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ABSTRACT
Energy consumption is of significant concern in battery operated
embedded systems. In the processors of such systems, the instruc-
tion cache consumes a significant fraction of the total energy. One
of the most popular methods to reduce the energy consumption is
to shut down idle cache banks. However, we observe that operating
idle cache banks at a reduced voltage/frequency level along with
the active banks in a pipelined manner can potentially achieve even
better energy savings. In this paper, we propose a novel DVS-based
pipelined reconfigurable instruction memory hierarchy called PRIM.
A canonical example of our proposed PRIM consists of four cache
banks. Two of these cache banks can be configured at runtime to
operate at lower voltage and frequency levels than that of the nor-
mal cache. Instruction fetch throughput is maintained by pipelining
the accesses to the low voltage banks. We developed a profile-
driven compilation framework that analyzes applications and in-
serts the appropriate cache reconfiguration points. Our experimen-
tal results show that PRIM can significant reduce the energy con-
sumption for popular embedded benchmarks with minimal perfor-
mance overhead. We obtained 56.6% and 45.1% energy savings
for aggressive and conservative VDD settings, respectively, at the
expense of a 1.66% performance overhead.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache memories—Memory structures

General Terms
Algorithm, Design, Performance

Keywords
Instruction cache, low power, reconfigurable memory.

1. INTRODUCTION
Power consumption has become a major design concern with the

proliferation of portable consumer electronics devices. As instruc-
tions are fetched in nearly every processor cycle, the instruction de-
livery system accounts for a significant fraction of the total energy
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consumption. Pose et al. [3] reported that the front-end instruction
delivery path (consisting of the fetch, decode, rename, dispatch and
issue stages) consumes about 20% of the overall system power and
about 35% power of each processor core. Brooks et al. [4] found
that instruction fetch consumes 22.2% of power in the Intel Pen-
tium Pro processor. According to [15], the instruction cache of the
StrongARM 110 processor accounts for 27% of total power and is
higher than the energy consumption of the data cache.

Several approaches have been proposed to reduce the energy
consumption of caches in embedded processors. For example, ap-
plication specific customizations allow the cache parameters, such
as associativity, line size, cache size, to be adapted to specific appli-
cations and/or their execution phases [1, 18, 7]. Dynamic voltage
scaling (DVS) [6] is another effective technique for power reduc-
tion where the supply voltage and clock frequency are dynamically
adjusted in accordance to the need of the application.

DVS-based techniques are especially useful in applications that
have multiple phases of varying resource requirements. Resources
that are under-utilized at a certain phases can be exploited to fur-
ther reduce energy consumption. There are two different classes
of techniques for doing this. The first class of approaches are re-
active in nature in that they use DVS to slow down or completely
shut down a resource when it becomes under-utilized. The second
category of approaches predict the resource utilization and employ
DVS to exploit the idle capacity of the under-utilized resources to
save energy while maintaining performance. Proposals for each of
these two methods have been made for computational units [13,
2, 9]. For example, an aggressive technique proposed in [6] repli-
cates a logic block number of times with each instance operating
at a lower supply voltage and frequency. In the context of memory
hierarchies, most of the previously proposed techniques are reac-
tive in nature. Examples include selective cache ways [1], drowsy
cache [11] and cache decay [10] mechanism. They generally dis-
able the under-utilized memory resources to save energy.

This paper presents a novel predictive DVS-based energy sav-
ings technique for the memory hierarchy that uses idle banks rather
than shutting them down. We propose the pipelined reconfigurable
instruction memory hierarchy (PRIM) for power constrained em-
bedded processors. Our canonical example of PRIM consists of
an instruction cache with four banks for data storage, where two
banks can be dynamically reconfigured to DVS mode. In DVS
mode, the supply voltage and frequency of the two banks are de-
creased. Moreover, the low-voltage banks are operated as scratch-
pad memory that are explicitly controlled through software. In par-
ticular, frequently executed instructions are loaded and locked into
the two DVS banks. Finally, instruction throughput is maintained
by pipelining and alternating the instruction fetches between these
two banks. To the best of our knowledge, this is the first work



