
A Computing Origami: Folding Streams in FPGAs

Andrei Hagiescu, Weng-Fai Wong
School of Computing

National University of Singapore
{hagiescu, wongwf}@comp.nus.edu.sg

David F. Bacon, Rodric Rabbah
IBM T.J. Watson
Research Center

{bacon, rabbah}@us.ibm.com

ABSTRACT
Stream processing represents an important class of applications that
spans telecommunications, multimedia and the Internet. The im-
plementation of streaming programs in FPGAs has attracted signifi-
cant attention because of their inherent parallelism and high perfor-
mance requirements. Languages, tools, and even custom hardware
for streaming have been proposed, some of which are commercially
available.

There are several significant challenges to realizing streaming
applications directly in hardware (FPGAs). Since FPGAs have fi-
nite resources, there are often many non-trivial tradeoffs between
processing throughput and overall latency. In this paper, we de-
scribe an algorithm that computes refinements of stream graphs
into designs that optimize processing throughput subject to user-
specified area and latency constraints.

Categories and Subject Descriptors
B.6.3 [Logic design]: Design aids—Optimization

General Terms
Algorithms, Design, Performance

Keywords
FPGA, Streaming, Throughput, Latency

1. INTRODUCTION
There are several existing platforms today that integrate FPGAs

with microprocessors, and recent announcements (e.g., [11]) from
leading vendors suggest that FPGAs are likely to become widely
available as programmable coprocessors. A broad class of appli-
cations, including multimedia, networking, graphics, and security
codes, provide ample opportunities to exploit FPGA-based accel-
eration. Sequential parts of a program can be assigned to run on
the host processor while the parts of the program with abundant
parallelism can be synthesized directly in the FPGA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$10.00.

In this paper we focus on a class of applications where am-
ple parallelism is available as a result of stream-oriented process-
ing. Stream processing is a data-centric execution model that is
dataflow-driven. Streaming codes are naturally expressed as graphs
of filters that communicate through FIFO data channels. Depen-
dencies between filters are made explicit by the communication
channels. Each filter has its own control flow logic and an indepen-
dent address space, and it executes repeatedly as long as a sufficient
number of tokens are available on its input channels.

Our work addresses the following issue: is there a refinement of
an input stream graph that can maximize the processing throughput
of the overall graph? Furthermore, because FPGA area is finite,
and because latency is typically an important consideration in real-
time streaming codes, we are interested in maximizing throughput
subject to area and latency constraints. As far as we know, we are
the first in tackling this combined problem.

The intuition behind our proposed algorithm is the following.
We inspect the stream graph to identify filters that cause bottle-
necks. We observe that if the filters are stateless – they do not
maintain a history of their past execution – then we can use data
parallelism to increase their throughput. This is achieved by judi-
ciously replicating the bottleneck filters.

Replicating filters has several advantages. The replicated filters
do not require resynthesis as they are all instances of the same fil-
ter, and the synthesis results are reusable. This is in contrast to
prior work on global optimization of loop nests on an FPGA [12]
which requires recompilation and evaluation of the recompiled de-
signs based on heuristics. Such an approach will not scale for large
designs.

Our algorithm operates on a stream graph, and a set of synthe-
sized filters corresponding to the nodes in the graph, and deter-
mines how to assemble the synthesized filters to achieve the best
possible throughput. If a filter is replicated, we use a simple hard-
ware template to route dataflow to and from the replicated filters.
This approach also makes the issue of filter synthesis orthogonal to
design assembly and generation. Hence this work is complemen-
tary to a lot of the ongoing research in the community that address
high-level synthesis of the filter code itself.

Our algorithm is briefly described as first aggressively replicat-
ing candidate filters (graph unfolding), then refolding the graph to
reduce the number of replicas if they are not profitable. The next
sections provide a motivating example and discuss related work.
Next we describe our stream folding algorithm and present the re-
sults of our evaluation.

2. EXAMPLE AND BACKGROUND
A stream graph is shown in Figure 1. It consists of three kinds of

nodes. A splitter node distributes an input stream to other nodes. A

filter consumes an input stream, performs some computation, and
outputs a new stream. A joiner aggregates streams, and outputs
a single new stream. In the figure, F1, F2, and F3 are filters,
the hardware footprint of each filter is correlated to the area of its
corresponding rectangle, and the execution latency of the filter is
correlated to the length of the rectangle. The splitter and joiner are
illustrated using arched double-headed arrows. The edges in the
graph describe the dataflow between nodes. Each edge corresponds
to a FIFO connecting two nodes together.

Figure 1: An example stream graph.

Each of the nodes in the stream graph executes when there is a
sufficient number of data tokens on its input edge. In the figure, the
number of input tokens required to execute each filter is shown in a
circle on the left end of each rectangle. The number of data tokens
produced in each execution of the filter is shown in a circle on the
right side of the rectangle. For example, the filter F2 requires 2
data tokens to execute, and when it does, it produces 1 new data
token. An execution of a filter is also called a firing.

We use StreamIt [10] to describe stream graphs programmati-
cally and algorithmically. StreamIt is an architecture-independent
stream programming language that allows a programmer to focus
on describing the algorithm’s dataflow (i.e., graph topology) with-
out committing to an implementation or buffering strategy. Each
filter in StreamIt declares its data input and output rates per execu-
tion. This explicit rate information enables many optimizations that
can yield efficient implementations of the stream computation [3,
2, 6]. An example filter declaration is as follows.

int->int filter F2(int N) {
work peek N pop N push N/2 {
for (int i = 0; i < N/2; i++) {
int x = pop(); // read/dequeue from input FIFO
int y = pop();
push(x+y); // write/enqueue to output FIFO

}
}

}

Filters read data from their input FIFO using pop statements, and
write data to their output FIFO using push statements. The filter
may have instantiation parameters (N in this case), and always en-
capsulates its computational logic in a work function. Filters may
also peek at their input data, without altering the state of the FIFO.
Peeking is useful for sliding-window computations, and provides
an opportunity to optimize filters that otherwise require internal
buffering (i.e., state) to preserve previous values.

In Figure 1, the dataflow is split between F1 and F2 in a peri-
odic and round-robin manner, with 3 tokens dispatched to F1 and
6 to F2. This information is annotated on the edges that fan-out
from the splitter. Similarly, the joiner collects data from the in-
put streams in a round-robin manner. The weight annotations on
each edge describe how the data is aggregated from the streams: 3
tokens from F1 and 3 from F2.

A StreamIt program exposes the communication topology to a
compiler or synthesis tool that can then decide on the best imple-
mentation choices depending on the target platform. The stream
graph in the figure can be described as follows in StreamIt.

Figure 2: A stream graph with replicated filters that achieves
maximum throughput, subject to some area constraint.

Figure 3: Reducing the latency for the graph in Figure 2 under
the same area constraints.

int->int pipeline Example() {
add pipeline {
add splitjoin {
split roundrobin(3, 6);
add F1();
add F2(2); // instantiating parameterized filter
join roundrobin(3, 3);

}
add F3();

}
}

A pipeline in StreamIt is a stream container, connecting a sequence
of streams together. Here, the pipeline consists of a splitjoin con-
nected to F3. The splitjoin is also a stream container, with a split-
ter at the source, a joiner at the sink, and filters (or other stream
containers) between them. The expression roundrobin(3, 6) de-
scribes the weights of each edge between the splitter and the sibling
streams, and similarly for the joiner.

