
Tuning SoC Platforms for Multimedia Processing:
Identifying Limits and Tradeoffs

Alexander Maxiaguine1 Yongxin Zhu2 Samarjit Chakraborty2 Weng-Fai Wong2

1Computer Engineering and Networks Laboratory, ETH Zürich
2Department of Computer Science, National University of Singapore

maxiagui@tik.ee.ethz.ch, {zhuyx,samarjit,wongwf}@comp.nus.edu.sg

ABSTRACT
We present a analytical framework to identify the trade-
offs and performance impacts associated with different SoC
platform configurations in the specific context of implement-
ing multimedia applications. “Configurations” in this case
might include sizes of different on-chip buffers and schedul-
ing mechanisms (or associated parameters) implemented on
the different processing elements of the platform. Identify-
ing such tradeoffs is difficult because of the bursty nature of
on-chip traffic arising out of multimedia processing and the
high variability in their execution requirements, which result
in a highly irregular design space. We show that this irreg-
ularity in the design space can be precisely captured using
an abstraction called variability characterization curves.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded sys-
tems

General Terms
Algorithms, Performance, Design

Keywords
System-on-chip, multimedia systems, platform management

1. INTRODUCTION
Of late, there has been a considerable interest in generic

and configurable System-on-Chip (SoC) platforms specif-
ically targeted towards implementing multimedia applica-
tions. Examples of these are the Eclipse architecture tem-
plate from Philips [9], and the Viper SoC architecture [2]
which targets advanced set-top box and DTV markets. De-
signs based on such generic platforms are associated with
flexibility, low design costs and time-to-market advantages.
However, all of these come at the cost of a large dispar-
ity in performance between generic platform based designs
and fully customized solutions based on ASICs. As a result,
a lot of effort is currently being directed towards devising
platform configuration and management techniques for nar-
rowing this gap.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

Customizing or tuning a generic platform for a particular
application at hand consists of two phases: (i) determining
the optimal hardware configuration of the platform, such
as sizes of on-chip buffers, bus widths, and cache configu-
rations, and (ii) determining optimal platform management
policies for the hardware configuration chosen, such as the
scheduling mechanisms to be used for the different buses and
processors. Typically these two phases are very tightly cou-
pled together and are associated with several design trade-
offs. A common example of this in the context of multime-
dia stream processing would be: with small on-chip buffers,
schedulers must allow a high degree of preemption to satisfy
the real-time constraints associated with bursty streams. A
“high degree of preemption” in the case of round robin or
time division multiple access (TDMA) schedulers translate
to small periods or slot sizes, which increase scheduling over-
heads, but lead to savings on on-chip buffer requirements.
Since on-chip buffers are available only at a premium be-
cause of their high area requirements [10], a designer will be
interested in identifying how the buffer requirements change
with changing the scheduling mechanisms implemented on
the different processors—based on which he can choose an
appropriate tradeoff.

However, identifying such tradeoffs is not straightforward.
Firstly, the underlying design space is typically very large,
even in a simple case where all the schedulers to be im-
plemented on the different processors are restricted to only
TDMA schedulers and the problem is to identify how on-
chip buffer requirements change with changing the periods
of these schedulers. Secondly, on-chip traffic arising out of
multimedia processing on multiprocessor architectures tends
to be very complex and bursty in nature [10], which results
in a very irregular design space. Most of the current ef-
forts towards identifying such design tradeoffs and limits
to performance enhancements, rely on simulation-oriented
techniques. Notable among these, in the specific context of
multimedia processing is the Atremis project [8], which pro-
poses trace-driven co-simulation and symbolic execution of
applications [11]. The Spade methodology and toolset [5]
developed within this project can be used for fast design
space exploration of heterogeneous media processors.

In contrast to this line of work, in this paper we present
a analytical framework to efficiently identify the tradeoffs
associated with different hardware configurations and plat-
form management policies while implementing a multimedia
application on a generic SoC platform. This framework can
therefore guide a system designer to optimally tune or con-
figure a SoC platform for any given multimedia application.

