb & v∈worklist do
13: if matches form 1 or 2(I) then
14: Calculate DoA(v) using equation 1 or 4;
15: worklist -= v;
16: fill(equation,v);
17: else
18: if !solve(equation[bbv]) then
19: equation[bbv]← partial equation 5;
20: end if
21: end if
22: end for
23: end for

Algorithm 3 elaborates on the steps of the analysis as im-
plemented in our framework. It follows the generic steps
of a worklist based dataflow analysis with slight modifica-
tions. At the outset, the basic block dataflow information
is initialized with the � of the lattice (lines 4-7), i.e. all
variables are assumed critical. All variables are added to a
worklist as they have not been assigned any DoA value at
this step (line 8). Afterwards, traversing through the control
flow graph (lines 11,12), each statement is matched against
the forms discussed in Section 2.2 (line 13,17). If the corre-
sponding accuracy equation can be solved, the variables are
assigned the resulting DoA (line 14,18), and are removed
from the worklist (line 15). Otherwise, from the program
components found, equation 5 is partially filled (lines 16,19).
When all the equation elements are available, the equation
is solved and the variables are assigned with the DoA (line
18).

2.4 Approximating Comparisons
Comparison expressions are central to branching and loop

termination and thus are considered as critical instructions [12].
From the perspective of approximate computing, variables
in the comparison expression are often considered non- ap-
proximable. In our framework, we propose a simple pro-
gram transformation that allows comparisons too to be ap-
proximated without any change in the program behaviour.
Apart from the known benefits of approximation, allowing
inexact comparison allows for the use of approximate com-
parators [18], thereby potentially resulting in a better power-
performance.
Figure 4 shows a frequently occurring pattern in many

program. Typically, there is a loop induction variable or
some branching conditions comprising of relational opera-
tors, specifically <,≤, >,≥. For these operators, we propose
a transformation technique that allows the particular com-
parison statement to be safely approximated. As a penalty,

i < 10

sum += 2 c = sum

return c

1

2 3

4

Y N

i < 10

sum += 2 c = sum

return c

1

2 3

4

Y N

t = i - 10
t < 0

sum += 2 c = sum

return c

1

2 3

4

Y N

all bits of i are critical only sign bit of t is critical

Figure 4: Transformation for approximate comparison.

for every comparison statement, a temporary variable is in-
troduced. Such temporary variables do not pose a large
overhead especially for the SSA form.

Definition 2.4. For any comparison statement of the form
if(A op B){}, where op ∈ {<,≤, >,≥}, there exists a pair
of statement:

temp = A−B;
if (temp op 0){}

which is semantically equivalent and can replace the original
comparison without any change of the program behavior.

Using the above, all the comparison statements are re-
placed with the appropriate pair of new statements. For
example, in Figure 4, the statement i<10;, where i is a
loop induction variable causing i<10; to be executed only
in full precision. However, with the transformation t = i

- 10; t < 0;, only the sign-bit of t remains critical and
rest of the bits can tolerate errors without any change of the
program’s behavior. Approximation is thus introduced in
the control flow statement with a penalty of one additional
computation.

3. EVALUATION
We evaluated PAC in three ways. First, we compared it

with the state-of-the-art methods for approximate comput-
ing. Next, we compared PAC with compile-time techniques
designed for reliability against soft-errors. Such methods
categorize program variables into critical and non-critical
with the intention of ‘hardening’ critical data against soft-
errors. We will show with our experiments that data iden-
tified as non-critical by these techniques are not always ap-
proximable. Finally, we evaluated PAC by injecting errors
in the applications and thereby measuring the resulting QoS
and overhead.

3.1 Comparison with approximation
techniques

We compared PAC with two state-of-the-art methods, namely
EnerJ and ASAC. EnerJ [22] uses type-classifiers such as
@approx to annotate program variables meant for approxi-
mation. ASAC [21] ranks variables in terms of the output’s
sensitivity towards them, and allows approximation for less
sensitive program variables.