In a stream graph, nodes fire autonomously and concurrently.
Since there is no data dependence between F1 and F2, they can
fire in parallel. The firings of filter F3 can be pipelined relative
to the other filters. It is obvious from the graph that F1 and F2
execute the same number of times in order for F3 to fire (that is,
both F1 and F2 fire 3 times to produce the requisite amount of
data for the joiner, which ultimately provides the data to filter F3).

A trivial mapping of the stream graph in Figure 1 into hardware
does not produce an efficient implementation: the filters F1 and
F2 are not load-balanced. However, if a filter is stateless – that is,
it does not maintain any history of its previous executions – we may
replicate it to achieve a more load-balanced implementation. Repli-
cating a filter creates a new instance of the filter and adds a splitter
to distribute data between the filter and its replicas, and a joiner to
collect the new data. The replicas effectively increase the firing rate
capability of the filter, but also increase hardware costs: each of the
replicas incurs a space overhead in hardware that is equal to the
original filter, and in addition, there is an added overhead incurred
by the splitter-joiner pair that routes the new dataflow. Since we are
interested in realizing stream graphs in hardware, and specifically
FPGAs with finite resources, we have to judiciously decide which
filters to replicate and to what extent. Our algorithm unfolds and
refolds a given stream graph to determine where and to what extent
replication will be most profitable. We will generally refer to this
process of stream graph refinement as stream folding.

The stream graph in Figure 2 illustrates the replication of filters
F2 and F3. The graph achieves the best throughput to area ratio:
filters fire continuously, making efficient use of the hardware. At
steady state, the throughput of the joiner aggregating the outputs of

F1 and F2 is three times better than the corresponding joiner in the
original graph shown in Figure 1. A hardware design and imple-
mentation of a stream graph that uses replication increases through-
put, but may also affect the latency of the computation. Figure 3
presents an alternate stream folding strategy that tradeoffs through-
put to achieve a lower overall latency.

Our stream folding strategy manages the complexity of the de-
sign search space by exploiting the hierarchical nature of the stream
containers. Peeking filters may be replicated if they appear at the
root of a container (e.g., the first filter in a pipeline). The strategy
is simple: duplicate the input stream to the filter and its replicas,
and then locally discard the parts of the stream that are not relevant
to a particular filter. This approach may create a lot of redundant
communication, but others have shown that it is possible to de-
sign efficient hardware mechanisms to exploit the structured data
reuse [4].

3. RELATED WORK
The work that we present is founded on the idea of judiciously

replicating filters to increase the throughput of bottleneck filters.
In the context of streaming processing, this idea has been explored
in the past. For example, [3] describes a greedy strategy to map
filters to a multicore architecture. In that work, if the number of
filters is less than the number of cores, the compiler replicates the
filters (called fission) with the highest computation requirements.
If the number of cores is less than the number of filters (which is
the common case), the compiler fuses together the filters or stream
containers with the least computation until the number of fused fil-
ters equals the number of cores. While this strategy works well
when mapping to a platform with a finite number of compute en-
gines, it is not clear how to adapt it for an FPGA where the number
of compute engines is undefined. Furthermore, the strategy in [3]
is not practical if the stream graph consists of filters that are wildly
unbalanced since in that case some filters require fission and others
require fusion. Our stream folding algorithm is designed to address
this issue in the context of FPGAs. The algorithm essentially per-
forms maximal fission of all candidate filters bounded only by the
size of the FPGA, then fuses the filters that do not positively effect
throughput.

Other relevant stream graph refinements include [2] and [6]. In
the former, the cost of the communication introduced by replica-
tion is reduced by first fusing filters then replicating the coarsened
filters. This reduces the amount of pipeline parallelism that can be
effectively exploited in an FPGA. In the latter, an integrated fission
and partitioning strategy is offered to replicate filters and assign
graph partitions to a finite and predetermined number of cores. The
graph partitions are then carefully scheduled using a staging al-
gorithm that attempts to overlap communication and computation.
Our algorithm considers and accounts for the latency of the added
communication when it determines the extent of replication. Un-
like in past work where the communication cost is high and not
homogeneous, we can benefit from the FPGA architecture to op-
timize communication and more accurately account for the added
overhead.

This paper does not address the synthesis of the actual compu-
tation from StreamIt code (namely the work functions) to a hard-
ware description language. Our emphasis is on the composition
of the synthesized modules into an overall space-time efficient de-
sign. Recent work [5] specifically addressed the issue of hardware
generation from StreamIt, and we believe that work is complemen-
tary to our work. Similarly, many of the existing state of the art
technologies in this regard can be used to complement our work.

There is also a significant amount of work geared toward im-

Figure 4: Replicating a pipeline with a peeking filter.

nected to F3. The splitjoin is also a stream container, with a split-
ter at the source, a joiner at the sink, and filters (or other stream
containers) between them. The expression roundrobin(3, 6) de-
scribes the weights of each edge between the splitter and the sibling
streams, and similarly for the joiner. An example filter declaration
is as follows.

int->int filter F2(int N) {
work peek 2*N pop 2*N push N {

for (int i = 0; i < N; i++) {
int x = pop(); // read/dequeue from input FIFO
int y = pop();
push(x+y); // write/enqueue onto output FIFO

}
}

}

Filters read data from their input FIFO using pop statements, and
write data to their output FIFO using push statements. Our graph
replication mechanism can replicate filters, as well as pipelines
and splitjoins. By folding entire stream containers, we avoid the
need for extraneous splitters and joiners that otherwise manage the
dataflow to and from replicas. Furthermore, we can manage the
complexity of the design search space by exploiting the hierarchi-
cal nature of the stream containers.

In addition to pop operations, filters may also peek at their input
data, without altering the state of the FIFO. Peeking is useful for
sliding-window computations, and provides an opportunity to op-
timize filters that otherwise require internal buffering (i.e., state) to
preserve previous values. Peeking filters may be replicated if they
appear at the root of the container (e.g., the first filter in a pipeline
may peek).

Figure 4 illustrates how we fold stream graphs with peeking fil-
ters. The unfolded pipeline is shown above the horizontal lines.
The filter F1 is a peeking filter, and requires k − p additional data
items in the input FIFO. The folded graph is shown below the hori-
zontal line, in this case the pipeline is replicated twice. The strategy
is simple: duplicate the input stream to the filter and its replicas,
and then locally discard the parts of the stream that are not relevant
to a particular filter.

4. GRAPH FOLDING
We propose an algorithm that determines which filters to repli-

cate (and by what factor), in order to maximize processing through-
put subject to area and latency constraints. Our philosophy is to de-
scribe the desired design topology, and instantiate an implementa-
tion that simply stitches together the filters and streams as directed
by our algorithm. The algorithm assumes that individual filters are
already synthesized and both area and behavior (worst-case execu-
tion time estimates) information is retrieved from the implemen-
tation. If the filters take less time to execute than the worst-case
estimate, the correctness of the solution is not affected.