128

Basic idea: Our framework relies on a one-time initial co-
simulation of the multimedia application to be implemented,
on an abstract model of the platform architecture. This
results in a set of traces from which certain parameters—
such as the variability in the execution requirements of the
application—are computed. These parameters then serve as
inputs to analytical models of concrete instances of the plat-
form architecture and platform management schemes. Such
concrete instances have specified on-chip buffer sizes, bus
widths, cache configurations, etc. and also specified plat-
form management policies with concrete parameters (such
as the period of a TDMA scheduler). The framework then
returns performance metrics such as the maximum allowed
input stream rates, or metrics related to the quality of the
audio/video output. Alternatively, given certain constrains
on the output audio/video quality required and a hardware
configuration of the platform, the framework can return
the set of feasible platform management schemes (such as
scheduling policies along with their associated parameters).
In this entire process, the initial co-simulation to generate
traces needs to be done only once and subsequently any con-
crete instance of a platform architecture can be analyzed
using only analytical means, resulting in the possibility of
fast design space exploration.

This basic scheme of using an initial co-simulation to gen-
erate traces is not new and is also followed in [8]. However,
simulation-oriented methods such as [5] and [11] then rely
on a symbolic simulation of these traces (see also [4] for
work on performance analysis of bus-based SoC communi-
cation architectures), whereas we rely on purely analytical
methods which are specific to multimedia processing. An-
other feature of our scheme is the possibility of avoiding
the initial co-simulation to generate traces from which the
parameters of the analytical models are derived. Instead,
these parameters can also be analytically derived from mod-
els of the application to be implemented along with models
of the platform architecture, by resorting to techniques such
as program path analysis and microarchitecture modeling.
Some preliminary ideas along these lines have been recently
proposed in [3, 12] and there are considerable research op-
portunities in this direction. However, in this paper we do
not explore this direction, and instead rely on simulations
to obtain the parameters for our models, as discussed above.

Our results and relation to previous work: The frame-
work presented here is based on a novel concept of variability
characterization curves (VCCs), which we develop in this
paper. As mentioned above, the main complexity of our
problem stems from the complex and bursty nature of on-
chip traffic resulting from multimedia processing on a multi-
processor architecture. This can be attributed to two main
characteristics of multimedia applications: (i) high data-
dependent variability in their execution time requirements
(because the execution requirement of a multimedia stream
depends on the properties of the audio/video sample being
processed), and (ii) variability in the input-output rates as-
sociated with multimedia processing tasks (for example, the
variable length decoding (VLD) task in a MPEG-2 decoder
requires a variable number of compressed bits from a coded
bitstream to generate one macroblock).

The concept of VCCs is motivated by the work recently
reported in [6] and [7]. These two papers proposed a worst-
case characterization of multimedia streams in terms of the
burstiness in their arrival patterns and the variability in

Figure 1: Structural view of multimedia processing on

a multiprocessor SoC platform.

their execution requirements, based on the theory of Net-
work Calculus [1]. The main contribution of this paper is a
generalization of the concepts proposed in [6] and [7]. In-
stead of resorting to seemingly different schemes for repre-
senting different characteristics, we show that all aspects of
on-chip traffic arising out of multimedia processing can be
characterized by a set of VCCs. Such a characterization
seems to be expressive enough for the purpose of system-
level design and analysis of stream processing architectures.
VCCs can be used to represent not only the burstiness in
the arrival pattern of streams and the variability in their ex-
ecution requirements, but also the variability in the input-
output rates of multimedia processing tasks and possibly
other characteristics as well. Because of their inability to
represent characteristics like variability in the input-output
rates of tasks such as VLD, the models presented in [6] and
[7] can only be used to accurately analyze restricted types of
multimedia tasks. The work presented in this paper removes
this restriction and allows for the analysis of general mul-
timedia tasks implemented on a multiprocessor architecture.

