
Static Identification of Delinquent Loads�

Vlad-Mihai Panait
Dept. of Computer Science
Politehnica University of

Bucharest, Romania
vpanait@cs.pub.ro

Amit Sasturkar�

Dept. of Computer Science
Stony Brook University

Stony Brook, NY
amits@cs.sunysb.edu

Weng-Fai Wong
Dept. of Computer Science

National University of Singapore
Singapore

wongwf@comp.nus.edu.sg

Abstract

The effective use of processor caches is crucial to the
performance of applications. It has been shown that cache
misses are not evenly distributed throughout a program.
In applications running on RISC-style processors, a small
number of delinquent load instructions are responsible for
most of the cache misses. Identification of delinquent loads
is the key to the success of many cache optimization and
prefetching techniques. In this paper, we propose a method
for identifying delinquent loads that can be implemented at
compile time. Our experiments over eighteen benchmarks
from the SPEC suite shows that our proposed scheme is sta-
ble across benchmarks, inputs, and cache structures, identi-
fying an average of 10% of the total number of loads in the
benchmarks we tested that account for over 90% of all data
cache misses. As far as we know, this is the first time a tech-
nique for static delinquent load identification with such a
level of precision and coverage has been reported. While
comparable techniques can also identify load instructions
that cover 90% of all data cache misses, they do so by se-
lecting over 50% of all load instructions in the code, result-
ing in a high number of false positives. If basic block pro-
filing is used in conjunction with our heuristic, then our re-
sults show that it is possible to pin down just 1.3% of the
load instructions that account for 82% of all data cache
misses.

1. Introduction

The introduction of caches in processors has been an im-
portant step in alleviating the problem of ensuring sufficient
supply of data into the processor. However, with ever in-
creasing processor speeds and the use of massive instruction

� This work is supported in part by A*STAR Grant 012/106/0046.
� This author contributed to the work while he was still with the Depart-

ment of Computer Science and Engineering, Indian Institute of Tech-
nology, Bombay, India.

level parallelism within processors, the bottleneck in perfor-
mance once again turns to the memory hierarchy. This well
known problem has attracted much attention from the com-
puter systems research community. Many hardware, soft-
ware and hybrid schemes to alleviate the problem have been
proposed. One of the keys to the success of these schemes is
the ability to control the overheads involved. This in turn re-
lies on the precise triggering of the necessary computation.
An example is prefetching. Performing a prefetch for ev-
ery load instruction in the program will be too costly and
almost certainly will not yield good results. The key to con-
taining the overhead is the correct identification of the load
instructions that are most likely to benefit from the prefetch
operation.

Previous studies [1, 4] found that in most applications,
data cache misses were not uniformly distributed. In par-
ticular, a small number of load instructions are responsible
for the majority of data cache misses. These load instruc-
tions have come to be known as delinquent loads. If these
delinquent loads can be successfully identified, many cache
optimization schemes can precisely target the bottlenecks,
thereby minimizing overheads.

In this paper, we propose a static scheme for identify-
ing delinquent loads. The scheme is based largely on the
analysis and classification of the address computation sub-
tree of load instructions that is done after code generation
but before execution. Thus no activity of the compiler, in
particular code optimization, is affected, and unlike mem-
ory profiling, there is no overhead incurred during runtime.
Our experiment shows that the method is robust with re-
spect to changes in input and cache configuration as well as
compiler optimizations. Tested over eighteen large SPEC
benchmarks, the heuristic was able to single out 10% of
the load instructions in the benchmarks that were respon-
sible for over 90% of the level one data cache misses. In
addition, we show that basic block profiling is an excellent
means of identification of delinquent loads. When used in
combination, basic block profiling together with our heuris-
tic can identify the 1.3% of load instructions that are respon-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

sible for over 80% of cache misses.
This paper is organized as follows. Following the intro-

duction, we will survey the related work in this area. In Sec-
tion 3 we will dwell deeper into the motivation of our ap-
proach and some of the terminologies we use in this pa-
per. In Section 5 we will describe the overall framework for
our approach as well as the ideas that motivated our heuris-
tic. They are by no means exhaustive and the overall frame-
work allows for the inclusion of other heuristics that we may
have missed. In Section 6 we will show how we actually im-
plemented the scheme as well as describe the experimental
setup we used to verify our approach. Section 8 discusses
the results we obtained in our experiments. This is followed
by the conclusion.

2. Related Work

There is a rich literature on data prefetching. All hard-
ware and software prefetching techniques necessitate some
form of delinquent load identification. We refer the inter-
ested reader to Van der Wiel and Lilja’s survey [13] for a
comprehensive survey of this field.

There are a number of specific works that motivated us.
Mehrotra and Harrison [9] proposed a hardware scheme that
attempts to discover address computation patterns and sub-
sequently to prefetch based on these patterns. This moti-
vated an important aspect of our method. However, during
runtime, since hardware can only perform limited computa-
tions, the patterns they used were relatively simple.

Burtscher, Diwan, and Hauswirth [3] (which we shall
call the ‘BDH-method’ in the rest of the paper) proposed a
static classification system for improving value prediction.
In the BDH-method, load instructions are classified accord-
ing to the following criteria:

� The region of memory the reference accesses: whether
the area is the stack (S), the heap (H) or the global data
space (G).

� The kind of reference: whether the reference loads a
scalar (S), an element of an array (A) or a field in a
structure (F).

� The type of the reference: whether the reference loads
a pointer value (P) or a non-pointer value (N).

Thus in the BDH-method, each load instruction belongs
to a class that is denoted by a three letter string, representing
the region of memory it accesses, the kind and the type of
references. The heuristic that was suggested [3] is that loads
belonging to the union of the classes GAN, HSN, HFN,
HAN, HFP and HAP account for most of the misses in a
program. It should be noted that their study was performed
on traces. In our implementation of the scheme in the com-
piler, at times it is difficult to get accurate information about
the area of memory being accessed during runtime by a load

instruction. Our results showed that this scheme by itself,
however, lack the precision of our proposed scheme.

There are also attempts to model the cache’s behavior,
such as the cache miss equations [6], that may be used.
However, most of these models involve statistical averag-
ing making it difficult to extend them to work on specific
load instructions. Abstract interpretation has also been used
to predict cache behavior [5]. However, the technique can
only identify loads that ‘always hit’, or ‘always miss’, and
uses some ‘simple heuristics’ to estimate the upper bounds
of the miss rates of instructions that do not fall into these
two categories.

The work that comes closest in comparison to ours is that
by Ozawa, Kimura and Nishizaki [10] (which we shall call
the ‘OKN-method’ in the rest of the paper). They observed
that for the SPEC 92 benchmarks, using three simple heuris-
tics, namely whether the load involves a pointer derefenc-
ing, a strided reference or none of the above, allowed them
to capture a significant portion of the data cache misses. Our
scheme goes much further than their proposal and in gen-
eral subsumes it. As a result, the experiments show that our
method is significantly more precise.