1/2Vdd,1/2f

Normal

Cyc= 20
Thr = 1
P = 2p
En = 40p

Bank1

Instr2
Instr1

Sel-Way

Cyc= 20
Thr = 1
P = 1p
En = 20p

Instr2
Instr1

DVS

Cyc= 40
Thr = 0.5
P = 1/4p
En = 10p

Instr2
Instr1

1/2Vdd,1/2f

DVS-Sel-Way

Cyc= 40
Thr = 0.5
P = 1/8p
En = 5p

Instr2
Instr1

1/2Vdd,1/2f

Pipelined DVS

Cyc= 21
Thr = 0.95
P = 1/4p
En = 5.3p

Instr1 Instr2
Bank2 Bank1 Bank2 Bank1 Bank2 Bank1 Bank2 Bank1 Bank2

Figure 1: Comparison of cache energy savings techniques.

that proposes taking advantage of under-utilized storage resources
to obtain more energy savings instead of disabling them.

Motivating Example. Let us illustrate the intuition behind PRIM
and its advantage over existing cache energy savings techniques
with a motivating example. Consider the execution of a small loop
containing only two instructions from a 2-way set associative cache
for 10 iterations. For simplicity of exposition, let us assume that
each cache block contains only one instruction. Finally, both the
instructions are assumed to be present in the same cache bank.
Figure 1 shows a comparison among the different schemes based
on (1) total cycles for instruction fetch (Cyc), (2) instruction fetch
throughput (Thr), (3) power (P) and (4) total energy consumption
(En) for one complete execution of the loop. We assume 1-cycle
cache latency in normal mode and 2-cycle cache latency in DVS
mode (as DVS mode runs at half the frequency). The dynamic
power of each normal cache bank is p = CV 2f .

In normal mode, it will take 20 cycles to fetch 20 instructions
with a throughput of 1 instruction/cycle. As the normal cache has
two banks, P = 2p and En = 2p × 20. In the selective-way
cache, Bank2 is switched off as all the accesses go to Bank1. So the
selective-way scheme can achieve 50% power and energy reduction
compared to normal cache without sacrificing performance.

A more aggressive technique applies DVS to both the cache banks.
The power requirement of DVS scheme is P = 2×C×(V

2
)2× f

2
=

p
4

. However, as frequency is halved, the instruction fetch latency
increases to 2 cycles and throughput drops to 50% of the normal
cache. The overall energy consumption of DVS scheme is 40×( p

4
),

which is 50% savings compared to selective-way cache. To save
additional power, the unused bank can be switched off in DVS
mode as well leading to DVS selective way cache. Clearly, DVS
selective way has the same performance as DVS scheme but re-
duces energy consumption further by 50%. Our key observation
is that in DVS mode, one cache bank is not utilized and it either
sits idle or gets switched off. Instead of powering down one cache
bank for this loop, PRIM (a) distributes the instructions to the two
cache banks and (b) powers up both the cache banks in DVS mode.
We then propose the use of pipelined instruction fetches to hide the
latency introduced by DVS thereby achieving the one instruction
fetch per cycle throughput of the normal cache. An example of this
pipelined access is shown next.

Cycle : C1 C2 C3 C4 C5 C6 ...
Bank1 : i1 i1 i1 ...
Bank2 : i2 i2 i2 ...

Clearly, the throughput of 1 instruction per cycle is sustained. How-
ever, an accurate next instruction address prediction scheme needs
to be in place in order for this to succeed.