Organization of the paper: In the next section we in-
troduce the concept of VCCs and show how they can be
used to represent different characteristics of on-chip traf-
fic resulting out of multimedia processing. In Section 3,
we then demonstrate an application of VCCs by develop-
ing a framework to identify the tradeoffs between on-chip
buffer requirements and the scheduling overheads associated
with different schedulers to be implemented on a SoC plat-
form. This is only one possible illustration of using VCCs
in the system-level design of multimedia processors. Other
design tradeoffs can as well be analytically derived in a sim-
ilar fashion. Finally, in Section 4 we present an illustrative
case study to show the utility of the framework developed
in Section 3.

2. CHARACTERIZING VARIABILITY
We consider the following system-level view of multime-

dia stream processing on a SoC platform (see Figure 1).
The platform architecture consists of multiple processing el-
ements (PEs) onto which the different parts of an application
are mapped. An input multimedia stream enters a PE, gets
processed by the task(s) implemented on this PE, and the
processed stream enters another PE for further processing.
Each PE has an internal buffer, which is a FIFO channel of
fixed capacity, and is used to store the incoming stream to
be processed. Finally, the fully processed stream is written
into a playout buffer which is read by some real-time client
(RTC) such as an audio or a video output device.

For the sake of generality, we consider any multimedia
stream to be made up of a sequence of stream objects. A
stream object might be a bit belonging to a compressed bit-
stream representing a coded video clip, or a macroblock, or

129

a video frame, or an audio sample—depending on where in
the architecture the stream exists. For example, if the archi-
tecture shown in Figure 1 is used to implement an MPEG-2
decoder, then stream objects belonging to the input stream
might be single bits. But stream objects belonging to the
stream entering the RTC might be decoded macroblocks.

VCCs are used to quantify best-case and worst-case char-
acteristics of sequences. These can be sequences of consec-
utive stream objects belonging to a stream, sequences of
consecutive executions of a task implemented on a PE while
processing a stream, or sequences of consecutive time inter-
vals of some specified length. A VCC V is composed of a
tuple (Vl(k),Vu(k)). Both these functions take an integer
k as the input parameter, which represents the length of a
sequence. Vl(k) then returns a lower bound on some prop-
erty that holds for all subsequences of length k within some
larger sequence. Similarly, Vu(k) returns the correspond-
ing upper bound that holds for all subsequences of length k
within the larger sequence. Let the function P be a measure
of some property over a sequence 1, 2, If P (n) denotes
the measure of this property for the first n items of the se-
quence (i.e. 1, . . . , n), then Vl(k) ≤ P (i+k)−P (i) ≤ Vu(k)
for all i, k ≥ 1. As examples, let us now consider the follow-
ing different realizations of a VCC.

Workload curve γ = (γl, γu): A stream is to be processed
by a task T implemented on a PE. The execution require-
ments of T for processing different stream objects belonging
to this stream is variable, and we would like to use a VCC
γ to quantify this variability. We use γl(k) to denote the
minimum number of executions of T that is guaranteed to
be completed by a sequence of k processor cycles of the PE.
γu(k) is the maximum number of executions of T that may
be completed using k processor cycles.

Now consider a sequence of executions 1, 2, 3, . . . of T . Let
the function W (n) denote the total number of processor cy-
cles required to complete the first n executions of T , i.e.
executions 1, 2, . . . , n. Then from the above definition of
γ, the following inequalities hold: W (i + γl(k)) − W (i) ≤
k, ∀k, i > 0 and W (i + γu(k)) − W (i) ≥ k, ∀k, i > 0.

Let emax and emin be the maximum and the minimum
number of processor cycles required by any single execution
of T . Then typically γl(k) would be greater than �k/emax�
and γu(k) would be less than �k/emin�. This is because the
execution requirement of the stream, as mentioned above,
is variable and it is unlikely that many consecutive stream
objects will all require the same number of processor cycles
when being processed by T . Hence, the VCC γ is more
expressive compared to simple best- or worst-case charac-
terizations commonly used in the real-time systems domain.

It is also meaningful to construct a pseudo-inverse of a
VCC V, which we denote as V−1. In the case of a work-

load curve, γl−1
(k) again takes an integer k as an argument

and returns the minimum number of processor cycles that
will be required by k consecutive executions of the task T .
Similarly, γu−1(k) returns the maximum number of proces-
sor cycles that can be required by k consecutive executions

of T . Therefore, γl−1
(k) and γu−1(k) represent lower and

upper bounds respectively on the execution requirements of
any k consecutive activations of the task T .