3. Delinquent Loads

A load is said to be delinquent if it accounts for a sig-
nificant amount of the cache misses experienced by a pro-
gram. We are concern only with loads because as far as we
know there is no scheme analogous to prefetching for store
instructions. Furthermore, processor stalls due to store in-
structions are generally well controlled by means of write
buffers. In essence, a delinquent load is an important mem-
ory and hence performance bottleneck. Identification of
delinquent loads therefore allows for mechanisms for alle-
viating this bottleneck to be precisely targeted thereby re-
ducing overhead. Identification of delinquent loads may be
done on-line or off-line. Hardware techniques for prefetch-
ing, for example, would use hardware mechanisms such as
state machines to predict delinquency. However, specialized
hardware is required. Furthermore, in order not to have an
impact on the critical path of instruction processing, either
a enormous amount of hardware that exploits parallelism is
needed, or only very simple predictions can be made.

The most common off-line method for identifying delin-
quent loads involves memory profiling. There are two main
ways of doing memory profiling. One can use a full instruc-
tion level simulation to execute the program, thereby obtain-
ing the complete details of the execution behavior of the ap-
plication. Another approach is to instrument the code such
that a memory trace is produced even as the application ex-
ecutes natively on the processor [8]. Still it is necessary to
run the output memory trace through a cache simulator in
order to obtain the cache miss data necessary to identify

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

the delinquent loads. Unfortunately, this process is time and
space consuming and therefore is not generally applicable.
It is worth noting that the latest generation of the Intel Xeon
and Pentium 4 processors support hardware event registers
that allow for the recording of data cache misses [7]. These
can be used through the appropriate library support [11] to
obtain actual cache events.

The approach taken in this paper is to apply post-
compilation static analysis together with a heuristic func-
tion in order to guess which load instructions are likely
to be delinquent. It should be noted that although mod-
ifications are needed to the compiler, none of the major
activities of the compiler are interfered with. For ex-
ample, we do not require the compiler to not perform
certain optimizations in order for our scheme to work. Al-
though this will give less accurate results than detailed
memory profiling, the approach has several key advan-
tages. The first advantage of our scheme over hardware
schemes is that it is done at the software level, thus re-
ducing the complexity of the hardware. Secondly, this
approach allows for greater flexibility in adapting the delin-
quent load identification method to different classes
of programs. Depending on static information, pro-
grams may be divided into classes and different classifica-
tion, weights and heuristic functions for delinquent load
identification may be applied to these different applica-
tion classes.

Besides the disadvantage of being less accurate with
false positives being reported, the introduction of the anal-
ysis also affects compilation time. However, the increase is
not significant as the analysis is largely local in nature.

Benchmark ��� Ideal Profiling �
��� (�) ��� (�)

008.espresso 16354 79 (0.48%) 215 / 16354 (1.31%) 98%
022.li 6326 36 (0.57%) 234 (3.70%) 94%
072.sc 7189 30 (0.42%) 379 (5.27%) 97%
099.go 26985 172 (0.64%) 2598 (9.63%) 79%
101.tomcatv 3972 53 (1.33%) 255 (6.42%) 99%
124.m88ksim 11749 27 (0.23%) 199 (1.69%) 18%
126.gcc 121112 1256 (1.04%) 7555 (6.24%) 85%
129.compress 2542 14 (0.55%) 80 (3.15%) 86%
132.ijpeg 22812 72 (0.32%) 711 (3.12%) 79%
147.vortex 46281 126 (0.27%) 913 (1.97%) 86%
164.gzip 6041 60 (0.99%) 143 (2.37%) 96%
175.vpr 16529 64 (0.39%) 500 (3.02%) 92%
179.art 3517 25 (0.71%) 150 (4.26%) 93%
181.mcf 3642 27 (0.74%) 136 (3.73%) 97%
183.equake 4688 82 (1.75%) 505 (10.77%) 99%
188.ammp 20568 66 (0.32%) 1142 (6.93%) 91%
197.parser 12179 239 (1.96%) 1051 (8.63%) 88%
300.twolf 31075 131 (0.42%) 911 (2.93%) 98%
AVERAGE 0.73% 4.73% 87.5%

Table 1. Use of profiling in identifying delin-
quent loads

4. What Profiling Brings

Basic block execution profiling is fast becoming a widely
accepted method for optimization techniques that require
feed back. prof and gprof are standard tools that perform
basic profiling in Unix and Linux at the subroutine level
while tools like pixie on SGI Irix that perform basic block
profiling have been around for quite some time. Not surpris-
ingly, delinquent loads tend to occur in frequently executed
basic blocks. Table 1 shows the usefulness of profiling in
identifying delinquent loads. The details of the experimen-
tal framework will be given later. Here, by means of mem-
ory profiling and execution tracing, we consider what would
happen if we consider all of the load instructions in the ba-
sic blocks that culmulatively accounts for 90% of the total
compute cycles of a benchmark to be possibly delinquent
(the set �). We will explain the terminologies used later but
essentially by profiling, we can identify (on average) 4.73%
of all the (static) load instructions in a benchmark (�) that
accounts for 87.5% of all (level 1) data cache misses. In the
third column of Table 1 we compute the ‘ideal’ number of
load instructions it would take cover the same amount of
misses. This is done by sorting the load instructions in de-
scending order of their number of misses and then greed-
ily picking out the required number so as to reach the same
�. As can be seen, there is certainly room for improvement.

It should be pointed out that throughout this paper, basic
block profiling was done within the simulator and the train-
ing input for profiling is the same as that of experimental
runs. Therefore, there is a high level of fidelity between the
profile and the actual run. Furthermore, while basic block
profiling can identify the blocks that are entered most fre-
quently, this is not necessary the same as the blocks that
accounts for most of the execution (compute, memory and
I/O) cycles. We believe this is the reason for the poor cover-
age for 124.m88ksim. The main contribution of this paper
is the proposal of a complimentary heuristic that can either
be effective by itself or be combined with basic block pro-
filing or other feedback mechanism such as sampling-based
profiling [12]. For the case of basic block profiling, we will
show that our proposed heuristic adds value by sharpening
the focus and overcome the weakness of a pure profiling ap-
proach.

5. Our Proposed Framework

Our scheme is implemented as a post-compilation pass.
This loose coupling with the compiler allows for the use of
disassemblers in place of the compiler. However, it should
be pointed out that the compiler possesses all the neces-
sary structures and information to implement the heuris-
tic. From the assembly code of the program, address pat-
terns for each load instruction in the program are created.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Using the structure of the address patterns as well as other
features of the instruction (which will be described later),
the load instruction is identified as belonging to a number
of classes. By means of a system of weights assigned to
the classes, a heuristic function is computed. If the value of
the heuristic function exceeds a constant called the delin-
quency threshold, the load instruction is classified as ‘pos-
sibly delinquent’.

The heuristic we developed can be used by itself or in
combination with basic block profiling. We will first de-
scribe our heuristic, establish its effectiveness and stabil-
ity, and then show how it can significantly sharpen profil-
ing making static identification of delinquent loads without
memory profiling a real possibility.