Though PAC can produce DoA for each program compo-
nent, for the comparison we only considered program vari-
ables. Furthermore, in order to perform the comparison, we
assumed that variables with DoA less than 0.5 are approx-
imable and rest are not. This is a conservatively assumed
threshold and can be fine-tuned according to the demand
of the application. We present the standard metrics of true

Benchmarks
GCC -O3
(seconds)

PAC
(seconds)

ASAC
(seconds)

SOR 0.147 0.168 1345.009
MonteCarlo 0.105 0.113 1929.476
SMM 0.104 0.127 1138.159
LU 0.164 0.186 1831.876
FFT scimark2 0.135 0.219 1062.417
FFT MiBench 0.56 0.83 53.069
adpcm 0.342 0.378 222.272
susan 1.2 1.45 30.014

JPEG 6.973 6.601
13.642

(only DCT kernel)

Table 2: Runtime of PAC as compared to standard -O3 op-
timization flag in GCC and ASAC

positive (PAC classifies approximate data correctly), false
positive (PAC mistakenly classifies critical data as approx-
imable), true negative (PAC correctly identifies critical vari-
ables) and false negative (PAC marks a variable as critical
where it can be approximated). PAC is a static method and
hence it is conservative. In particular, false negatives are
to be expected. However, false positives would be unsafe
approximation of program variables that might lead to un-
acceptable QoS or unexpected termination of applications.
In our experiments, we used the Scimark2 [19] bench-

marks, as @approx annotations are available only for this
suite. We applied ASAC to the same benchmarks and present
the results in Table 1. PAC achieved an accuracy of 92%
when compared to EnerJ, and 74% when compared to ASAC,
on average. ASAC is based on profiling of application and
thus, has runtime information to analyse the sensitivity of
the variables. However, for simple applications like SOR PAC
is able to have an accuracy that is 85% that of ASAC. The
key reason is that it has a simple CFG and the accuracy
equations are mostly of forms 1 and 2(I).
The main advantage of PAC over ASAC is the runtime

overhead of the analysis. Table 2 shows the different runtime
of both methods. PAC is a compiler analysis pass, therefore,
we also compare PAC’s runtime with the compilation time
of -O3 of GCC. The runtime of ASAC depends on the total
number of variables and the dynamic instruction count of
the application. We tested comparatively small programs
to measure the runtime of PAC and ASAC. Table 2 shows
that ASAC is 3 orders of magnitude slower than PAC. As
application becomes larger, the difference in runtime also
increases. The standard -O3 optimization in GCC, on the
other hand, is 3% faster than PAC on an average (Table 2).
In other words, PAC has minimum impact on compile time.

3.2 Comparison with software reliability
techniques

To compare with state-of-the-art techniques for ensuring
program level reliability, we use three applications, adpcm,
susan and jpeg from MiBench [7] and three applications
464.h264ref, 433.milc and 482.sphinx3 from SPEC2006
benchmark suites (Table 3).

A. Bitwidth Analysis [Ste00] Bitwidth analysis deter-
mines and reduces the number of bits required for program
variables [26]. This is often used to minimize the memory
budget in silicon compilation. Intuitively, if the bitwidth
analyzed by these techniques is shorter than the width of

EnerJ [22] ASAC [21]

Benchmarks
True
Positive

False
Positive

True
Negative

False
Negative

Accuracy
True
Positive

False
Positive

True
Negative

False
Negative

Accuracy

SMM 4 0 4 0 1 3 0 3 2 0.75
MonteCarlo 2 0 4 0 1 2 0 2 2 0.66
LU 8 0 12 2 0.9 8 0 9 5 0.77
FFT 9 0 15 7 0.77 9 0 12 10 0.68
SOR 6 0 7 1 0.92 7 0 5 2 0.85

Average 0.92 Average 0.74

Table 1: Comparison with EnerJ and ASAC to show PAC’s accuracy.