Both the VCCs, γ and γ−1, can be computed from a trace
of processor cycle consumption due to a sequence of activa-
tions of a task. Such a trace may be derived from an initial

co-simulation of the application and the platform architec-
ture using representative audio/video clips, as explained in
Section 1. This is also explained further in Section 4.

Consumption and production curves κ = (κl, κu) and
π = (πl, πu): Let an input stream processed by a task T
result in an output stream. Each activation of T consumes
a variable number of stream objects belonging to the input
stream, and results in the production of a variable num-
ber of output stream objects, possibly of a different type.
This variability in the consumption and production rates of
T can be quantified using two VCCs κ and π, which we
refer to as the consumption and the production curves re-
spectively. κl(k) takes an integer k as an argument and
returns the minimum number of activations of T that will
be required to completely process any k consecutive stream
objects. Similarly, κu(k) returns the maximum number of
activations of T that might be required to process any k
consecutive stream objects.

We define πl(k) to be the minimum number of stream ob-
jects guaranteed to be produced due to any k consecutive
activations of T . Similarly, πu(k) is the maximum number
of stream objects that can be produced due to any k con-
secutive activations of T . Therefore, k consecutive stream
objects at the input of T will result in at least πl(κl(k)) and
at most πu(κu(k)) stream objects at its output.

Service curve σ = (σl, σu): This VCC is used to express
the variability in the processor availability. Given a PE and
a stream to be processed on it, σl(∆) is the minimum num-
ber of processor cycles that is guaranteed to be available to
the stream within any time interval of length ∆. σu(∆) is
the maximum number of processor cycles that may be avail-
able to the stream within any time interval of length ∆.

3. IDENTIFYING DESIGN TRADEOFFS
In this section we demonstrate one possible application of

VCCs in the system-level design of media processing plat-
forms, by developing an analytical framework to identify the
tradeoffs between scheduler overheads and on-chip buffer re-
quirements.

Let an application be partitioned and mapped onto the
two processors PE1 and PE2 shown in Figure 1. The in-
put stream, say s, to be processed by this application is
represented by a function x1(t), which denotes the number
of stream objects arriving at PE1 during the time interval
[0, t]. After being processed on PE1, the resulting stream,
which is represented by a similar function x2(t), is processed
on PE2 and the final processed stream represented by x3(t)
is written into a playout buffer of size B. This buffer is read
by the RTC at a rate specified by the function C(t), which
denotes the number of stream objects read during the time
interval [0, t].

On each of PE1 and PE2, the stream s is scheduled by a
scheduler, which apart from s also schedules other streams
and real-time tasks possibly implemented on these proces-
sors. The service received by s at the two processors can be
specified by service curves σ1 and σ2, where these functions
depend on the scheduling policies used and their associated
parameters. The variability associated with processing s on
the two processors is specified by the VCCs (κ1, π1, γ1) and
(κ2, π2, γ2).

Given these VCCs and the functions x1(t) and C(t), for
any set of buffer sizes b1, b2 and B we are only interested

130

in the set of schedulers for which no buffer overflows and
the playout buffer does not underflow. The playout buffer
underflow constraint is to ensure that the output quality of
the audio/video stream, as specified by the function C(t), is
guaranteed. Clearly, the stream s should be served at both
PE1 and PE2 at an average rate which is equal to the long-
term average consumption rate of the RTC, and this should
also be equal to the long-term average arrival rate of the
stream at PE1. If these average rates are not equal, then a
buffer overflow or underflow is bound to occur at some point
in time irrespective of the sizes of the buffers are. Although
this condition on the average rate of service constraints the
set of feasible schedulers, the feasible set might still be very
large. Moreover different schedulers from this set might be
associated with different scheduling overheads.