5.1. Address Patterns

For each load instruction, control flow and data flow
analysis is used to compute an expression called the address
pattern. This computation is performed on the assembly
output of the compiler and is therefore applicable to both
optimized as well as unoptimized code. The address pattern
essentially summarizes the data-flow subgraph correspond-
ing to the computation of the address source operand of the
load instruction. Written as a context free grammar an ad-
dress pattern (AP) is:

�� � �� ��� � � �� ��� � �� ��� � �� ��� �
�� �� �� � �� �� �� � const � ��

�� � gp � sp � regparam � regret

Most of the operators have the standard meanings, i.e.
‘+’ is addition, ‘-’ is subtraction, ‘*’ is multiplication, ‘��’
and ‘��’ are the left and right shift operation, respec-
tively. However, in the address patterns, parenthesis repre-
sents dereferencing. For example, an address pattern like
“45(sp)+30” means that the effective address is the content
of the memory location sp+45, added with the constant 30.
In terms of precedence, dereferencing has the highest prece-
dence, followed by multiplication, addition, subtraction and
shifting, in that order. The intermediate registers used for
the computation are eliminated and the address pattern is
expressed only in terms of basic registers (BR). Note also
that multiple address patterns for a single load instruction
is possible if there are multiple control paths reaching the
load instruction and between each of these paths, the ad-
dress computation differs. In this case, there will be an ad-
dress pattern for each of the control paths reaching the load
instruction.

5.2. The Decision Criteria

The classes used by the heuristic function are drawn
from five criteria. Each of these five criteria captures some

particular intuition about the structure or complexity of the
load instruction. They are:

� (H1) Register usage in an address pattern. The in-
tuition behind this decision criterion is that the way
registers are used indicates the region of memory the
load is likely to access as well as the complexity of
the dereferencing needed. To this end, we counted the
number of occurences of the basic registers (defined
above) in an address pattern.

� (H2) The type of operations used in the address
computation. Another decision criteria meant to cap-
ture the complexity of the dereferencing operation in-
volved is the type of arithmetic operations used in the
address computation. We keep track of the multiplica-
tions, shifts and other arithmetic operations that appear
in the computation of an address pattern. This criterion
is especially useful when dealing with loads operating
on contiguous data structures in memory such as ar-
rays.

� (H3) Maximum level of dereferencing. In order to
deal with pointer intensive benchmarks, we keep track
of the number of dereferencing involved in an address
pattern.

� (H4) Recurrence. A recurrence in the address pattern
is indicative of an iterative walk through the memory
space.

� (H5) Execution frequency. Basic block profiling al-
lows us to classify load instructions as ‘rarely exe-
cuted’, ‘seldom executed’, ‘fair amount of execution’,
and ‘in a program hotspot’. The last category is used
in the profiling filter described in Section 9. In our
heuristic, the third category, which actually accounts
for most of the loads, is not used at all, and the first
two categories are used only in the negative sense -
it is used to eliminate infrequently executed load in-
structions. This part of our heuristic is therefore not
very dependent on the fidelity of the profiling informa-
tion. As such it is entirely possible to replace profiling
with static heuristic approximations [15, 14] in iden-
tifying infrequently executed load instructions if it is
desired to run the heuristic without basic block profil-
ing.

Each decision criterion gives rise to a set of distinct
classes that are used by the heuristic. A class is a set of
address patterns that possesses a certain property. Each ad-
dress pattern will belong to at most one class of each deci-
sion criterion. As an example, consider criterion H3. Each
address pattern of a load instruction will be classified as one
of the following classes: ‘no dereferencing’, ‘one level of
dereference’, ... , ‘�-level dereference’. The following sum-
marizes the classes of each of the decision criterion:

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

� (H1) The classes for this criterion are the enumeration
of the possible number of occurences of each of the
four basic registers in an address pattern. Eventually,
however, some of these classes were combined.

� (H2) Rather than an exhaustive enumeration of all pos-
sible combinations of arithmetic operators in the ad-
dress patterns, using observations made in our exper-
imentations, we came up with just one positive class.
In this class, the address patterns involve multiplica-
tion or shift operations.

� (H3) There are as many classes as the possible number
of levels of dereferencing in the address patterns.

� (H4) There are two classes for this criterion depending
on whether the address pattern involves a recurrence or
not.

� (H5) There are three classes for this criterion as
mentioned above: ‘rarely executed’, ‘seldom exe-
cuted’, ‘fairly frequently executed’, and ‘in a pro-
gram hotspot’. In our experiments, this meant that
each of the load instructions were executed less than
100 times during the program’s execution.

Each class is given a weight. We will discuss how we ob-
tained the weights in Section 7. A heuristic function based
on these weights decides if a particular load instruction is
possibly delinquent.

6. Implementation and Experimental Setup

We used the SimpleScalar cache simulator [2] for gather-
ing statistics including the number of cache hits, and misses.
SimpleScalar implements a close derivative of the MIPS
architecture. The utilities that we have used are the C to
MIPS GNU C compiler and the MIPS objdump utility that
disassembles MIPS executables, both included in the Sim-
pleScalar toolkit.

We shall now describe the implementation of our clas-
sification framework. The C benchmark is first compiled
to a MIPS executable. The MIPS executable is disassem-
bled using objdump. This gives us the assembly code for
the benchmark as well as any library functions. In order to
compute the address patterns needed for our heuristic, the
control and data flow graphs have to be re-constructed. If
a load’s address computation is dependent on values com-
puted outside the basic block it is in, we perform a data
flow analysis to obtain all reaching definitions for the tem-
poraries involved. For each of these definitions we create a
distinct address pattern. Thus, a load may have more than
one address pattern.

Our experimentation is divided into two phases. In the
training phase, we simulated a set of benchmark programs
using the SimpleScalar cache simulator. For each class we

obtained the full memory profiling data, including the num-
ber of times the load executed, number of misses, number
of hits, etc. Using these statistics, we calculate the weights
for each of the classes. The details of this process will be ex-
plained later. In the learning phase, we used a split level one
cache structure with a four-way associative data cache hav-
ing 256 cache sets of 32 bytes cache blocks, implementing
a LRU replacement policy. The benchmarks were compiled
unoptimized. The runtime characteristics of the benchmarks
we used is summarized in Table 2. Fortran benchmarks were
first converted to C code by f2c.

The second phase is the testing phase. Here, we experi-
mented with the heuristic function on inputs different from
the ones used in the training phase, different cache sizes,
and a completely new set of benchmarks.