The input to our algorithm is a stream graph, which we derive
from StreamIt code. In StreamIt, it is the programmer’s respon-
sibility to describe the streaming application in such a way that
exposes fine-grained parallelism. The compiler is commissioned

Algorithm 1: Area / throughput design folding
Input: StreamIt program(S), area constraint (AREA)
Output: Replication coefficients
foreach Filter f in S do1

workFactor[f] = f.latency · S.runs(f);2
designPointArea+ = f.area · workFactor[f];3

end4

scaleLimit = min
f.hasState

(1
workFactor[f]

);
5

scaling = min(AREA/designPointArea, scaleLimit);6
foreach Filter f in S do7

replication[f] = dworkFactor[f] · scalinge;8
end9
while area(replication) > AREA do10

replication = reduceThroughput(replication);11
end12

Procedure reduceThroughput(replication)

foreach Filter f in S do
tSout = throughput(replication.reduce(f));
if (tSout < min) then

candidate = f ;
end

end
return replication.reduce(candidate);

with the task of refining the application graph into a form that is
amenable for synthesis. We refer to our graph refinement strategy
as stream folding because we first replicate filters to expose data
parallelism (graph unfolding) and then refold the graph judiciously
to achieve a desired throughput subject to one or more constraints.

We determine a maximum throughput design in several refine-
ment steps shown in Algorithm 1. First, we inspect each filter and
compute the relative speedup factor required to match the work-
load of concurrent filters based on its trigger rate and timing profile
(line 2). This speedup factor reflects the replication requirement as
explained in Section 4.1. Next, we use the computed speedup fac-
tors to determine the total area of an ideal design point. Lines 5-6
show how we determine the maximum scaling that matches the area
constraint. Replication of filters that maintain state is prevented.
We apply the corresponding replication which, due to rounding,
produces a design that has a slightly larger area than the required
area constraint but is on the pareto-optimal frontier with respect to
throughput and area (lines 7-9).

Finally, we refine this design, reducing its throughput while main-

Figure 4: Replicating a pipeline with a peeking filter.

nected to F3. The splitjoin is also a stream container, with a split-
ter at the source, a joiner at the sink, and filters (or other stream
containers) between them. The expression roundrobin(3, 6) de-
scribes the weights of each edge between the splitter and the sibling
streams, and similarly for the joiner. An example filter declaration
is as follows.

int->int filter F2(int N) {
work peek 2*N pop 2*N push N {

for (int i = 0; i < N; i++) {
int x = pop(); // read/dequeue from input FIFO
int y = pop();
push(x+y); // write/enqueue onto output FIFO

}
}

}

Filters read data from their input FIFO using pop statements, and
write data to their output FIFO using push statements. Our graph
replication mechanism can replicate filters, as well as pipelines
and splitjoins. By folding entire stream containers, we avoid the
need for extraneous splitters and joiners that otherwise manage the
dataflow to and from replicas. Furthermore, we can manage the
complexity of the design search space by exploiting the hierarchi-
cal nature of the stream containers.

In addition to pop operations, filters may also peek at their input
data, without altering the state of the FIFO. Peeking is useful for
sliding-window computations, and provides an opportunity to op-
timize filters that otherwise require internal buffering (i.e., state) to
preserve previous values. Peeking filters may be replicated if they
appear at the root of the container (e.g., the first filter in a pipeline
may peek).

Figure 4 illustrates how we fold stream graphs with peeking fil-
ters. The unfolded pipeline is shown above the horizontal lines.
The filter F1 is a peeking filter, and requires k − p additional data
items in the input FIFO. The folded graph is shown below the hori-
zontal line, in this case the pipeline is replicated twice. The strategy
is simple: duplicate the input stream to the filter and its replicas,
and then locally discard the parts of the stream that are not relevant
to a particular filter.

4. GRAPH FOLDING
We propose an algorithm that determines which filters to repli-

cate (and to what extent), in order to maximize processing through-
put subject to area and latency constraints. Our philosophy is to
describe the desired design topology, and realize an implementa-
tion that simply stitches together the filters and streams as directed
by our algorithm. The algorithm assumes that individual filters are
already synthesized and both area and behavior (worst-case execu-
tion time estimates) information is retrieved from the implemen-
tation. If the filters take less time to execute than the worst-case
estimate, the correctness of the solution is not affected.

The input to our algorithm is a stream graph, which we derive
from StreamIt code. In StreamIt, the programmer’s responsibility
is to describe the streaming application in such a way that exposes
fine-grained parallelism. The compiler is commissioned with the

Algorithm 1: Area / throughput design folding
Input: StreamIt program(S), area constraint (AREA)
Output: Replication coefficients
foreach Filter f in S do1

workFactor[f] = f.latency · S.runs(f);2
designPointArea+ = f.area · workFactor[f];3

end4

scaleLimit = max
f.hasState

(1
workFactor[f]

);
5

scaling = min(AREA/designPointArea, scaleLimit);6
foreach Filter f in S do7

replication[f] = dworkFactor[f] · scalinge;8
end9
while area(replication) > AREA do10

replication = reduceThroughput(replication);11
end12

Procedure reduceThroughput(replication)

foreach Filter f in S do
tSout = throughput(replication.reduce(f));
if (tSout < min) then

candidate = f ;
end

end
return replication.reduce(candidate);

task of refining the application graph into a form that is amenable
for synthesis. We refer to our graph refinement strategy as stream
folding because we first replicate filters to expose data parallelism
(graph unfolding) and then refold the graph judiciously to achieve
a desired throughput subject to one or more constraints.

We determine a maximum throughput design in several refine-
ment steps shown in Algorithm 1. First, we inspect each filter and
compute its relative speedup factor required to match the workload
of concurrent filters based on their trigger rate and timing profile
(line 2). This speedup factor reflects the replication requirement
as explained in Section 4.1. Afterwards, we use these factors to
determine the total area of an ideal design point. Lines 5-6 show
how we determine the maximum scaling that match the area con-
straint (preventing replication of filters that maintain state). We
apply the corresponding replication which, due to rounding, pro-
vides with a design that has a slightly larger area than the required
area constraint but it is on the pareto-optimal frontier with respect
to throughput and area (lines 7-9).

Finally, we refine this design, reducing its throughput while main-
taining it on the pareto-optimal front of the design space. At each

Figure 4: Replicating a pipeline with a peeking filter.

nected to F3. The splitjoin is also a stream container, with a split-
ter at the source, a joiner at the sink, and filters (or other stream
containers) between them. The expression roundrobin(3, 6) de-
scribes the weights of each edge between the splitter and the sibling
streams, and similarly for the joiner. An example filter declaration
is as follows.

int->int filter F2(int N) {
work peek 2*N pop 2*N push N {

for (int i = 0; i < N; i++) {
int x = pop(); // read/dequeue from input FIFO
int y = pop();
push(x+y); // write/enqueue onto output FIFO

}
}

}

Filters read data from their input FIFO using pop statements, and
write data to their output FIFO using push statements. Our graph
replication mechanism can replicate filters, as well as pipelines
and splitjoins. By folding entire stream containers, we avoid the
need for extraneous splitters and joiners that otherwise manage the
dataflow to and from replicas. Furthermore, we can manage the
complexity of the design search space by exploiting the hierarchi-
cal nature of the stream containers.

In addition to pop operations, filters may also peek at their input
data, without altering the state of the FIFO. Peeking is useful for
sliding-window computations, and provides an opportunity to op-
timize filters that otherwise require internal buffering (i.e., state) to
preserve previous values. Peeking filters may be replicated if they
appear at the root of the container (e.g., the first filter in a pipeline
may peek).