For example, let both PE1 and PE2 use TDMA sched-
ulers with periods equal to p1 and p2 respectively and the
weights associated with the stream s be w1 and w2 (w1, w2 ≤
1). Therefore, within a period of length pi, s receives wi×pi

(i = 1, 2) units of PEi’s processor time. Clearly, w1 and w2

should be chosen such that s is served at an average rate
equal to the average consumption rate of the RTC. How-
ever, there is flexibility in choosing p1 and p2. For some
values of these periods, there might be no buffer sizes which
can guarantee the buffer overflow and underflow constraints.
This is because of the burstiness and the variability in the
execution requirements of the stream on the two processors.

From the set of feasible values of these periods (i.e. for
which there exists finite buffer sizes which guarantee the
overflow and underflow constraints), the smaller the length
of the periods, smaller will be the on-chip buffer require-
ments, but at the cost of higher scheduling overheads. The
goal here is therefore to identify this tradeoff curve between
scheduling overhead and on-chip buffer requirements for dif-
ferent values of p1 and p2.

On-chip buffer requirements as a function of sched-
uler parameters: As shown in Figure 1, our representative
platform architecture consists of multiple PEs connected by
FIFO channels. Note that any scheduler implemented on a
PE can be specified in terms of the service it provides to the
different streams being processed, using the service curve σ.
Given a stream and the service σ provided to it on each of
the PEs of the platform architecture, we would like compute
whether there exists finite buffer sizes which guarantee the
buffer overflow and underflow constraints mentioned above.
When such buffer sizes exist, we would like to compute their
minimum values for which the buffer overflow and underflow
constraints will be satisfied.

Let us consider the i-th PE in the path of a stream (for
simplicity Figure 1 is shown with only two PEs). The arrival
pattern of the stream at the input of this PE is specified by
the function xi(t) and the processed stream is specified by
xi+1(t), which serves as the input to the next PE. We use
xmin

i and xmax
i to denote lower and upper bounds on xi (i.e.

xmin
i (t) ≤ xi(t) ≤ xmax

i (t), ∀t ≥ 0). We refer to the task
processing the stream on PEi as task T .

During the time interval [0, t], the minimum and max-
imum number of activations of T that can be requested
by the stream is equal to κl

i(x
min
i (t)) and κu

i (xmax
i (t)) re-

spectively. Since the service guaranteed to the stream on
PEi is σi, the minimum and maximum number of activa-
tions of T that are possible during [0, t] are γl

i(σ
l
i(t)) and

γu
i (σu

i (t)) respectively. Therefore, the minimum and the

maximum number of activations of T that occur in [0, t],
which we denote using amin(t) and amax(t) respectively, can
be computed as follows (see [1] for the mathematical back-
ground). amin(t) = κl

i(x
min
i) ⊗ γl

i(σ
l
i)(t) and amax(t) =

κu
i (xmax

i)⊗ γu
i (σu

i)(t) where, for any two functions f and g,
the min-plus convolution of f and g is given by (f ⊗ g)(t) =
infs:0≤s≤t{f(t− s)+ g(s)}. Then clearly, xmin

i+1 = πl
i(amin(t))

and xmax
i+1 = πu

i (amax(t)). xi+1 serves as the input to PEi+1

and is possibly composed of stream objects of a different
type, compared to the stream objects at the input of PEi.
The above bounds can be used to compute the maximum
backlog of stream objects at the input of PEi. This backlog
denotes the minimum buffer size that must be provided in
PEi to guarantee that an overflow does not occur. Hence,
the buffer size bi (see Figure 1) is given as follows (which
can be derived from [1]):

bi = sup
t≥0

{xmin
i (t)− κl

i

−1
(amin(t)), x

max
i (t)− κu

i
−1(amax(t))}

When xi represents the stream being written into the play-
out buffer, then the minimum size of the playout buffer is
given by B = supt≥0{xmax

i (t) − C(t)}. It may be noted

that the inequality xmin
i ≥ C(t) should hold for all t ≥ 0 to

guarantee that the playout buffer never underflows. If this
inequality fails to hold for some value of t, then the chosen
σs do not have any corresponding feasible buffer sizes. The
sum of all the buffer sizes bi belonging to the PEs in the path
of the stream, along with the playout buffer size B, is the
minimum buffer requirement to guarantee that no overflows
occur for the chosen schedulers (specified by the σis).