In summary, PRIM has the same power consumption as the DVS
scheme. However, the careful overlapping of accesses to the two
banks reduces the total cycles requirement to 21 (1 additional cycle
is required for pipeline initialization). Thus the total energy con-
sumption for this scheme is En = p

4
×21 = 5.3p, which is similar

to DVS selective way scheme (the best scheme in terms of energy)
while the performance is similar to that of the normal cache. More-
over, with larger loop sizes and greater number of iterations, the
pipeline initialization overhead will become negligible.

a11…a5
fetch_ad

Vdd-Frq
Ctrl

a4 a3 a2:
fetch_ad

pred_hit

pred_adALFU

DVS_hit

Next PC 
predictor

ta
g_

ad
dr

a11..a5
pred_ad

tag address index line offset

T1 T2 T3 T4

= = = =

lb_reg DVS-
Controller&
trace-loader

d1 d2 d3 d4

ub_reg

Index: a10..a4
tag_part

data array

addr

Loop-entry-addr
Loop-exit-addrfetch_ad

+
br_taken

4

2dg

Two DVS banks

Vdd Vdd/2 f f/2

DVS-M

fetch_ad

pred_ad

DVS-M

Ad_Sel

Trace_load

To DVS banks

fetch_ad

2tg

1gd

2tg1tg1tg

≥

≤=

Data
select

Figure 2: PRIM architecture.

The motivating example illustrates that PRIM needs co-operation
from the compiler in statically identifying program phases with
under-utilized cache banks. Once these program fragments have
been identified, the compiler inserts appropriate instructions to load
and lock the content to the cache banks and switch the banks to
DVS mode. At runtime, the execution follows these cache config-
uration hints to switch the cache between normal and DVS modes.

2. THE PRIM ARCHITECTURE
Architectural considerations: We present the PRIM architec-

ture based on a 4-way set associative cache as shown in Figure 2.
PRIM architecture can achieve the following functionalities: (1)
run in DVS mode and normal cache mode according to execution
needs, (2) dynamically switch running modes, (3) reload instruc-
tion blocks to DVS banks at runtime, and (4) fetch instructions
from DVS banks in pipelined fashioned to maintain throughput.
Here we only consider uninterrupted execution of a single applica-
tion that controls PRIM throughout its execution.

Control of DVS mode and normal cache mode: The cache
consists of four data banks, the DVS control logic, the voltage-
frequency controller (Vdd-Frq Ctrl), the address lookup function
unit (ALFU), and the next-PC predictor. Unlike a conventional
cache, the supply voltage of banks d1 and d2 can be dynamically
changed by the DVS controller. When a DVS reconfiguration in-
struction is encountered, the DVS controller loads the appropri-
ate instructions to the DVS banks. DVS controller is essentially
a component of Direct Memory Access (DMA) which is controlled
by processor. It has two inputs: initial address of an instruction
block and number of instructions to be loaded. After loading the
instructions, DVS controller sets the DVS-M register, which in turn
changes the supply voltage and frequency of d1 and d2 to Vdd

2
and

f
2

, effectively reconfiguring the banks to DVS mode.
Instruction searching: The ALFU (address lookup functional

unit) determines if an instruction is residing in the DVS banks or
not. When two banks are configured to DVS mode, the tags cor-
responding to these two banks are completely disabled. In other
words, the DVS banks act as software controlled memory. The
address matching is accomplished inside the ALFU instead of tag
matching in conventional caches. The ALFU contains two address
registers and two parallel comparators. The two registers, ub_reg
and lb_reg, hold respectively the upper and lower bound ad-
dresses for the instruction block that currently resides in the DVS
banks. The values in ub_reg and lb_reg are updated when the
DVS controller loads a block of instructions into the DVS banks.
In the current PRIM design, there is only one pair of ub_reg and
lb_reg. As a result, only one block of instructions may reside in
the DVS banks at any point of time. If the address of the instruction
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to be fetched falls within the range of these two registers, then it re-
sides in the DVS banks and the ALFU generates DVS_hit signal.
This signal controls the selection and gating of the tag and the data
banks. To save dynamic energy, the two normal cache banks and
their tags are not searched if the DVS_hit signal is asserted. On
the other hand, the DVS banks are not searched if DVS_hit signal
is not asserted. This is accomplished by clock gating of the tag and
data banks. The gating signals gt1, gd1 and gt2, gd2 are used to gate
the clock of DVS banks and non-DVS banks, respectively:

gt1 = DVS_mode gt2 = DVS_mode ∧ DVS_hit
gd1 = DVS_mode∧ ∼ DVS_hit gd2 = DVS_mode ∧ DVS_hit

As a result, in DVS mode, only two banks – either DVS banks or
normal cache banks – are accessed at any point of time.