Application Lines Of Code Description Error Metric

adpcm 283
Adaptive differential

pulse code modulation (variation of PCM)
SQNR(Signal to Quantization Noise Ratio)

susan 888 Image recognition(edge/corner detection) Mean Pixel Difference

jpeg 10176 Image compression SNR (Signal to Noise Ratio)

464.h264ref 18696 Video Compression PSNR (Peak Signal to Noise Ratio)

433.milc 5401 Quantum Chromodynamics Error per site (provided with benchmark)

Table 3: Description of the applications

the data type declared by programmer, the extra bits can
be approximated safely. With this assumption, we compare
PAC’s analysis with a state-of-the-art bidwidth analysis [26].
Table 4 the number of variables in the benchmarks classified
into three classes:

• CLASS I - these are the variables identified as ‘ap-
proximable’ by both PAC and bitwidth analysis. In
particular, bitwidth analysis found that the variable
in this case can have a shorter bitwidth than what was
originally declared in the program.

• CLASS II - these are the variables identified as ‘ap-
proximable’ by PAC but where bitwidth analysis was
not able to say for sure if less bits can be used.

• CLASS III - these are variables that both PAC and
bitwidth analysis identified as non-approximable.

A variable with varying bitwidth will now have much ap-
proximation opportunity as there is little redundancy in the
bits. In such scenario, it is desirable to mark them as non-
approximable. Therefore, variables in CLASS III shows a
strong correlation between PAC and bitwidth analysis.

However, CLASS II is a class of variables which contradict
the usage of bitwidth analysis to characterize approximation
in programs. Figure 5a shows that it is possible to approx-
imate variables both from CLASS I and CLASS II without
QoS loss. Therefore, we can safely conclude that bitwidth in-
formation alone is inadequate in identifying whether a vari-
able is approximable or not, and motivates the need for PAC.

Lastly, Table 4 also shows the coverage of the two meth-
ods as a ratio of number of variables analysed by PAC to
bitwidth analysis. PAC identifies 3× more variables, on av-
erage, that can be approximated, as the premise of approx-
imate computing is to introduce as much as approximation
possible to reduce energy consumption. This is due to the
fact that PAC considers the interdependence of variables
and also transforms conditional statements to more approx-
imable equivalents. In addition, PAC has a better coverage
of code, 40% more than bitwidth analysis, chiefly because of
interprocedural influence relations.

B. Program Dependency Graph (PDG) Scheme
[Cong11] The second scheme we compared PAC with is
based on a weighted program dependence graph [3]. The

Application CASE I CASE II CASE III Coverage
adpcm 28 68 174 1.13
susan 147 435 3064 1.254
jpeg 134 531 1552 1.54
464.h264ref 165 231 46082 1.82
433.milc 152 452 35250 1.1
482.sphinx3 45 276 7348 1.65
Average 111.83 332.16 15578.3 1.41

Table 4: Comparison with bitwidth analysis with no. of
variables for all cases (above paragraph) and ratio of code
coverage.

Application
True
Posi-
tive

False
Posi-
tive

True
Nega-
tive

False
Nega-
tive

Accu-
racy

adpcm 35 6 198 31 0.86
susan 498 31 3034 83 0.96
jpeg 620 45 1470 82 0.94
464.h264ref 312 84 44447 1635 0.96
433.milc 515 89 33268 1982 0.94
482.sphinx3 279 42 6027 1321 0.82
Average 376.5 49.5 14740.66 855.66 0.91

Table 5: Comparison with PDG based scheme with no. of
matches identified by both methods and PAC’s accuracy.

authors proposed a technique to identify critical data based
on the number of references to it in the whole program with
the aim of protecting these data against soft errors. The
technique classifies the data as likely critical (LC) or likely
not critical (LNC).
Table 5 shows the match between LC and LNC data with

approximable and non-approximable data as characterized
by PAC. The ‘true positive’ represents the number of vari-
ables with low (<0.5) DoA and also marked as LNC. Such
variables can be safely approximated. ‘False Positives’ are
variables that are marked as LC that, however, has a low
DoA. This column suggests that approximability of program
variables is not just the function of the total number of ref-
erences to it.
Later in Section 3.3, we will show that injecting errors into

this class of variables also does not result in the loss of QoS.
‘True negatives’ are variables that both schemes agree on.
Lastly, ‘false negatives’ are cases where PAC characterized
the variable as non-approximable, but was marked as LNC.