4. ILLUSTRATIVE CASE STUDY
In this section we present a case study to illustrate the an-

alytical framework developed in the previous section. Our
platform architecture consists of two PEs onto which an
MPEG-2 decoder application is partitioned and mapped.
Both the PEs use TDMA schedulers to schedule the input
video stream along with possibly other streams and real-
time tasks. The goal is to analytically derive the tradeoff
curve showing how the on-chip buffer requirements associ-
ated with the video stream being decoded change with dif-
ferent periods of the TDMA schedulers.

The high-level model of the platform architecture is cap-
tured in the structural view shown in Figure 1, which has
been described in Section 2. In our setup the MPEG-2 de-
coder algorithm is implemented on the two PEs, PE1 and
PE2, with each PE executing a part of the algorithm. PE1

reads a compressed video stream from the internal buffer
associated with it and performs the variable length decod-
ing (VLD) and inverse quantization (IQ) tasks on it. PE2

works on the partially decoded data produced by PE1. It
computes the inverse discrete cosine transform (IDCT) and,
if necessary, applies the motion compensation (MC) func-
tion. After the processing on PE2, decoded video samples
are sent to a video output port (RTC), which finalizes the
processing and sends the video stream to a display device.

As we explained in the preceding sections, the exchange of
stream objects in the architecture occurs via FIFO buffers.
In our case, the input buffer in front of PE1 stores bits of the
compressed video stream to be decoded; the buffer in front
of PE2 stores partially decoded macroblocks, and the play-
out buffer stores macroblocks of completely decoded video
samples. These determine the granularity of the stream ob-
jects in the different parts of the processing chain, which we

131

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

number of bits

nu
m

be
r

of
 ta

sk
 a

ct
iv

at
io

ns

κu

κl

Figure 2: Consumption curve κ1 = (κl
1, κu

1) of the

VLD+IQ task executed on PE1.

use to define the input function x1(t), the output function
C(t) and the VCCs (κi, πi, γi) for the tasks executing on
PE1 and PE2.

For a constant bit rate input video stream, which we use
here as an example, x1(t) = rct, where rc denotes the bit
rate of the compressed video stream at the input of the sys-
tem (i.e. at the input of PE1). Similarly, C(t) = rmbt + τ ,
where rmb denotes the macroblock consumption rate, which
is determined by the frame rate and the resolution of the de-
coded video clip, and τ denotes the initial buffering delay. In
our setup rc = 4·106 bits/sec, rmb = 39600 macroblocks/sec
and τ = 0.24 sec.

The curves π1, π2 and κ2 are straight lines with slopes
which correspond to the constant-rate production (or con-
sumption) of one stream object per task activation. In con-
trast to this, the curve κ1 has a complex form, since PE1

consumes a variable number of bits from the input buffer
per activation of the VLD+IQ task. Figure 2 shows κ1, cor-
responding to an MPEG-2 video sequence which we used
in our experiments. This curve was obtained by analyz-
ing a trace generated from the initial co-simulation step de-
scribed in Section 1. In this case study, this step comprised
of simulating the execution of PE1 and PE2 for a represen-
tative MPEG-2 video clip using the SimpleScalar instruc-
tion set simulator. For a purely simulation-based evalua-
tion of a platform architecture, execution traces collected
from the SimpleScalar simulation were then used as input
to a transaction-level model of the platform architecture in
SystemC. In the analytical framework, the execution traces
collected from the SimpleScalar simulation were analyzed
to derive the various VCCs, thereby avoiding the SystemC-
based simulation. Both the MPEG-2 decoding tasks running
on PE1 and PE2 have variable execution times. The corre-
sponding workload curves γ1 and γ2 capture this variability.
As mentioned above, these curves were obtained by analyz-
ing traces of the task execution requirements collected using
the SimpleScalar instruction set simulator. For example, the
γ1 that we use as an input to our analytical model is shown
in Figure 3.