Pipelined parallel instruction fetches: In order to maintain the
throughput of instruction fetches in DVS mode, when an instruction
is fetched from one DVS bank, a speculative fetch is also started in
the other DVS bank. The ALFU will later check to see if the spec-
ulation was successful. If the speculated PC equals that requested
by the processor, the address prediction hit (pred_hit) is asserted
to indicate a successful speculation. Otherwise, it is necessary to
redo the instruction fetch, thereby incurring an overhead of twice
the normal cache’s latency.

>From the above description, one can easily see why it is crucial
to carefully layout the instructions in DVS banks so that sequen-
tially executed instructions can be fetched in parallel from the two
DVS banks. Figure 3 shows an example of the instruction layout.
The left side of the figure is the instruction layout of a loop con-
taining six instructions in main memory. Suppose the sequence of
instruction executed is 1 − 2 − 3 − 4 − 5 − 6 − 1 · · · . To be
able to fetch consecutive instruction in parallel, the odd and even
numbered instructions need to be in different banks. We propose to
layout the instructions in the way shown in right hand side of Fig-
ure 3. Bits 11...5 in Figure 3 are used to address the row of the DVS
banks, while the column selection is determined by the least signif-
icant bit (bit 2 in Figure 3) of cache block index. The instruction
selection from a cache line is decided by two bits 3 and 4.

As the two DVS banks can be configured as two different types
of instruction buffer, namely conventional cache and software con-
trolled memory, the address of two DVS banks need to be selectable
from different address sources according to their mode. This is
achieved by selection signal Ad_Sel. When applications try to load
instruction block into DVS mode, Ad_Sel will select the address
generated by ‘DVS-Controller&trace-loader’ component. If they
are configured as DVS mode and operate on instruction fetching
state, address a11...a5 will be chosen. Otherwise, the address (i.e
cache index) will be selected for conventional cache mode.

The ‘Next PC predictor’ component of PRIM predicts the ad-
dress of the next instruction to be fetched. If a branch is taken, we
assume that we have encountered a loop and the address bound-
ary will be dynamically written to registers ‘Loop-entry-addr’ and

‘Loop-exit-addr’. If the current fetch address is not equal to the
value in ‘Loop-exit-addr’, the next fetch address will be speculated
to be the increment of the current fetch address. Otherwise, the
next fetch address will be the value in ‘Loop-entry-addr’.

3. COMPILER SUPPORT
PRIM requires compiler support to achieve dynamic reconfigu-

ration. The compiler decides which program regions are suitable
for running in DVS mode, inserts appropriate instructions into the
application to switch the two designated banks to DVS mode, and
dynamically loads the selected instructions into the DVS banks.

Our algorithm works on the Loop-Procedure Hierarchy Graph
(LPHG) [14] of the program. The nodes of this graph represent
procedures and loops while the edges between the nodes denote
the call relationship between them.

Algorithm 1: Algorithm for determining dynamic reconfigura-
tion and DVS instruction load points

Input: Proc_list: Procedure list whose procedures have been intra-
procedural optimized

Output: Basic_block_list: list of instruction blocks of basic blocks as-
signed to DVS banks

BOOL conflict : if severe cache conflict incurred;
1 Build Loop-Procedure Hierarchy Graph(LPHG)
2 Get_sizes_of_all_loops();
3 list_loops←− all leaf loops;
4 foreach loop l in list_loops do

if l is leaf loop
V

#iterations of l≥ Thresh_hold then
Annotate_reconfig_point_and_instrs_partitioned(l);

5 else if l is non-leaf loop then
6 list_child_loops←− all child loops of l;
7 Update_iteration_num(list_child_loops);
8 conflict=evalConflict(DV Smode, child_loops_of_l ∪ l);
9 if !conflict then