Benchmark Instr executed No. of L1 data Total no. of L1
cache accesses cache misses

008.espresso ����� ��� ����� ��� ���	� ���

022.li ��

� ��� ����� ��� ���
� ���

072.sc ���	� ��� ����� ��� ����� ���

099.go ����� ��� ��
�� ���
��
� ���

101.tomcatv ����� ���� 	���� ���� ����� ���

124.m88ksim
���� ��� ��		� ��� ����� ���

126.gcc ����� ��� ��	
� ���
�	�� ���

129.compress ��	�� ��� ���
� ���
��
� ���

132.ijpeg ����� ��� ����� ��� ���
� ���

147.vortex ����� ��� ���	� ��� ����� ���

164.gzip ����� ���� ����� ���� ����� ���

175.vpr ��

� ���� ����� ���� ���	� ���

179.art ��	�� ���� ����� ���� ����� ���

181.mcf ����� ���� ����� ���� ���
� ���

183.equake ���	� ���� ����� ���� ����� ���

188.ammp ����� ���� ��	
� ���� ��	�� ���

197.parser ����� ���� ���
� ����
���� ���

300.twolf ����� ��� ����� ���
��	� ���

Table 2. Typical runtime characteristics of the
SPEC benchmarks we used

7. Heuristic for the Static Identification of
Delinquent Loads

7.1. Types of classes

From the decision criteria, a number of classes are
formed. These classes may be one of three natures: pos-
itive, negative, and neutral. Membership in a positive
class is evidence that a particular load is possibly delin-
quent while membership in a negative class is evidence that
it is not. The latter allows us to reduce the set of load in-
structions that needs to be considered. The nature of the
classes is reflected in the weights attached to it - posi-
tive classes carry positive weight values, negative classes

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

carry negative weight values, and neutral classes have
weights equal to zero. In this subsection, we will de-
cide on the nature of each class while in the next subsec-
tion, we will show through an example, how weights are
derived.

We begin with some terminologies. Let � be a program
and� ��� be the execution of� with input � . Let	�
� be the
number of times that instruction
 is executed, and ��
�
�
be the total number of misses experienced by instruction

when running under cache configuration
. Note that if
 is
not a memory accessing instruction, then ��
�
� � �. We
extend the definition of � to a set such that if � is a set of
instruction, then ����
� �

�
�����
�
�.

Let � be a class. We define the miss probability of
class F in benchmark j (running under configuration
),
�����
�, to be

�����
� �
����
��
��� 	�
�

We also define the amount of misses accounted for by mem-
bers of class F in benchmark j, �����
�, to be

�����
� �
����
�

��� ����
�

�����
� represents the likelihood of an instruction of
class
 in benchmark � experiencing a cache miss. A large
number for a particular class would mean that members of
this class experience a high miss probability in the partic-
ular benchmark. High probability alone is not enough as it
is entirely possible that a particular load instruction has a
high miss probability but is insignificant because it is not
executed often enough. The later property is represented by
�����
�which shows the proportion of the total number of
misses that members of � account for.

Using �����
� and �����
�, we define a strength in-
dex, �, to be the ratio of �����
� to �����
�.

The following shows how classes are formed:

� A benchmark is irrelevant with respect to class F if
both �����
� and �����
� are below certain thresh-
olds. Otherwise, it is considered relevant to class � . A
class is a positive class if for all relevant benchmarks,
� � �

�� .

� A class is a negative class if for all the eleven bench-
marks, �����
� � ����%.

� A class is a neutral class if for at least one benchmark,
� � �

�� .

7.2. Computing the Weights - An Example

In this subsection, using the H1 decision criteria as an
example, we will show how weights for the classes are de-
rived.

According to decision criterion H1, fifteen classes were
formed. They are listed in Table 3. Recall that in H1, we are
interested in the occurences of ‘basic registers’ in the ad-
dress patterns. The second column shows the characteris-
tics of each class. For example, class 5 corresponds to those
loads in which at least one of their address patterns involves
using the stack pointer (sp) and the global pointer (gp) ex-
actly once each. The third column of Table 3 shows, for
each class, the number of benchmarks (out of the eleven)
in which load instructions with address patterns possessing
the class’ feature were found. The fourth column is the num-
ber of benchmarks in which the class is relevant. Although,
as described in Section 4.3, we mentioned that we counted
the occurences of basic registers, it turns out that address
patterns featuring basic registers other than the stack and
global pointer showed a low level of relevance. We there-
fore merged all these other classes into class 15.

Class Feature Found in Relevant in

1 gp=1 11 benchmarks 1 benchmark
2 gp=2 1 benchmark 0 benchmark
3 gp=3 1 benchmark 0 benchmark
4 sp=1 11 benchmarks 5 benchmarks
5 sp=1, gp=1 7 benchmarks 5 benchmarks
6 sp=1, gp=2 1 benchmark 1 benchmark
7 sp=2 11 benchmarks 10 benchmarks
8 sp=2, gp=1 4 benchmarks 4 benchmarks
9 sp=3 4 benchmarks 1 benchmark
10 sp=3, gp=1 2 benchmarks 2 benchmarks
11 sp=4 2 benchmarks 1 benchmark
12 sp=4, gp=3 1 benchmark 1 benchmark
13 sp=5 1 benchmark 0 benchmark
14 sp=6, gp=3 1 benchmark 1 benchmark
15 any others 11 benchmarks 1 benchmark

Table 3. Criteria H1 applied to the eleven
training benchmarks

For each of the classes, we compute �����
� and
�����
�. Table 4 shows the �����
� and �����
� val-
ues for class 5. This class appears in seven of the eleven
benchmarks and it is relevant in five, namely 147.vortex,
175.vpr, 179.art, 183.equake and 197.parser. Let us denote
this set by ��� . On benchmarks 099.go and 164.gzip, the
class is irrelevant. An inspection of the values of �����
�
and �����
� for the relevant benchmarks shows that class
5 is a positive class.

The weight of class ��, ��� , is computed as follows:

� ���� �
�

���� �

�
�����

������
�

������
�

where � � � is the cardinality of the set. As an example, the
weight of �� is calculated as

� ���� �
���� � ���� � 	
��� � ��� � ���	

�
�

��	�

�
�
���

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

Benchmark 	����
 �
 (%) �����
 �
 (%)

099.go 0.16 0.13
147.vortex 4.34 48.19
164.gzip 0.28 0.03
175.vpr 6.27 25.14
179.art 30.44 67.17
183.equake 6.83 6.72
197.parser 8.07 13.17

Table 4. ������
� and ������
� values of
class 5 ‘sp=1, gp=1’ of the criteria H1 on
seven benchmarks

For negative classes, the above formula is not applica-
ble because the benchmarks are almost always irrelevant.
The method for assigning the weights to the negative classes
used will be described in the next section.

7.3. The Heuristic

Table 5 shows the weights of all the positive and nega-
tive classes selected to constitute the heuristic. We simpli-
fied the classes further by merging some of the compati-
ble classes that have very similar weights. The resulting ag-
gregate classes are the final ones used in the classification
scheme we implemented:

� (AG�) The set of address patterns in which both the
stack pointer and the global pointer are used at least
once each. This is a class from the H1 criteria.

� (AG�) The set of address patterns in which only the
stack pointer is used and is used two times or more.
This is a class from the H1 criteria.

� (AG�) The set of address patterns in which either mul-
tiplication or shift operations are present. Note that we
have dropped the consideration for addition of small
constants. This is a class from the H2 criteria.

� (AG
) One level dereferencing is found in the address
pattern. This is a class from the H3 criteria.

� (AG�) Two level dereferencing is found in the address
pattern.