This shows that a variable which does not need extra pro-
tection from soft errors, may not tolerate errors aggressively
due to deliberate approximation.

C. Multimedia Application Specific Data Parti-
tioning [Lee06] In this method, the authors suggested se-
lective protection of data in multimedia applications [12].
Any variable affecting termination of the application is char-
acterized as critical and multimedia data (input or output)
is deemed non-critical. We compare with this scheme in
terms of error percentage obtained by running the applica-
tions under a synthetic error injection framework described
in Section 3.3.

Figure 5b shows that the number of variables marked as
approximable or non-critical by this scheme is 7% on av-
erage, which is much lesser than PAC’s 37.5% on average.
Thus, we can conclude that PAC performs better in terms
of identifying possible approximation in a program. In other
words, it shows that detecting critical components to pro-
tect them is not equivalent to identifying opportunities for
approximation within the given acceptable QoS loss. In gen-
eral, analysis for approximate computing can be significantly
less conservative than reliability techniques.

0
1
2
3
4
5
6

Er
ro

r
ag

ai
ns

t n
o

Q
oS

lo

ss
 b

as
el

in
e

(%
)

[Ste00] [Cong11] [Lee06] [Sha13] PAC

(a) Error Percentage (error injected in approximable vari-
ables).

0
10
20
30
40
50

C
ov

er
ag

e

Applications

(b) Coverage (% of approximated variables in total no. of
variables).
Figure 5: Impact of errors injection in approximable vari-
ables characterized by different methods.

D. Instruction Vulnerability based characteriza-
tion [Sha13] The fourth technique is based on error mask-
ing and its effect on QoS of an application [24]. The scheme
is based on the probability of masking of an error due to
bitwise ‘AND’, shift or other similar operations. This tech-
nique, like the previous ones, suffers from poor coverage of
source code and considers only specific cases. Figure 5b
shows that it provides around 11% of coverage of a program.
In applications where bitwise operators do not play a major
role, this technique fails to identify possible approximations.

3.3 Impact of Errors
To evaluate the effectiveness of the data characterization,

we present the quantitative QoS loss in terms of error per-
centage in Figure 5a. We used a synthetic error injection

Applications
Total

Conditional
Statements

Transformed
Conditional

Overhead
(10−2)

adpcm 157 143 3.2
susan 149 84 2.8
jpeg 1454 1239 1.14
464.h264ref 3128 2743 1.06
433.milc 626 581 0.86
482.sphinx3 1263 912 1.11
Average 1129.5 950.33 1.695

Table 6: Overhead of conditional transformation

framework, which injects a random bitflip into variables that
are identified as approximable. During execution, the error
injector, randomly selects one or more variables at a uniform
interval and injects the bitflip. For each application, the er-
ror percentage is calculated based on the correct (provided)
value of the metric mentioned in Table 3 and the output ob-
tained upon error injection. On average, PAC accounts for
3.4% of QoS loss. Though, schemes Ste00, Lee06 and Sha13
perform better and shows a QoS loss of 0.28, 2.9 and 2.4 %
only, they do not provide a good coverage of approximation
in the program. In other words, the total number of ap-
proximations allowed according to these schemes are much
less than Scheme Cong11 and PAC. This phenomena is pre-
sented in the graph of Figure 5b. Poor coverage will lead to
much less opportunities to reduce energy or computational
resources. So while these schemes are as scalable as PAC,
they provide lower quality information.