To allow for processing of tasks other than the MPEG-
2 decoder, PE1 and PE2 are scheduled using two TDMA
schedulers. The VCCs σ1 and σ2, which characterize these
schedulers have the form of periodic staircase functions [1].
Due to space restrictions we do not plot them here. How-
ever, we point out that the shapes of σ1 and σ2 depend on
the values of the TDMA periods (or slot sizes) p1 and p2

respectively.

0 5 10 15

x 10
7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

number of cycles

nu
m

be
r

of
 e

xe
cu

tio
ns

γu

γl

Figure 3: Workload curve γ1 = (γl
1, γu

1) of the VLD+IQ

task executed on PE1 .

The functions x1(t), C(t) and the VCCs (κi, πi, γi) and σi

constitute the full specification of the problem that we want
solve using the analytical framework presented in Section 3.
Here, we once again point out that although obtaining this
specification requires the simulation of the MPEG-2 decoder
tasks, we need to do it only once, using a representative
video clip (or a set of clips). Once this specification is ob-
tained, multiple instances of the platform architecture (with
different configurations) can be analyzed using only analyt-
ical means. Furthermore, we can avoid a time-consuming
simulation of the whole multiprocessor system—rather, we
simulate an abstract model of the platform for which we need
to employ only an instruction set simulator.

Now, given this problem specification we can compute the
maximum backlogs in the FIFO buffers of the system and
check the underflow condition in the playout buffer (as de-
scribed in Section 3). Here, we are interested in studying
how the amount of buffer space required for processing any
MPEG-2 video stream depends on the granularity of the
TDMA schedulers implemented on PE1 and PE2. Hence,
an instance of the platform configuration is determined by
the pair of the TDMA periods (p1, p2). For each pair (p1, p2)
we iteratively compute the maximum backlogs in the FIFO
buffers and scale the obtained values by the maximum size
(in bits) of the stream objects associated with the buffers.
The results of this computation for a sample MPEG-2 video
sequence are presented in Figure 4. These computations
were carried out using a combination of Mathematica and
Matlab tools in which we implemented the results derived
in Section 3.

By inspecting the 3D surface shown in Figure 4 we can see
the expected trend: decreasing the values of the TDMA pe-
riods p1 and p2, in general, lead to a reduction in the on-chip
memory requirements (which implement the buffers). How-
ever, we also can see that this reduction is not uniform across
the entire range of values of the periods. Even for a simple
scheduling discipline like TDMA, there are large irregulari-
ties in the design space. This makes it virtually impossible
to come up with an appropriate tradeoff, based only on a
designer’s experience on how on-chip memory requirements
typically change with small changes in the parameters of the
schedulers. However, since on-chip buffers have large area
requirements, such an information about the design space
is essential for determining optimal platform management
policies. Using our framework it is therefore possible to dis-
cover the irregularities in the design space, and from it arrive
at an appropriate tradeoff—in this case between scheduling

132

0.5
3

5.5
8

10.5

0.5

3

5.5

8

10.5
4

4.2

4.4

4.6

4.8

5

p
2
 [number of cyles × 107]p

1
 [number of cyles × 107]

bu
ffe

r
sp

ac
e

[n
um

be
r

of
 b

its
 ×

 1
07]

Figure 4: The surface showing the dependency of mem-

ory requirements on the values of the periods p1 and p2.

overheads and buffer requirements. This capability of the
framework can be attributed to the underlying concept of
VCCs which can be used to precisely represent the different
types of variabilities associated with multimedia processing
on multiprocessor SoC platforms.

Besides maximum buffer requirements, a system designer
might also be interested to know whether a given choice of
schedulers might lead to an underflow of the playout buffer.
Our framework can also be used to answer this question.
As an example, Figure 5 shows the different combinations
of the periods p1 and p2 that might lead to a playout buffer
underflow. The two axes show the different values of p1 and
p2 and the white cells correspond to combinations of p1 and
p2 for which there might be a playout buffer underflow. For
ease of understanding, this figure can be interpreted as the
horizontal plane of the 3D axes shown in Figure 4.