Figure 4 illustrates how we fold stream graphs with peeking fil-
ters. The unfolded pipeline is shown above the horizontal lines.
The filter F1 is a peeking filter, and requires k − p additional data
items in the input FIFO. The folded graph is shown below the hori-
zontal line, in this case the pipeline is replicated twice. The strategy
is simple: duplicate the input stream to the filter and its replicas,
and then locally discard the parts of the stream that are not relevant
to a particular filter.

4. GRAPH FOLDING
We propose an algorithm that determines which filters to repli-

cate (and to what extent), in order to maximize processing through-
put subject to area and latency constraints. Our philosophy is to
describe the desired design topology, and realize an implementa-
tion that simply stitches together the filters and streams as directed
by our algorithm. The algorithm assumes that individual filters are
already synthesized and both area and behavior (worst-case execu-
tion time estimates) information is retrieved from the implemen-
tation. If the filters take less time to execute than the worst-case
estimate, the correctness of the solution is not affected.

The input to our algorithm is a stream graph, which we derive
from StreamIt code. In StreamIt, the programmer’s responsibility
is to describe the streaming application in such a way that exposes
fine-grained parallelism. The compiler is commissioned with the

Algorithm 1: Area / throughput design folding
Input: StreamIt program(S), area constraint (AREA)
Output: Replication coefficients
foreach Filter f in S do1

workFactor[f] = f.latency · S.runs(f);2
designPointArea+ = f.area · workFactor[f];3

end4
scaleLimit = max

f.hasState
(workFactor[f]);

5

scaling = min(AREA/designPointArea, scaleLimit);6
foreach Filter f in S do7

replication[f] = dworkFactor[f] · scalinge;8
end9
while area(replication) > AREA do10

replication = reduceThroughput(replication);11
end12

Procedure reduceThroughput(replication)

foreach Filter f in S do
tSout = throughput(replication.reduce(f));
if (tSout < min) then

candidate = f ;
end

end
return replication.reduce(candidate);

task of refining the application graph into a form that is amenable
for synthesis. We refer to our graph refinement strategy as stream
folding because we first replicate filters to expose data parallelism
(graph unfolding) and then refold the graph judiciously to achieve
a desired throughput subject to one or more constraints.

We determine a maximum throughput design in two refinement
steps shown in Algorithm 1. In the first step, we inspect each filter
and compute a coefficient that indicates the relative speedup re-
quired by a filter to match the workload of concurrent filters based
on their trigger rate and timing profile. This coefficient reflects the
replication requirement as explained in Section 4.1. Therefore, we
use these coefficients to determine the total area of an ideal design
point. Then, we determine the maximum coefficients that match
the area constraint (preventing replication of filters that maintain
state). We apply the corresponding replication which, due to round-
ing, provides with a design that has a slightly larger area than the
required area constraint but it is on the pareto-optimal frontier with
respect to throughput and area.

In the second step, we refine this design, reducing its throughput
while maintaining it on the pareto-optimal front of the design space.
At each iteration, we select a filter causing the smallest reduction
of the design throughput when its replication is reduced. At this
point, a maximum throughput design that fits the available area has
been obtained, but we have yet to check the latency constraint.

One of the properties of the design obtained in the previous step
is that filter stalls are minimized. Filters continuously process data,
and if data arrival patterns are irregular, some temporary queueing
occurs, increasing processing delays. These delays can be partially
alleviated by increasing the throughput of selected substreams, or
by underrating the maximum stream throughput. As the latter works
against our main goal of maximizing throughput, we focus on the
first approach, using spare area to further increase replication of se-
lected filters. Algorithm 2 generates base designs sorted by through-
put, starting with the one achieving maximum throughput (con-

Procedure reduceThroughput(replication)

min =∞; tS
out = throughput(replication);

foreach Filter f in S do
δt = tS

out − throughput(replication.reduce(f));
if δt < min then

min = δt;
candidate = f ;

end
end
return replication.reduce(candidate);

Algorithm 2: Latency constrained design folding
Input: Best throughput configuration (baseRepl)
Output: Latency constrained configuration (latRepl)
latRepl = null ; T = ∞;1
while throughput(baseRepl) ≤ T do2

if feasibleImprovement(baseRepl) then3
candidates = simAnnealing(baseRepl, T);4
foreach candidate in candidates do5

if throughput(candidate) < T then6
latRepl = candidate;7
T = throughput(latRepl);8

end9
end10

end11
baseRepl = reduceThroughput(baseRepl);12

end13
return latRepl ;14

structed in the previous step). For each such base design obtained,
we analyse latency improvements when we further increase repli-
cation of a subset of filters. We use simulated annealing to search
through the potential candidates. We have directed the exploration
to prune as much as possible the infeasible design space.

We have chosen to implement a custom neighbor visit function
that avoids illegal configurations defined by the area constraint, ex-
ploration throughput bounds and maximum synthesizable replica-
tion.

The latency of each evaluated design depends on the actual in-
put throughput, and the latency constraint may be satisfied only for
throughputs lower than the maximum sustained by the base design.
Finding such a solution adds an inferior bound to the throughput
of subsequent base designs explored. Only base designs above this
bound are tried, as they can offer additional overreplication possi-
bilities (more spare area is available to selectively increase repli-
cation) while allowing solutions with better throughput than those
previously identified.

As long as a candidate is found in one of the steps of the explo-
ration, the search converges easily, being limited to a few tightly
constrained simulated annealing steps. However, if no candidate
is found, a larger number of possible base designs have to be ex-
plored. We further prune them checking if an area unconstrained
design having the same throughput as the base design can offer the
required latency. Such a design is obtained by replicating all filters
except the bottleneck by as much as possible.

4.1 Calculating Throughput
The maximum input and output throughput, tin and tout respec-

tively, of a filter Fi are defined as

tin(i) =
pop(Fi)

latency(Fi)
, tout(i) =

push(Fi)
latency(Fi)

where pop(Fi) (push(Fi)) equals the number of data elements de-
queued from (enqueued to) the input (output) FIFO of the filter Fi,
and latency(Fi) equals the number of cycles spanned by a single
firing of Fi. The pop and push values are readily available from
the StreamIt programs. We calculate the latency as described in the
subsequent section.

We use the throughput of an individual filter to calculate the max-
imum throughput of a pipeline. First, we note that the through-
put of a pipeline is equal to the lowest throughout of its filters
Furthermore, since individual filters may push and pop at differ-

ent rates, the data rate observed at different points throughout the
pipeline varies, and filters have to sustain correlated but not iden-
tical throughputs. We define the throughput limitation imposed
by a filter Fi on the output of a pipeline consisting of the filters
P = {F1, . . . , Fn} as

tP
out(i) = tout(i) ·

∏

i<j≤n

push(Fj)
pop(Fj)

and therefore, the actual output throughput of the pipeline is

tP
out = min

1≤i≤n
tP
out(i)

.
A similar formulation can be applied to calculate the throughput

of splitjoins. For a splitjoin SJ = {F1, . . . , Fn} where the joiner
weights are (w1, . . . , wn), the output throughput is

tSJ
out = min

1≤n



tout(i) ·

∑
1≤j≤n

wj

wi





. It is possible to apply these relations to the whole stream in a
composable manner,

tS
out = min

i∈S
tS
out(i) = min

i∈S
(Ci · tout(i))

where Ci is a constant that can be determined by analyzing the
unmodified stream graph. To prove this relation, assume a stream
can sustain a throughput t′ > tS

out. Propagating this downwards
through the stream hierarchy, for all stream containers Ŝ, tS

out(Ŝ) ≥
t′. Continuing the stream decomposition and applying this relation
down to individual filters, results in ∀i, tS

out(i) ≥ t′, which is a
contradiction.