� (AG�) Three level dereferencing is found in the ad-
dress pattern.

� (AG�) A recurrence is found in the address pattern.
This is a class from the H4 criteria.

� (AG) The loads in this class have a low frequency of
execution. For our experiments, this is defined as a load
instruction that is executed 100 to 1000 times. This is
a class from the H5 criteria.

� (AG�) The loads in this class are rarely executed.
These are loads that are executed less than 100 times.

As mentioned before, the way of computing weights for
positive classes is not applicable to negative classes because
the benchmarks are almost always irrelevant. Instead, we
chose a value that is close to the approximate mean of all the
positive weights, except the highest and the lowest weights,
and negated it to arrive at the weight for AG�. This value is
halved for AG	.

Aggregate Classes Feature Weight

AG� sp, gp +0.28
AG� sp more than 2 times +0.33
AG	 multiplication +0.47

shifts
AG� dereferenced once +0.16
AG� dereferenced twice +0.67
AG� dereferenced thrice +1.72
AG� recurrent +0.10
AG� seldom executed -0.20
AG� rarely executed -0.40

Table 5. Aggregate classes and their weights
used in the heuristic function

Let
 be a load instruction and �� be its set of address
patterns. We define the heuristic function ��
� as follows:

��
� � 	
�
��
�

AG��
��AG�

� ���� ���� ��

where

���� �� �

�
� if � � �

� otherwise

We define a delinquency threshold, Æ, such that if a load
instruction
 has ��
� � Æ, then we consider
 to be ‘pos-
sibly delinquent’. Unless otherwise specified, a Æ value of
0.10 is used in this paper.

8. Results

In this section, we shall describe the results of our experi-
ments. In order to facilitate the description, we shall use the
following terminologies. Let � be a program executable.
Let � be the set of all load instructions in � . Let � 	 �
be the subset of � which a heuristic scheme, � say, out-
puts as the set of possibly delinquent loads. We define

���� �
���

���

to be the precision measure of heuristic scheme � . Intu-
itively, the lower the ���� value, the more precise or fo-
cus is � . This measure is important since we are aiming for
static identification of delinquent loads. Let��� ����
� be

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

the total number of data cache misses incurred when pro-
gram � is executed with input � on a particular processor-
memory configuration,
. Let ���� ����
� be the total
number of data cache misses caused by members of �
when program � is executed with input � on a particular
processor-memory configuration,
. We define

���� �
���� ����
�

��� ����
�

to be the coverage of heuristic scheme � . We will present
both � and � as percentages.

8.1. Observations about the Criteria

In deriving the aggregate classes and the weights de-
scribed in Table 5, we were able to make a number of ob-
servations which we shall elaborate here.

The aggregate classes AG� and AG� of criterion H1 give
us a fairly good indication of the data spaces involved in the
load operation. The experiments show that operations that
use the both global data region and the stack make positive
classes. This is consistent with the assumptions of the BDH-
method. In unoptimized code, temporary variables are held
on the stack. More occurences of the stack pointer in the
address pattern is indicative of complex addressing. For ex-
ample, consider A[i][j] where A, i and j are all on the
stack. Then several access to the stack is needed to com-
pute the address of the corresponding load instruction. This
is evident of a complex addressing attempted and thus in-
creases the likelihood of a cache miss. While compiler op-
timization will allocate registers for many of these tempo-
rary stack variables, still if stack variables are used in the
address computation, it is likely that the addressing is com-
plex.

The type of operations needed to compute the effective
address is another indication of the complexity of the ad-
dressing. Aggregate class AG� of decision criterion H2 cap-
tures this intuition. As an example, consider the array access
A[45]. In MIPS assembly code, we will see a fetching of
the base address of the array followed by the addition of the
offset (45). Initially, we experimented with checking for the
addition of constants as well as multiplications and shift op-
erations. It turned out that because modern caches fetch en-
tire blocks at a time, we could not come up with a constant
that was stable across different cache configurations of dif-
ferent block sizes, even though it worked fairly well for our
training configuration. Hence, we reverted to just checking
for the presence of multiplications and shift operations in
the address patterns. These operations are likely to yield an
address that is fairly different from previous accesses and
hence the increased likelihood of cache misses.

A simple intuition lies behind aggregate classes AG
 to
AG� of criterion H3. Namely, the levels of dereferencing in-

volved in accessing a piece of data, the more likely one is
not to find it in the cache although lower levels of derefer-
encing occur more frequently. For example, a simple read
from an array, A[k] say, which involves a single derefer-
ence is more likely to hit the cache than a complex deref-
erencing like A[k]->field, which involves two levels
of dereferencing. The higher the level of dereferencing, the
higher is the likelihood that the data structure involved is
large, complex, and runtime allocated, making contiguity
and thus locality unlikely.

The aggregate class AG�, derived from criterion H4, is
linked to loops. For example, if in a loop we access A[k],
where k is a value that is updated at each iteration, the ad-
dress to be fetched from will change with each iteration of
the loop. We classify the pattern as recurrent. The experi-
ments show a direct relation between recurrent patterns and
delinquency. This is consistent with the findings of Mehro-
tra and Harrison [9].

Aggregate classes AG	 and AG� from criterion H5 are
straightforward - if a load instruction is rarely or seldom ex-
ecuted, then it can never delinquent.

Benchmark Input 1 Input 2
008.espresso bca.in cps.in

099.go 50 9 2stone9.in 60 20 9stone21.in

129.compress test.in bigtest.in

147.vortex input1_lendian input3_lendian

164.gzip input.source 60 input.log 60

175.vpr input_ref input_train

179.art input_ref1 input_ref2

181.mcf input_ref input_test

183.equake input_ref input_test

188.ammp input_ref input_test

197.parser input_ref input_test

Table 6. The inputs used in the experiments

Benchmark Input 1 Input 2
� / � � / �

008.espresso 11% / 85% 11% / 86%
099.go 19% / 86% 25% / 99%
129.compress 4% / 99% 4% / 99%
147.vortex 6% / 89% 7% / 91%
164.gzip 6% / 96% 6% / 91%
175.vpr 11% / 99% 11% / 99%
179.art 7% / 99% 8% / 99%
181.mcf 9% / 99% 9% / 99%
183.equake 18% / 99% 18% / 99%
188.ammp 7% / 99% 7% / 99%
197.parser 15% / 99% 13% / 99%
AVERAGE 10% / 95% 11% / 96%

Table 7. Performance on different inputs

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

8.2. Results on different sets of inputs

Table 6 shows the inputs used for testing our heuristic.
We used ‘Input 1’ to train the heuristic. The benchmark
were compiled unoptimized. Then using the same cache
configuration, we tested the heuristic on the same eleven
benchmarks, also compiled unoptimized, but with a differ-
ent set of inputs. We refer the reader to the SPEC bench-
mark documentation for a detailed comparison of the two
input sets.

The result as shown in Table 7 indicates that for the
eleven benchmarks, the heuristic is insensitive to inputs.
This is not too surprising as both standard profiling and
memory profiling have been found to be fairly stable with
respect to inputs [1].