To validate our analytical framework, we simulated archi-
tectures corresponding to a subset of points (p1, p2) from
Figure 4, and measured the maximum buffer fill levels. As
mentioned before, this simulation was based on an abstract
transaction-level model of the platform architecture in Sys-
temC. Our analytical results always had close correspon-
dence with the results obtained from simulation. For each
platform configuration (p1, p2), the SystemC-based simula-
tion required almost an hour of simulation time, which was
around 100 times slower than the Mathematica + Matlab-
based implementation of the analytical model. We believe
that an efficient C/C++ implementation would be at least
5-10 times faster than our current prototype Mathematica +
Matlab implementation. It may be noted that, considering
the time involved in simulating even a single point (p1, p2)
(for a 2 sec long video clip), it is almost infeasible to obtain
a design surface such as the one shown in Figure 4 using
purely simulation-based techniques.

5. CONCLUDING REMARKS
In this paper we introduced a novel abstraction called

variability characterization curves to capture different prop-
erties of on-chip traffic resulting out of multimedia process-
ing on a multiprocessor SoC platform. Using this abstrac-
tion, it is possible to precisely capture the irregularities in
a design space using analytical methods, which leads to

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10

p
2
 [number of cyles × 107]

p 1 [n
um

be
r

of
 c

yl
es

 ×
 1

07]

Figure 5: Scheduler periods (p1, p2) which might lead to

playout buffer underflows (white cells).

the possibility of fast design space exploration of hardware-
software architectures of media processing platforms. Stan-
dard methods for worst/best-case analysis from the real-
time systems area lack sufficient expressiveness to capture
different forms of variability associated with on-chip multi-
media processing. Therefore, using these methods it would
not be possible to derive a design surface as varied as the
one shown in Figure 4.

Acknowledgments: This work is partially supported by
the NUS URC grant R-252-000-190-112.

6. REFERENCES
[1] J.-Y. Le Boudec and P. Thiran. Network Calculus - A

Theory of Deterministic Queuing Systems for the Internet.
LNCS 2050, 2001.

[2] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A
multiprocessor SOC for advanced set-top box and digital
TV systems. IEEE Design & Test of Computers,
18(5):21–31, September-October 2001.

[3] M. Jersak, R. Henia, and R. Ernst. Context-aware
performance analysis for efficient embedded system design.
In DATE, 2004.

[4] K. Lahiri, A. Raghunathan, and S. Dey. System level
performance analysis for designing on-chip communication
architectures. IEEE Trans. on Computer Aided-Design of
Integrated Circuits and Systems, 20(6):768–783, 2001.

[5] P. Lieverse, T. Stefanov, P. van der Wolf, and E.F.
Deprettere. System level design with Spade: an M-JPEG
case study. In ICCAD, 2001.

[6] A. Maxiaguine, S. Künzli, S. Chakraborty, and L. Thiele.
Rate analysis for streaming applications with on-chip buffer
constraints. In ASP-DAC, 2004.

[7] A. Maxiaguine, S. Künzli, and L. Thiele. Workload
characterization model for tasks with variable execution
demand. In 7th DATE, March 2004.

[8] A.D. Pimentel, L.O. Hertzberger, P. Lieverse, P. van der
Wolf, and E.F. Deprettere. Exploring embedded-systems
architectures with Artemis. IEEE Computer, 34(11):57–63,
2001.

[9] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers,
P. van der Wolf, O.P. Gangwal, and A. Timmer. A
heterogeneous multiprocessor architecture for flexible media
processing. IEEE Design & Test of Computers,
19(4):39–50, July-August 2002.

[10] G. Varatkar and R. Marculescu. On-chip traffic modeling
and synthesis for MPEG-2 video applications. IEEE
Transactions on VLSI, 12(1), January 2004.

[11] V.D. Živković, E.A. de Kock, E.F. Deprettere, and
P. van der Wolf. Fast and accurate multiprocessor
architecture exploration with symbolic programs. In 6th
DATE, 2003.

[12] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative
characterization of event streams in analysis of hard
real-time applications. In 10th IEEE RTAS, 2004.

133