The replication of a filter has the effect of multiplying its through-
put by its replication factor. If ri is the replication factor, we can
modify the above formula to

tS
out = min

i∈S
(ri · Ci · tout(i))

.

4.2 Calculating Latency
We envision that we can map stream graphs to FPGAs that are

coupled to host processors. In a large application, some parts of
its main run on the host, and others (the streaming part) are imple-
mented in the FPGA. Data transport between the host and FPGA
is achieved through a bulk transfer mechanism (e.g., DMA). We
call the number of clock cycles between such transfers the initia-
tion interval (II). The minimum initiation interval can be computed
based on the reciprocal of the highest sustainable throughput in the
stream graph. Results are expected to be ready after a time interval
called the latency.

Element reordering and local congestion at a filter’s input due to
non-periodic data arrival are the major factors for latency variation.
While replication improves throughput, it often increases the la-
tency. We believe it is important to obtain exact latency bounds that
can offer guarantees especially for real-time stream performance.

Given a stream graph, we determine valid II where the same set
of delays hold. There is a finite set of such intervals and they can
be computed starting from the minimum sustainable II. We cap-
ture the event arrival time at each filter input as a linear expression
αII + β and we derive the output time of the result as a linear ex-
pression, generating an additional constraint on the upper bound of
the II where necessary. We process all the filters, until we obtain
the overall latency of the stream and a constrained interval where

nates the execution, then replication of other filters is not likely to
be profitable. Line 5 determines which of the stateful filters con-
strains the replication; it is the stateful filter with the greatest work
factor. The first term in the min equation on line 6 determines how
much of the FPGA resources are available for replication. The re-
sulting scaling factor is used to determine the replication counts for
all filters (line 8). Note that due to rounding, a design that realizes
the calculated replicas may have an area slightly larger than the
specified area constraint although the design will be on the pareto-
optimal frontier with respect to throughput and area. Finally, we
refine the design, reducing its throughput while maintaining it on
the pareto-optimal front of the design space. At each iteration in
lines 10-12, we select a filter that will cause the smallest reduc-
tion in throughput when its replication is reduced by one. At this
point, a maximum throughput design that fits the available area is
obtained, but we now need to check if it satisfies the latency con-
straint.

Algorithm 2 generates base designs sorted by throughput, start-
ing with the one achieving the highest throughput as constructed in
the previous step. For each base design obtained, we analyze la-
tency improvements when we further increase replication of a sub-
set of filters. We use simulated annealing to search through the
potential candidates while pruning away as much of the infeasible
design space as possible. We do this by means of a custom neigh-
bor visit function that avoids illegal configurations defined by the
area constraint, throughput bounds and the maximum synthesizable
replication.

The latency of each evaluated design depends on the actual input
arrival rates, and the latency constraint may be satisfied only for ar-
rival rates lower than the maximum sustainable by the base design.
Finding such a solution adds a lower bound to the throughput of
subsequent base designs (line 5-9). Only base designs above this
bound are tried (line 2) as they can offer additional replication pos-
sibilities (more spare area is available to selectively increase repli-
cation) thereby yielding solutions with better throughput than those
previously identified.

As long as a candidate is found in one of the steps of the explo-
ration, the search converges easily, being limited to a few tightly
constrained simulated annealing steps. However, if no candidate is
found, a larger number of possible base designs is explored. We
further prune them by checking if an area unconstrained design
having the same throughput as the base design can offer the re-
quired latency (line 3). Such a design is obtained by replicating all
filters except the bottleneck by as much as possible.

4.1 Calculating Throughput
We use the hierarchical nature of the stream graphs derived from

StreamIt to efficiently compute the overall throughput of a stream-
ing program. The maximum input throughput tin and output through-
put tout of a filter Fi is defined as follows

tin(i) =
pop(Fi)

latency(Fi)
, tout(i) =

push(Fi)
latency(Fi)

where pop(Fi) and push(Fi) respectively equal the number of data
elements dequeued from and enqueued to the input and output FI-
FOs of the filter Fi, and latency(Fi) equals the number of cycles
spanned by a single firing of Fi. The pop and push values are read-
ily available from StreamIt programs. The throughput of the stream
containers follows.

Pipeline and SplitJoin throughput.
The throughput of a pipeline is equal to the lowest throughout of

its filters. Furthermore, since individual filters may push and pop at
different rates, the rates observed at different points in the pipeline
will vary, although filters have to sustain correlated rates. We define
the throughput limitation imposed by a filter Fi on the output of a
pipeline consisting of the filters P = {F1, . . . , Fn} as

tP
out(i) = tout(i) ·

Y

i<j≤n

push(Fj)
pop(Fj)

and therefore, the actual output throughput of the pipeline is

tP
out = min

1≤i≤n
tP
out(i).

For a splitjoin SJ = {F1, . . . , Fn} where the joiner weights are
(w1, . . . , wn), the output throughput is

tSJ
out = min

1≤n

0

B@tout(i) ·

P
1≤j≤n

wj

wi

1

CA .

Overall throughput.
It is possible to apply these relations to the whole stream graph

in a composable manner,

tS
out = min

i∈S
tS
out(i) = min

i∈S
(Ci · tout(i))

where Ci is a constant that can be determined by analyzing the
unmodified stream graph. To prove this relation, assume a stream
can sustain a throughput t′ > tS

out. Propagating this downwards
through the stream hierarchy, for all stream containers Ŝ, tS

out(Ŝ) ≥
t′. Continuing the stream decomposition and applying this relation
down to individual filters, results in ∀i, tS

out(i) ≥ t′, which is a
contradiction.

The replication of a filter has the effect of multiplying its through-
put by its replication factor. If ri is the replication factor, we can
modify the above formula to

tS
out = min

i∈S
(ri · Ci · tout(i)) .

proving performance using multiple clocks to drive heterogeneous
processors [7], or heterogeneous accelerators synthesized in FP-
GAs [9]. However, the latter work assumes that the number and
type of accelerators in a design is fixed, and the heterogeneous
clock assignment finds the optimal set of clock frequencies to as-
sign to each accelerator. The primary contribution of our work
compared to these published methodologies is the co-optimization
of space and time (latency). Our starting input is a stream graph
extracted from a stream program, from which we derive the set of
hardware modules to synthesize. In effect, we are simultaneously
determining the number and types of “accelerators” to synthesize.

4. STREAM FOLDING
We propose an algorithm that determines which filters to repli-

cate (and by what factor), in order to maximize processing through-
put subject to area and latency constraints. Our philosophy is to de-
scribe the desired design topology, and instantiate an implementa-
tion that simply stitches together the filters and streams as directed
by our algorithm. The algorithm assumes that individual filters are
already synthesized and both area and behavior (worst-case execu-
tion time estimates) information is retrieved from the implemen-
tation. If the filters take less time to execute than the worst-case
estimate, the correctness of the solution is not affected.