Benchmark � Assoc 2 Assoc 4 Assoc 8
� � �

008.espresso 14% 86% 90% 84%
099.go 43% 94% 95% 92%
129.compress 5% 99% 99% 99%
147.vortex 5% 82% 80% 72%
164.gzip 6% 92% 94% 91%
175.vpr 19% 98% 99% 99%
179.art 8% 99% 99% 99%
181.mcf 10% 88% 88% 88%
183.equake 16% 99% 99% 99%
188.ammp 13% 94% 93% 92%
197.parser 20% 80% 80% 82%
AVERAGE 14% 91% 92% 90%

Table 8. Performance of heuristic on different
associativites of the cache

8.3. Varying associativity, size, and turning on
compiler optimization

Next we investigated the stability of the heuristic func-
tion with respect to different cache configurations. Using
the same set of inputs, we varied the associativity of the
cache. For this set of experiments, we also turned on com-
piler code optimization using the ‘-O’ option of the GNU C
compiler. As the input is the same, the value of � is the same
in for all the runs reported in Table 8. Table 9 shows the re-
sults of the same optimized code running tested on 8Kbyte,
16KByte, 32KByte and 64KByte caches.

The result shows that our method is stable with respect to
associativities and sizes that are typical in modern proces-
sor caches. However, for 099.go, optimization turned out
to have a negative impact. After code optimization, many of
the loads exhibited the features that we consider positive ev-
idence of delinquency. Nonetheless, this seems to be an iso-
lated case. In general, our heuristic is insensitive to com-
piler optimizations. Compilers generally first generate un-

optimized code and then optimize on it. This insensitivity
makes it possible to use our heuristic to guide later code op-
timization phases.

Benchmark � 8k 16k 32k 64k
� � � �

008.espresso 14% 92% 90% 87% 87%
099.go 43% 94% 95% 94% 94%
129.compress 5% 99% 99% 99% 99%
147.vortex 5% 82% 80% 73% 73%
164.gzip 6% 92% 94% 91% 91%
175.vpr 19% 99% 99% 99% 99%
179.art 8% 99% 99% 99% 99%
181.mcf 10% 88% 88% 88% 88%
183.equake 16% 99% 99% 99% 99%
188.ammp 13% 94% 94% 92% 92%
197.parser 20% 80% 80% 82% 82%
AVERAGE 14% 92% 92% 91% 91%

Table 9. Performance on different cache sizes

8.4. Performance on new benchmarks

An important litmus test for the heuristic function is
its performance on benchmarks that were not used in the
training and weight computation. We tested the heuris-
tic against a set of seven new benchmarks, namely 022.li,
072.sc, 101.tomcatv, 124.m88ksim, 126.gcc, 132.ijpeg, and
300.twolf, all from the SPEC suite of benchmarks. Table 10
shows that the heuristic function achieves an average �

value of 9.06% but a slightly lower average � value of 88%.
This shows that the heuristic works in general.

Benchmark ��� / ��� (�) �

022.li 309 / 6326 (4.88%) 96%
072.sc 389 / 7189 (5.41%) 83%
101.tomcatv 240 / 3972 (6.04%) 99%
124.m88ksim 594 / 11749 (5.06%) 84%
126.gcc 17340 / 121112 (14.32%) 85%
132.ijpeg 2243 / 22812 (9.83%) 72%
300.twolf 5553 / 31075 (17.87%) 99%
AVERAGE 9.06% 88.29%

Table 10. Performance of the heuristic func-
tion on a new set of benchmarks

8.5. Comparision with related works

To better gauge the performance of our method, we com-
pared it with two schemes previously reported in the litera-
ture. Table 11 summarizes the � and � values for our heuris-
tic running under the baseline 8KByte data cache configura-
tion. The benchmarks are unoptimized. Table 11 also shows

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

With AG� Without AG�

and AG� and AG�

Benchmark � � � � �

008.espresso 11.19% 85% 37% 30.17% 87%
022.li 4.88% 96% 16% 15.44% 97%
072.sc 5.41% 83% 8% 13.74% 83%
099.go 19.36% 86% 26% 30.17% 83%
101.tomcatv 6.04% 99% 4% 13.27% 99%
124.m88ksim 5.06% 84% 12% 21.84% 85%
126.gcc 14.32% 85% 15% 33.03% 85%
129.compress 4.88% 99% 8% 12.82% 99%
132.ijpeg 9.83% 72% 14% 28.38% 72%
147.vortex 6.80% 89% 25% 22.86% 89%
164.gzip 6.22% 96% 1% 13.79% 96%
175.vpr 11.62% 99% 10% 14.97% 99%
179.art 7.88% 99% 7% 13.51% 99%
181.mcf 9.58% 99% 8% 18.40% 99%
183.equake 18.73% 99% 32% 23.42% 99%
188.ammp 7.18% 99% 13% 21.11% 99%
197.parser 15.88% 99% 8% 21.50% 99%
300.twolf 17.87% 99% 9% 26.30% 99%
AVERAGE 10.15% 92.61% 14.04% 20.82% 92.89%

Table 11. Performance summary of our
heuristic method

the performance of our heuristic when AG	 and AG� is re-
moved leaving behind AG� to AG� which can be imple-
mented without any information of runtime control profile.
The fourth column of Table 11 gives a measure of dynamic
impact of false positives. The measure � is the percentage
of dynamic load instructions that was mis-labeled as delin-
quent by our heuristic. We used a strict definition of ‘false
positive’: a load instruction is a false positive if it is in � of
the heuristic but not in the ideal� set (second column of Ta-
ble 1). This gives an indication of the damage done if say
prefetching is applied to loads wrongly identified as delin-
quent.

Table 12 reports the values of � and � using the heuris-
tics proposed by Ozawa, Kimura and Nishizaki [10] (the
‘OKN-method’) and the BDH-method [3]. The same binary
and cache configurations were used in all the tests.

In their paper, Ozawa, Kimura and Nishizaki reported a
� value between 30% and 60% [10]. For our simulations,
the average value of � is 56%. Even though we used a dif-
ferent simulator and tool chain, this is in general agreement
with their observations. This however is significantly higher
than the � value of 11% achieved by our method. The �

value of the OKN-method is almost the same as ours. How-
ever, for certain benchmarks, our method performs signifi-
cantly better. For example, for 129.compress, by just point-
ing out 124 load instructions, we were able to account for
99% of all data cache misses. On the other hand, the OKN-
method singled out more than 1474, or ten times more, load
instructions but could only account for 91% of the misses.