3.4 Impact of Approximating Conditions
In addition to the above results, we present the overhead

introduced by our novel code transformation that allowed
conditional statements to be approximated. For each condi-
tional statement that is transformed, one assignment state-
ment is added to the code (Section 2.4). Table 6 present
the number of transformed conditional statements and the
overhead in terms of percentage of additional instructions
over the total static instruction count of the application.
To check the validity of this transformation, we applied

it in the program components identified by PAC as approx-
imable in all the benchmarks. In doing so, we observed that
all the benchmarks terminated and produced the correct re-
sults. This proves the correctness of the transformation un-
der normal execution environment. Further, approximation
(in terms of random bitflip) was introduced to all bits except
the sign bit, to aggressively stress test the transformation.
We again observed correct results with no unacceptable QoS
degradation.

4. RELATED WORKS
Many embedded applications do not require a strict QoS

and can thus be approximated as long as they meet cer-
tain acceptable thresholds [12]. Approximation can be in-
troduced in both the hardware and software stack. Gupta
et.al. [6] introduced IMPACT, an approximate adder that
produces inexact sum of two numbers. Many other designs
for approximate adders have been proposed thereafter [9,
27, 20, 10]. Besides the operands, most of these adders also
have an error tolerance as input. However, they are not
fully exploited by the software stack as program analyses
to extract approximable operations from programs [22, 21]
do not provide an error tolerance for every addition opera-

tion. PAC is able to furnish with a fine-tuned error tolerance
for each program instruction or data in terms of their DoA
required to maintain the QoS. Other works explore various
program transformations to allow for disciplined approxima-
tion [16, 17, 15, 25]. This includes statistical program test-
ing, loop perforation, etc. However, these techniques intro-
duce approximation only in the software stack. To achieve
cross-layer approximations, Sampson et.al. [22] proposed a
type-qualifier based programming paradigm to facilitate ap-
proximation of program data together with a customized
ISA (instruction set architecture) extension [4]. To be ef-
fective, these type-classifiers need explicit programming and
instrumentation of the source code. Recently, a dynamic
testing based method has been proposed [21, 28] that au-
tomates the process of extracting approximable program
data. Such analyses are computationally intensive with a
long running time. PAC is a compile-time technique that
does not suffer both drawbacks. However, being a static ap-
proach, PAC provides a more conservative outcome of possi-
ble approximation of program components than either of the
above mentioned methods. Before the emergence of approx-
imate computing, researchers presented similar characteri-
zation of critical and non-critical program components [3, 8,
12, 24, 26]. Such techniques were primarily concerns with
correctly identifying critical data and protect them against
soft-errors. One can relate this to approximate computing:
critical data identified by the reliability techniques are non-
approximable. However, a non-critical data or instruction is
not necessarily approximable. The notion of approximation
is stronger than non-criticality. Nonetheless, we compared
PAC with various reliability measures and approximate com-
puting techniques in this paper.

5. CONCLUSION
In this paper, we present PAC, a program analysis for ap-

proximation aware compilation. PAC computes degrees of
accuracy for each program component required to maintain
the quality of service of an application. Other than having
the user specifying the QoS requirement, PAC is a com-
pletely automatic static analysis. Compared to the manual
annotation of EnerJ, PAC attains a 92% accuracy. When
compared to ASAC, a compute intensive search procedure,
PAC attains 74% accuracy in characterizing variables that
can be approximated while maintaining user given QoS con-
straints. However, PAC is 103× faster than ASAC. Com-
pared to software reliability methods, PAC achieved better
coverage while maintaining the QoS under error injected ex-
ecution of the applications. In summary, PAC offers some-
thing unique to the state of the art. Of the current tech-
niques that computes the same information as PAC, none
can scale to the large program that PAC can handle. Com-
pared to similarly scalable software techniques designed for
other purposes that may possibly be used to derive DoA,
PAC computes higher quality results. We believe that this
makes PAC an attractive complementary analysis to en-
hance other approximation approaches.

6. REFERENCES
[1] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying

quantitative reliability for programs that execute on
unreliable hardware. OOPSLA ’13.