The input to our algorithm is a stream graph, which we derive
from StreamIt code. We refer to our graph refinement strategy as
stream folding because we first replicate filters to expose data par-
allelism (graph unfolding) and then refold the graph judiciously to
achieve a desired throughput subject to one or more constraints.

We derive a high-throughput design using the steps shown in Al-
gorithm 1. First, we inspect each filter and compute its work factor
by multiplying its latency and its firing rate (line 2). The firing rate
(S.runs(f)) is calculated by the compiler using a Single Appearance
Schedule [1]; it equals the number of firings of a filter so that it is
rate-matched to its producer and consumer. The computed work
factors determine the total area of an initial design point. Lines 5-
6 determine the maximum replication factor that matches the area
constraint. Stateful filters are not replicated (although past work
has shown it may be profitable to do so [6]), and they impose a
scaling limit. If a stateful filter dominates the execution, then repli-

Algorithm 2: Latency constrained design folding
Input: Best throughput configuration (baseRepl)
Output: Latency constrained configuration (latRepl)
latRepl = null ; T =∞;1
while throughput(baseRepl) ≤ T do2

if feasibleImprovement(baseRepl) then3
candidates = simAnnealing(baseRepl, T);4
foreach candidate in candidates do5

if throughput(candidate) < T then6
latRepl = candidate;7
T = throughput(latRepl);8

end9

end10

end11
baseRepl = reduceThroughput(baseRepl);12

end13
return latRepl ;14

structed in the previous step). For each such base design obtained,
we analyse latency improvements when we further increase repli-
cation of a subset of filters. We use simulated annealing to search
through the potential candidates. We have directed the exploration
to prune as much as possible the infeasible design space.

We have chosen to implement a custom neighbor visit function
that avoids illegal configurations defined by the area constraint, ex-
ploration throughput bounds and maximum synthesizable replica-
tion.

The latency of each evaluated design depends on the actual in-
put throughput, and the latency constraint may be satisfied only for
throughputs lower than the maximum sustained by the base design.
Finding such a solution adds an inferior bound to the throughput
of subsequent base designs explored. Only base designs above this
bound are tried, as they can offer additional overreplication possi-
bilities (more spare area is available to selectively increase repli-
cation) while allowing solutions with better throughput than those
previously identified.

As long as a candidate is found in one of the steps of the explo-
ration, the search converges easily, being limited to a few tightly
constrained simulated annealing steps. However, if no candidate
is found, a larger number of possible base designs have to be ex-
plored. We further prune them checking if an area unconstrained
design having the same throughput as the base design can offer the
required latency. Such a design is obtained by replicating all filters
except the bottleneck by as much as possible.

4.1 Calculating Throughput
The maximum input and output throughput, tin and tout respec-

tively, of a filter Fi are defined as

tin(i) =
pop(Fi)

latency(Fi)
, tout(i) =

push(Fi)

latency(Fi)

where pop(Fi) (push(Fi)) equals the number of data elements de-
queued from (enqueued to) the input (output) FIFO of the filter Fi,
and latency(Fi) equals the number of cycles spanned by a single
firing of Fi. The pop and push values are readily available from
the StreamIt programs. We calculate the latency as described in the
subsequent section.

We use the throughput of an individual filter to calculate the max-
imum throughput of a pipeline. First, we note that the through-
put of a pipeline is equal to the lowest throughout of its filters
Furthermore, since individual filters may push and pop at differ-

ent rates, the data rate observed at different points throughout the
pipeline varies, and filters have to sustain correlated but not iden-
tical throughputs. We define the throughput limitation imposed
by a filter Fi on the output of a pipeline consisting of the filters
P = {F1, . . . , Fn} as

tPout(i) = tout(i) ·
∏

i<j≤n

push(Fj)

pop(Fj)

and therefore, the actual output throughput of the pipeline is

tPout = min
1≤i≤n

tPout(i)

.
A similar formulation can be applied to calculate the throughput

of splitjoins. For a splitjoin SJ = {F1, . . . , Fn} where the joiner
weights are (w1, . . . , wn), the output throughput is

tSJ
out = min

1≤n

tout(i) ·

∑
1≤j≤n

wj

wi


. It is possible to apply these relations to the whole stream in a
composable manner,

tSout = min
i∈S

tSout(i) = min
i∈S

(Ci · tout(i))

where Ci is a constant that can be determined by analyzing the
unmodified stream graph. To prove this relation, assume a stream
can sustain a throughput t′ > tSout. Propagating this downwards
through the stream hierarchy, for all stream containers Ŝ, tSout(Ŝ) ≥
t′. Continuing the stream decomposition and applying this relation
down to individual filters, results in ∀i, tSout(i) ≥ t′, which is a
contradiction.

The replication of a filter has the effect of multiplying its through-
put by its replication factor. If ri is the replication factor, we can
modify the above formula to

tSout = min
i∈S

(ri · Ci · tout(i))

.

4.2 Calculating Latency
We envision that we can map stream graphs to FPGAs that are

coupled to host processors. In a large application, some parts of
its main run on the host, and others (the streaming part) are imple-
mented in the FPGA. Data transport between the host and FPGA
is achieved through a bulk transfer mechanism (e.g., DMA). We
call the number of clock cycles between such transfers the initia-
tion interval (II). The minimum initiation interval can be computed
based on the reciprocal of the highest sustainable throughput in the
stream graph. Results are expected to be ready after a time interval
called the latency.

Element reordering and local congestion at a filter’s input due to
non-periodic data arrival are the major factors for latency variation.
While replication improves throughput, it often increases the la-
tency. We believe it is important to obtain exact latency bounds that
can offer guarantees especially for real-time stream performance.

Given a stream graph, we determine valid II where the same set
of delays hold. There is a finite set of such intervals and they can
be computed starting from the minimum sustainable II. We cap-
ture the event arrival time at each filter input as a linear expression
αII + β and we derive the output time of the result as a linear ex-
pression, generating an additional constraint on the upper bound of
the II where necessary. We process all the filters, until we obtain
the overall latency of the stream and a constrained interval where

cation of other filters is not likely to be profitable. Line 5 deter-
mines which of the stateful filters constrains the replication; it is
the stateful filter with the greatest work factor. The first term in
the min equation on line 6 determines how much of the FPGA re-
sources are available for replication. The resulting scaling factor is
used to determine the replication counts for all filters (line 8). Due
to rounding, a design that realizes the calculated replicas may have
an area slightly larger than the specified area constraint although
the design will be on the pareto-optimal frontier with respect to
throughput and area. Finally, we refine the design, reducing its
throughput while maintaining it on the pareto-optimal front of the
design space. Each iteration in lines 10-12 reduces the area of the
new design by eliminating filter replicas one at time, starting with
filter replicas that only marginally improve throughput. Finally, a
maximum throughput design that fits the available area is obtained,
and we next determine if it satisfies the latency constraint.

Algorithm 2 generates base designs sorted by throughput, start-
ing with the one achieving the highest throughput as constructed in
the previous step. We use simulated annealing to search through
the potential candidates while pruning away as much of the infea-
sible design space as possible. We do this using a custom neigh-
bor visit function that avoids illegal configurations defined by the
area constraint, throughput bounds and the maximum synthesizable
replication.