We have also implemented a static version of the BDH-
method. In order to decide if a load will access global data
or stack data, the registers used in the load instruction are

OKN Method BDH Method
Benchmark � � � �

008.espresso 53.90% 85% 42.98% 99%
022.li 39.77% 98% 42.33% 96%
072.sc 53.12% 72% 71.11% 88%
099.go 50.15% 89% 39.10% 84%
101.tomcatv 61.68% 99% 75.86% 99%
124.m88ksim 53.86% 86% 50.72% 93%
126.gcc 60.00% 86% 45.68% 86%
129.compress 57.99% 91% 70.89% 99%
132.ijpeg 47.06% 72% 33.91% 73%
147.vortex 65.44% 90% 35.52% 99%
164.gzip 54.16% 96% 58.78% 97%
175.vpr 53.89% 99% 38.97% 99%
179.art 58.97% 99% 65.37% 99%
181.mcf 54.61% 99% 55.79% 69%
183.equake 62.63% 99% 60.60% 98%
188.ammp 62.91% 99% 32.80% 99%
197.parser 45.12% 99% 38.04% 99%
300.twolf 70.51% 99% 54.61% 98%
AVERAGE 55.88% 92.06% 50.73% 93.00%

Table 12. Performance of the OKN and BDH
methods

examined. If the base register is $s8[30], which is the MIPS
stack pointer, the data is loaded from stack and if the base
register is $gp[29], the MIPS global pointer, the data is
loaded from the global data area. In order to identify heap
accessing loads, we performed value propagation to deter-
mine if a particular load instruction uses pointers initialized
by dynamic memory allocation routines like malloc() or
calloc().

Next we have to identify the structure of the load, i.e.
whether the load accesses a scalar value, an array element
or the field of a structure. We also have to identify the type
of the load, i.e. whether it is a pointer dereference or not.
In order to do these two identifications, type analysis of the
MIPS assembly code is done with the help of the symbol ta-
ble. Each entry for a function in the symbol table contains
a list of variables, their types and their offset into the pro-
gram stack when this function is called. Based on these off-
set values, we are able to establish the type of the data be-
ing accessed by a load instruction. Structures have two off-
sets. The first is the offset to the base of the structure in the
stack and the other is the offset to the field from the base ad-
dress of the structure. Using these offsets, the types of in-
dividual fields in structures can also be found. The type in-
formation for a variable also informs us whether the vari-
able is a pointer or a non-pointer. In addition, if a value
loaded from memory is used as part of the address in a sub-
sequent load, the first load is assumed to be a pointer ref-
erence. Thus by doing a type analysis with the help of the
symbol table we can perform the BDH classification stati-
cally.

Note that in original paper [3] this classification was
done over the execution trace. The simulator was instru-

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

mented to produce type information for loads. Thus no type
analysis or symbol table usage was needed. We used the
same classes as reported by the paper. The main difference
is that we do the classification statically. However, the area
of memory accessed by a load instruction, a key component
of the BDH-method, is not always discernable by a com-
piler. Examples of when complications will arise include
pointer parameters and multiple level dereferencing.

As suggested by the authors, we used the GAN, HSN,
HFN, HAN, HFP and HAP classes. Our results, as shown in
Table 12, from simulating the BDH-method are very close
to that reported in the original paper. The reason why the six
classes cover so much of the total number of misses is that
generally they correspond to the nature of the benchmarks.
For example, if for most of the time, a benchmark works
with structures allocated in the heap, generally most of the
misses will be generated by the HFP. Although the coverage
(�) is very good, the problem comes from the large propor-
tion of load instructions identified as possibly delinquent,
i.e. the � value, which is 50% of the total number of loads.

In summary, compared to both methods, ours is more
precise and has similar if not better coverage.

8.6. Varying the delinquency threshold

The heuristic can also be fine-tuned by varying the
weights of the classes. However, it is not an easy pro-
cess. An easier approach is to vary the delinquency thresh-
old. With a delinquency threshold, Æ, set at 0.10, we were
able to achieve a � of 10% and a � value of 92%. Table 13
shows the effect of varying the value of Æ on some of the
benchmarks. The simulations used a 16KByte cache config-
uration using optimized code. With a higher Æ, both � and �
are reduced. However, if we examine the effect for individ-
ual benchmarks, then we see that the impact of increasing
Æ varies significantly. For example, for 179.art, 183.equake
and 188.ammp, reducing Æ results in lower � with no sig-
nificant impact on �. However, for 164.gzip and 197.parser,
the reduction in � is very significant. For 164.gzip, � is re-
duced from 94% when Æ � ���� to 34% when Æ is set
to 0.40. This points to the possibility of using a differ-
ent Æ value for different benchmarks. Further investigation
is warranted.

9. Combining with Profiling

In Section 4, assuming a high degree of fidelity, we have
shown that basic block profiling alone yields very good re-
sults. In the sections following it, we introduced our heuris-
tic, and showed it stability and merit over previously pro-
posed heuristics. Certainly, the question is whether one can
do even better by combining it with profiling. Even at 4.7%,
the actual number of loads that may be delinquent can be in

Benchmark Æ � 0.10 Æ � 0.20 Æ � 0.30 Æ � 0.40
� / � � / � � / � � / �

008.espresso 14 / 90 12 / 90 10 / 58 6 / 55
099.go 43 / 95 38 / 95 32 / 88 16 / 51
129.compress 5 / 99 5 / 97 2 / 97 1 / 58
147.vortex 5 / 80 4 / 79 3 / 79 2 / 79
164.gzip 6 / 94 6 / 93 4 / 72 3 / 34
175.vpr 19 / 99 18 / 89 15 / 84 12 / 84
179.art 8 / 99 4 / 99 4 / 99 2 / 99
181.mcf 10 / 88 8 / 74 6 / 58 3 / 58
183.equake 16 / 99 15 / 99 13 / 99 10 / 99
188.ammp 13 / 94 9 / 90 7 / 90 6 / 90
197.parser 20 / 80 18 / 79 8 / 41 8 / 41
AVERAGE 14 / 92 12 / 89 9 / 78 6 / 68

Table 13. Varying the delinquency threshold.
All values are in percentages

Benchmark � � 0 � � 0.10 � � 0.20 � � 0.30
� / � / �� � / � � / � � / �

008.espresso 0.96 / 84 / 66 1.99 / 84 3.01 / 84 4.03 / 85
022.li 0.93 / 93 / 15 1.33 / 93 1.72 / 94 2.12 / 95
072.sc 0.77 / 81 / 7 1.24 / 81 1.70 / 81 2.17 / 81
099.go 3.17 / 72 / 46 4.79 / 74 6.41 / 75 8.03 / 75
101.tomcatv 1.51 / 99 / 23 1.96 / 99 2.42 / 99 2.87 / 99
124.m88ksim 0.48 / 7 / 5 0.94 / 7 1.40 / 72 1.86 / 72
126.gcc 2.02 / 74 / 26 3.25 / 75 4.48 / 77 5.71 / 79
129.compress 0.59 / 86 / 5 1.02 / 86 1.46 / 86 1.89 / 89
132.ijpeg 0.74 / 54 / 17 1.65 / 65 2.56 / 66 3.47 / 69
147.vortex 0.58 / 78 / 23 1.22 / 80 1.82 / 80 2.44 / 83
164.gzip 0.40 / 93 / 18 0.99 / 94 1.57 / 94 2.15 / 94
175.vpr 0.59 / 92 / 16 1.70 / 96 2.80 / 96 3.90 / 98
179.art 0.85 / 93 / 24 1.56 / 94 2.27 / 98 2.99 / 96
181.mcf 1.04 / 97 / 27 1.92 / 98 2.77 / 98 3.62 / 98
183.equake 4.67 / 99 / 42 6.08 / 99 7.49 / 99 8.90 / 99
188.ammp 1.22 / 91 / 13 1.81 / 92 2.41 / 89 3.00 / 92
197.parser 2.07 / 88 / 22 3.46 / 88 4.84 / 89 6.22 / 89
300.twolf 0.72 / 98 / 25 2.44 / 98 4.15 / 98 5.87 / 98
AVERAGE 1.30 / 82 / 23 2.19 / 84 3.07 / 88 3.95 / 88

Table 14. Varying the � factor. All values are
in percentages

the thousands. For our benchmarks, this represented an av-
erage of 955 load instructions.