[2] V. Chippa, A. Raghunathan, K. Roy, and
S. Chakradhar. Dynamic effort scaling: Managing the
quality-efficiency tradeoff. DAC ’11.

[3] J. Cong and K. Gururaj. Assuring application-level
correctness against soft errors. ICCAD ’11.

[4] H. Esmaeilzadeh, A. Sampson, L. Ceze, and
D. Burger. Architecture support for disciplined
approximate programming. ASPLOS XVII.

[5] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy caches: Simple techniques for
reducing leakage power. ISCA ’02.

[6] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan,
and K. Roy. Impact: Imprecise adders for low-power
approximate computing. ISLPED ’11.

[7] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. WWC ’01, 2001.

[8] M. M. Islam and P. Stenstrom. Characterization and
exploitation of narrow-width loads: The narrow-width
cache approach. CASES ’10.

[9] A. B. Kahng and S. Kang. Accuracy-configurable
adder for approximate arithmetic designs. DAC ’12.

[10] Y. Kim, Y. Zhang, and P. Li. An energy efficient
approximate adder with carry skip for error resilient
neuromorphic vlsi systems. ICCAD ’13.

[11] J. Kong and S. W. Chung. Exploiting narrow-width
values for process variation-tolerant 3-d
microprocessors. DAC ’12.

[12] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and
N. Venkatasubramanian. Mitigating soft error failures
for multimedia applications by selective data
protection. CASES ’06.

[13] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G.
Zorn. Flikker: Saving dram refresh-power through
critical data partitioning. ASPLOS XVI.

[14] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C.
Rinard. Chisel: Reliability- and accuracy-aware
optimization of approximate computational kernels.
OOPSLA ’14.

[15] S. Misailovic, D. Kim, and M. Rinard. Parallelizing
sequential programs with statistical accuracy tests.

[16] S. Misailovic, D. M. Roy, and M. C. Rinard.
Probabilistically accurate program transformations. In
Proceedings of the 18th International Conference on
Static Analysis, SAS’11, pages 316–333, Berlin,
Heidelberg, 2011. Springer-Verlag.

[17] S. Misailovic, S. Sidiroglou, and M. C. Rinard.
Dancing with uncertainty. In Proceedings of the 2012
ACM Workshop on Relaxing Synchronization for
Multicore and Manycore Scalability, RACES ’12, pages
51–60, New York, NY, USA, 2012. ACM.

[18] M. Nesenbergs and V. O. Mowery. Logic synthesis of
some high-speed digital comparators. Bell System
Technical Journal’13.

[19] R. Pozo and B. Miller. Scimark 2.0.
www.math.nist.gov/scimark2/.

[20] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and
A. Raghunathan. Aslan: Synthesis of approximate
sequential circuits. DATE ’14.

[21] P. Roy, R. Ray, C. Wang, and W. F. Wong. Asac:

Automatic sensitivity analysis for approximate
computing. LCTES ’14.

[22] A. Sampson, W. Dietl, E. Fortuna,
D. Gnanapragasam, L. Ceze, and D. Grossman. Enerj:
Approximate data types for safe and general
low-power computation. PLDI ’11, 2011.

[23] A. Sampson, J. Nelson, K. Strauss, and L. Ceze.
Approximate storage in solid-state memories.
MICRO-46.

[24] M. Shafique, S. Rehman, P. V. Aceituno, and
J. Henkel. Exploiting program-level masking and error
propagation for constrained reliability optimization.
DAC ’13.

[25] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann,
and M. Rinard. Managing performance vs. accuracy
trade-offs with loop perforation. ESEC/FSE ’11.

[26] M. Stephenson, J. Babb, and S. Amarasinghe.
Bidwidth analysis with application to silicon
compilation. PLDI ’00.

[27] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On
reconfiguration-oriented approximate adder design and
its application. ICCAD ’13.

[28] Q. Zhang, F. Yuan, R. Ye, and Q. Xu. Approxit: An
approximate computing framework for iterative
methods. DAC ’14.