The latency of each evaluated design depends on the actual input
arrival rates, and the latency constraint may be satisfied only for ar-
rival rates lower than the maximum sustainable by the base design.
Finding such a solution adds a lower bound to the throughput of
subsequent base designs (line 5-9). Only base designs above this
bound are tried (line 2) as they can offer additional replication pos-
sibilities (more spare area is available to selectively increase repli-
cation) thereby yielding solutions with better throughput than those
previously identified.

As long as a candidate is found in one of the steps of the explo-
ration, the search converges easily, being limited to a few tightly
constrained simulated annealing steps. However, if no candidate is
found, a larger number of possible base designs is explored. We
further prune them by checking if an area unconstrained design
having the same throughput as the base design can offer the re-
quired latency (line 3). Such a design is obtained by replicating all
filters except the bottleneck by as much as possible.

4.1 Calculating Throughput
We use the hierarchical nature of the stream graphs derived from

StreamIt to efficiently compute the overall throughput of a stream-
ing program. The maximum input throughput tin and output through-

put tout of a filter Fi is defined as follows

tin(i) =
pop(Fi)

latency(Fi)
, tout(i) =

push(Fi)

latency(Fi)

where pop(Fi) and push(Fi) respectively equal the number of data
elements dequeued from and enqueued to the input and output FI-
FOs of the filter Fi, and latency(Fi) equals the number of cycles
spanned by a single firing of Fi. The pop and push values are read-
ily available from StreamIt programs. The throughput of the stream
containers follows.

Pipeline and SplitJoin throughput.
The throughput of a pipeline is equal to the lowest throughout of

its filters. Furthermore, since individual filters may push and pop at
different rates, the rates observed at different points in the pipeline
will vary, although filters have to sustain correlated rates. We define
the throughput limitation imposed by a filter Fi on the output of a
pipeline consisting of the filters P = {F1, . . . , Fn} as

tP
out(i) = tout(i) ·

Y
i<j≤n

push(Fj)

pop(Fj)

and therefore, the actual output throughput of the pipeline is

tP
out = min

1≤i≤n
tP
out(i).

For a splitjoin SJ = {F1, . . . , Fn} where the joiner weights are
(w1, . . . , wn), the output throughput is

tSJ
out = min

1≤n

0B@tout(i) ·

P
1≤j≤n

wj

wi

1CA .

Overall throughput.
It is possible to apply these relations to the whole stream graph

in a composable manner,

tS
out = min

i∈S
tS
out(i) = min

i∈S
(Ci · tout(i))

where Ci is a constant that can be determined by analyzing the
unmodified stream graph. To prove this relation, assume a stream
can sustain a throughput t′ > tS

out. Propagating this downwards
through the stream hierarchy, for all stream containers Ŝ, tS

out(Ŝ) ≥
t′. Continuing the stream decomposition and applying this relation
down to individual filters, results in ∀i, tS

out(i) ≥ t′, which is a
contradiction.

The replication of a filter has the effect of multiplying its through-
put by its replication factor. If ri is the replication factor, we can
modify the above formula to

tS
out = min

i∈S
(ri · Ci · tout(i)) .

4.2 Calculating Latency
We envision that stream graphs will run on FPGAs that are cou-

pled to host processors. Data transport between the host and FPGA
is achieved through a bulk transfer mechanism (e.g., DMA). We
call the number of clock cycles between such transfers the initia-
tion interval (II). The minimum initiation interval can be computed
based on the reciprocal of the highest sustainable throughput in the
stream graph. Results are expected to be ready after a time interval
called the latency.

Data-token reordering and local congestion at a filter’s input due
to non-periodic data arrival are the major factors for latency varia-
tion. While replication improves throughput, it often increases the
latency. We believe it is important to obtain exact latency bounds

0 051600 0 3540500

Area Throughput

0 59000

0.045

0.05

1400

1500

1600

0.3

0.35

39500

40000

40500

Area Throughput

0 4

0.45

0.5

8000

9000

cl
e)

0.035

0.04

0.045

0.05

1100

1200

1300

1400

1500

1600

t (
1
/
cy
cl
e)

A
re
a
(L
U
Ts
)

0.2

0.25

0.3

0.35

38500

39000

39500

40000

40500

t (
1
/
cy
cl
e)

a
(L
U
Ts
)

Area Throughput

0.3

0.35

0.4

0.45

0.5

5000

6000

7000

8000

9000

ug
hp

ut
 (1

 /
 c
yc
le
)

a
(L
U
Ts
)

0.025

0.03

0.035

0.04

0.045

0.05

800

900

1000

1100

1200

1300

1400

1500

1600

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

0.1

0.15

0.2

0.25

0.3

0.35

37500

38000

38500

39000

39500

40000

40500

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

Area Throughput

0.2

0.25

0.3

0.35

0.4

0.45

0.5

4000

5000

6000

7000

8000

9000

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

0.02

0.025

0.03

0.035

0.04

0.045

0.05

700

800

900

1000

1100

1200

1300

1400

1500

1600

305 355 405 455

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

Latency (cycles)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

37000

37500

38000

38500

39000

39500

40000

40500

850 950 1050 1150

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

Latency (cycles)

Area Throughput

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3000

4000

5000

6000

7000

8000

9000

170 175 180 185

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

Latency (cycles)

0.02

0.025

0.03

0.035

0.04

0.045

0.05

700

800

900

1000

1100

1200

1300

1400

1500

1600

305 355 405 455

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

Latency (cycles)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

37000

37500

38000

38500

39000

39500

40000

40500

850 950 1050 1150

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

Latency (cycles)

Area Throughput

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3000

4000

5000

6000

7000

8000

9000

170 175 180 185

Th
ro
ug
hp

ut
 (1

 /
 c
yc
le
)

A
re
a
(L
U
Ts
)

Latency (cycles)

a) b) c)

Figure 4: (a) Synthetic example, (b)FFT2, (c) Matrix multiply.

Figure 5: Replication factors for instances of filter CombineDFT in FFT. The dotted line separates the replication required to achieve
the maximum throughput for a specific design point from the additional replication introduced to decrease latency.

Figure 6: Schedule used to determine latency. Three data to-
kens arrive every II. With two replicas, computation occurs in
parallel.

Table 1: Example latency calculation.
Input replica 1 replica 2 Constraint replica 1 replica 2 Constraint

0 [0, L) II ≥ 3L
2

[0, L) II ≥ 2L
0 [0, L) [0, L)
0 [L, 2L) [L, 2L)
II [L, 2L) [II, L)
II [2L, 3L) II < 2L [II, II + L)
II [2L, 3L) [II + L, II + 2L)

Interval: [3L
2

, 2L) Interval: [2L,∞)

that can offer guarantees especially for real-time stream perfor-
mance.

Given a stream graph, we determine a valid II where the same set
of delays hold. There is a finite set of such intervals and they can be
computed starting from the minimum sustainable II. We capture the
event arrival time at each filter input as a linear expression αII +β
and we derive the output time of the result as a linear expression,
generating an additional constraint on the upper bound of the II
where necessary. We process all filters, until we obtain the overall
latency of the stream and a constrained interval where the linear
expression holds. We then analyze the adjacent interval, generating
a new constraint on the II that will define new intervals recursively.