Let �� and �� be the set of possibly delinquent loads
identified by profiling and our heuristic, respectively. Let
�� � �� � ���
 ��� be the remaining part of ��

that is not found the intersection of �� and �� . We sort
the loads in �� in descending heuristic score. Now, we de-
fine an �-factor and a �� which is a subset of �� consists of
the highest scoring loads in �� such that ���� � � � ����.
The combined heuristic will then report ���
��� ���

as the set of possibly delinquent loads. When � � �, this is
just ���
���.

The basic idea here is to use our heuristic to both sharpen
the set returned by profiling as well as add a small fraction
of loads that are not in the hotspots. Table 14 shows the ef-
ficacy of the combined heuristics under different �-factors.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

The results show that it is possible to pinpoint 1.3% (an av-
erage of 262 load instructions for our eighteen benchmarks)
of loads that account for 82% of all cache misses. In the col-
umn for � � �, besides � and �, there is a third set of values,
��. This is the coverage obtained by randomly labelling the
same number of load instructions in the hotspots as possibly
delinquent. The value reported is the average of three ran-
dom sampling runs. The disappointing coverage is strong
evidence of the value our heuristic brings.

As pointed out in Section 4, the high fidelity of the ba-
sic block profiling we used is generally not reproducible
in practice. Furthermore, it suffers from the drawback that
counting basic block entries alone does not necessarily give
the exact hotspots where the bulk of the cache stall cycles
occur. It is beyond the scope of this paper to consider the
fidelity of profiling, but given these weakness, our heuris-
tic which takes a completely different perspective, compli-
ments profiling, resulting in a doubling of precision without
sacrificing coverage to bring it closer to the optimum.

10. Conclusion

In this paper we proposed a scheme for identifying delin-
quent loads during compile time. It is motivated by the ob-
servation made in previous studies that data cache misses
in an application is not uniformly distributed. As far as we
know, this is the first time a static method has been proposed
whereby it is possible to identify 10% of the load instruc-
tions in a program responsible for 90% of level one data
cache misses. In contrast, while two comparable schemes,
one based on three simple heuristics, and another that is not
easy to implement at compile time, also achieved coverages
exceeding 90%, they were far less precise, classifying 56%
and 51%, respectively, of all load instructions as delinquent.
We implemented our heuristic as a post-compilation pass of
a production C compiler, namely the GNU C compiler, and
evaluated its effectiveness on the SimpleScalar instruction-
level simulator. Through experimentation using eighteen
SPEC benchmarks, we have found that the method to be
stable across different inputs, benchmarks, compiler opti-
mization, and cache structures. In essence, we have shown
that delinquent loads are few and far between and yet they
exhibit structure and patterns that can be detected at com-
pile time. If high fidelity basic block profiling information
is available, it is possible to use our heuristic to sharpen
the identification process such that it is possible to pinpoint
the 1.3% of the tens of thousands of load instructions in
a benchmark that accounts for 82% of data cache misses.
We believe the ability to precisely identify memory bottle-
necks at compile time will allow many hardware and soft-
ware techniques to target them with greater precision and
hence lower overhead. Also, our heuristic may be used in
Worse Case Execution Time (WCET) analysis [5].

References

[1] Santosh Abraham and Bob R. Rau. Predicting load laten-
cies using cache profiling. Technical Report HPL-94-110,
Hewlett Packard Laboratory, 1994.

[2] Doug Burger and Todd M. Austin.
The SimpleScalar tool set, version 2.0.
http://www.cs.wisc.edu/ mscalar/simplescalar.html.

[3] Martin Burtscher, Amer Diwan, and Matthias Hauswirth.
Static load classification for improving the value predictabil-
ity of data cache misses. In Proceedings of ACM SIGPLAN
2002 Conference on Programming Language Design and
Implementation, pages 222–233, June 2002.

[4] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christo-
pher J. Hughes, Yong fong Lee, Dan Lavery, and John P.
Shen. Speculative precomputation: Long-range prefetching
of delinquent loads. In Proceedings of 28th Annual Interna-
tional Symposium on Computer Architecture, pages 14–25,
July 2001.

[5] Christian Ferdinard, Florian Martin, Reinhard Wilhelm, and
Martin Alt. Cache behavior prediction by abstract interpreta-
tion. Science of Computer Programming, 35(2-3):163–189,
1999.

[6] Somnath Ghosh, Margaret Martonosi, and Sharad Malik.
Cache miss equations: an analytical representation of cache
misses. In Proceedings of the 11th international conference
on Supercomputing, pages 317–324, July 1997.

[7] Intel Inc. IA-32 Intel Architecture software
developer’s manual (order nu mber 245472).
http://www.intel.com/design/pentium4/manuals/245472.htm.

[8] Teresa Johnson. Automatic annotation of instructions with
profiling information, 1995.

[9] Sharad Mehrotra and Luddy Harrison. Examination of a
memory access classification scheme for pointer-intensive
and numeric programs. In Proceedings of the 10th Interna-
tional Conference on Supercomputing, pages 133–140, May
1996.

[10] Toshihiro Ozawa, Yasunori Kimura, and Shin’ichiro
Nishizaki. Cache miss heuristics and preloading techniques
for general-purpose programs. In Proceedings of the 28th
International Symposium on Microarchitecture, pages 243 –
248, 1995.

[11] PAPI: Performance application programmer interface.
http://icl.cs.utk.edu/projects/papi.

[12] S. Subramanya Sastry, Rastislav Bodik, and James E. Smith.
Rapid profiling via stratified sampling. In Proceedings of
28th Annual International Symposium on Computer Archi-
tecture, pages 278–289, July 2001.

[13] Steven P. Vanderwiel and David J. Lilja. Data prefetch mech-
anisms. ACM Computing Survey, 32(2):174–199, June 2000.

[14] Weng-Fai Wong. Source level static branch prediction. The
Computer Journal, 42(2):142–149, 1999.

[15] Youfeng Wu and James R. Larus. Static branch frequency
and program profile analysis. In Proceedings of the 27th
International Symposium on Microarchitecture, pages 1–11,
1994.

Proceedings of the International Symposium on Code Generation and Optimization (CGO 2004)
0-7695-2102-9/04 $20.00 © 2004 IEEE