Table 1 shows the computations necessary in case of a single fil-
ter, replicated two times, with 3 input tokens appearing each initia-
tion interval. The corresponding schedule is presented in Figure 6.

Figure 7: Replication mechanism in hardware.

Our implementation hierarchically iterates over the stream struc-
ture, deriving output times based on the input times. In case of
replicated filters, it maintains a set of ready times for each replica
as linear dependencies on II. The input tokens are already in order
and ordering constraints are generated to ensure that the current
replica is ready to fire when its data arrive.

4.3 Supporting Hardware
The distribution and gathering of data to and from replicas re-

quire hardware resources akin to programmed multiplexers. Our
design for such a mechanism is illustrated in Figure 7. The design
permits a single data token to be routed per clock cycle. We have
automatically synthesized the replication logic for a wide range of
replication factors to obtain its associated resource requirements.

5. RESULTS
We evaluated our stream folding algorithm using the streaming

benchmarks provided with the StreamIt compiler. These provide us
with realistic stream graphs and cover filters with a wide range of
area and latency requirements. We also included a synthetic bench-
mark to check the performance of our implementation beyond the
available benchmarks. We implemented our algorithm in Java as
a backend for the StreamIt compiler, using Opt4J [8] to perform
simulated annealing. For the purpose of achieving low latency de-
signs, we impose a set of constraints on the HDL generation of
the filters. These constraints are easily accommodated by current
hardware compilers. Namely, we require that a filter reads all of
its inputs in consecutive clock cycles. Similarly, we require that

Table 2: Design space solutions under various constraints.
Minimum area Best throughput Constrained design

Stream LUTs Latency II LUTs Latency II LUTs Latency II Constraint Run time
MatrixMult 1498 480 19 7618 185 3 4558 175 7 Latency ≤ 175 1.14s

Serpent 3028 1027 4 3878 773 2 3053 901 4 Latency ≤ 910 0.73s
FFT2 37610 1199 3 43370 764 2 39530 868 7 AREA ≤ 40000 34.7s

Latency ≤ 880
FMRadio 37458 371 39 87564 371 13 62511 371 20 Area ≤ 65000 1.01s

DCT 45752 349 3 137256 349 1 91504 349 2 AREA ≤ 120000 0.73s
BitonicSort 43920 1042 3 131760 1042 1 47400 1282 2 AREA ≤ 50000 18.3s

Synthetic example 350 309 135 15990 504 2 1490 309 47 Latency ≤ 309 0.43s
Area ≤ 1500

a filter writes its output in consecutive cycles. This ensures that
arriving data does not block during distribution unless all the fil-
ters are currently busy. We perform a one-time hardware synthesis
and platform mapping for each filter to empirically determine its
resource usage (e.g., area requirements) for the Virtex 4 FPGA ar-
chitecture, considering LUTs, DSP blocks and Block RAM as part
of the area metric.

We explored the throughput achievable under arbitrary area and
latency constraints. Our design-space exploration identifies lower
latency implementations if it is acceptable to degrade the through-
put. As shown in Figure 4, the area of a design is not trivially
correlated with either latency or throughput.

We closely inspected FFT2 (a fine grained implementation of
FFT) and modified the benchmark so that each floating-point oper-
ation is encapsulated in a filter. This allows us to explore the possi-
bility of using stream folding to determine an optimized number of
floating-point units to use in a design. We used Xilinx LogiCORE
IPs as building blocks for these filters. The total number of filters in
this FFT implementation is 118 filters (compared to 22 in the orig-
inal benchmark). The results are shown in Figure 4(b). The graph
shows that there is a significant opportunity in stream folding.

A benchmark that has a tighter range of latency variation is ma-
trix multiply (Figure 4(c)). We found that no solutions were pos-
sible if the latency was constrained any tighter than shown. Note
that the benchmarks exhibit non-monotonic relationships between
througput and area.

In Figure 5 we represent replication factors of different design
solutions of the original FFT. Each group of bars represent the
replication factors for instances of the CombineDFT filter (the main
computational filter in FFT2) in a particular design point. The dot-
ted line for each group of bars represents the overall replication
factor that yields the same maximum throughput for that design
point. Designs that are subject to lower latency constraints require
greater replication of more filters.

Table 2 shows several design points obtained using our algo-
rithm. For each benchmark, we show the design solution that has
(a) the minimum area, (b) the best throughput (area limited only by
the device size we considered, a VFX140), and (c) a constrained
design between the two. The results are meant to demonstrate the
versatility of our algorithm.

Most of our benchmarks are explored in a few seconds on a
Core2 Duo 2.33GHz, as long as individual filter replicas mono-
tonically contribute toward lower latencies. In cases with tight la-
tency constraints, joiners might introduce notable adverse latency
increases that degrade the convergence of the our algorithm. Dur-
ing our extensive testing, which included additional synthetic bench-
marks, the longest runtimes were on the order of minutes.

6. CONCLUDING REMARKS
We have studied the problem of mapping high level descriptions

of streaming applications in the form of stream graphs into FPGAs.
We proposed replication as a mechanism to increase processing
throughput. Our algorithm yields solutions that satisfy area and
latency constraints. We therefore have a means to automatically
and efficiently realize stream applications directly in hardware. Al-
though we have found the scaling of the exploration algorithm to be
satisfactory (up to 118 filters), we would like to further investigate
and fine-tune the algorithm by introducing more heuristics to guide
the design space exploration. Finally, we would like to generalize
the technique to decouple filters from each other so as to implement
them in different clock domains.

7. REFERENCES
[1] S. Bhattacharyya, P. Murthy, and E. Lee. Kluwer Academic

Press, 1996.
[2] M. Gordon, W. Thies, and S. Amarasinghe. Exploiting

coarse-grained task, data, and pipeline parallelism in stream
programs. In ASPLOS’06.

[3] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli,
A. Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and
S. Amarasinghe. A stream compiler for
communication-exposed architectures. In ASPLOS’02.

[4] Z. Guo, B. Buyukkurt, and W. Najjar. Input data reuse in
compiling window operations onto reconfigurable hardware.
SIGPLAN Not., 39(7):249–256, 2004.

[5] A. Hormati, M. Kudlur, D. Bacon, S. Mahle, and R. Rabbah.
Optimus: efficient realization of streaming applications on
fpgas. In CASES’08.

[6] M. Kudlur, , and S. Mahlke. Orchestrating the execution of
stream programs on multicore platforms. In PLDI ’08.

[7] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and
D. Tullsen. Single-isa heterogeneous multi-core
architectures: The potential for processor power reduction.
In MICRO ’03.

[8] Optimization framework for java. http://www.opt4j.org/.
[9] S. Sirowy, Y. Wu, S. Lonardi, and F. Vahid. Clock-frequency

assignment for multiple clock domain systems-on-a-chip. In
DATE’07.

[10] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A
language for streaming applications. In CC ’02.

[11] AMD Unveils Torrenza Innovation Socket.
http://www.hpcwire.com/hpc/917955.html, 2007.

[12] H. Ziegler and M. Hall. Evaluating heuristics in
automatically mapping multi-loop applications to fpgas. In
FPGA’05.