10 Instr_alloc(list_child_loops ∪ l, DVS-banks);
end

11 if !list_loops.contain(l) then
12 list_loops.push_back(l);

end
end

13 Hoist_reconfig_position();
14 Insert_reconfig_and_code_loading_instructions();
15 return Proc_list;

Our proposed algorithm is shown in Algorithm 1. We assume
that most of the energy consumption due to instruction fetch occur
inside the loops. The intuition is that if the time spent in a loop
is long enough to hide the overhead of reconfiguration and instruc-
tions loading, then that loop is a candidate for allocation into the
DVS banks. Thus we look for loops where the number of iterations
exceeds a threshold. In this paper, we empirically set the threshold
value to be 20 iterations. If the loop size is too big to fit into the
DVS banks, then the cache is used to buffer the rest of for the loop.

In a LPHG, the deeper a loop is, the higher is its execution fre-
quency. The algorithm therefore starts from the leaf loops and
works toward the root node. After a loop has been examined, its
parent loop is added to list_loops (line 12). We may at some later
point examine the parent node for further opportunities. If a loop
is an internal node (line 5), then the algorithm evaluates whether
it is beneficial to configure the cache to DVS mode for its child
loops (line 8). The evaluation function we use is conservative and
simple. If the allocation of a child loop L to DVS banks does not
adversely affect the miss rate of the other children, then the alloca-
tion is considered beneficial. In that case, the cache is configured
to DVS mode at the entry point of the parent loop.

Figure 4 is an example of how the algorithm resolves conflicts,
determines reconfiguration points, and selects the instructions for
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DVS banks. The left part of Figure 4 is a sample program rep-
resented in LPHG, while the right part is its corresponding CFG.
The LPHG consists of the procedure P and five loops A, B, C, D,
E. The numbers beside the loops are the number of loop iterations
while the numbers inside the loops are their sizes in terms of the
number of instructions. Each of the four cache banks can hold up
to 64 instructions. The algorithm first selects the three leaf loops.
Only the number of iteration of E is larger than the threshold value
(20). So the cache is configured to DVS mode at the entry point of
E. We then traverse upward to the parent loops, A and D. As the
number of iterations of D is smaller than the threshold, we will not
use DVS mode for it. Loop A has two children, B and C, and the
total number of iterations of B and C from the point of the entry
of A is now larger than 20. The algorithm then checks whether
there will be severe cache conflicts if B or C is placed in the DVS
banks. As the sizes of B and C are both larger than the remaining
two normal cache banks, allocating either loop to the DVS banks
will cause severe cache conflict to the other loop. It is therefore
prudent to operate A in DVS mode.

The instruction allocation function assigns the frequently exe-
cuted instructions inside the selected loop to the DVS banks (line 10).
If the loop size exceeds the capacity of the DVS banks, then only
the most frequently executed instructions are allocated to DVS banks.

After determining the reconfiguration points and the instructions
selection for the DVS banks, the number of reconfigurations can be
reduced by hoisting the reconfiguration point from the inner loop
to the outer loop (line 13) if L is the only loop selected among its
siblings. Figure 4 shows an example where the DVS configuration
instructions are hoisted to where they are underlined.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Methodology
We used the Simplescalar-PISA 3.0d simulator [5] for our exper-

iments. The full-featured simulator sim-outorder was modi-
fied to support PRIM. The cache line used in the simulation corre-
sponds to 32 bytes. The instruction memory hierarchy consists of
PRIM and the main memory. Our PRIM implementation has four
banks of data storage, each capable of holding 64 instructions. The
latency of accessing L1 cache is 1 cycle. The main memory is as-
sumed to be pipelined. The latency of the first access to the main
memory is 10 cycles, while that of the subsequent accesses is 2 cy-
cles. In our simulation, the Trace_load instructions used to load
instruction blocks to DVS banks are compiled to binary code. We
include the overhead of execution time and cache miss rate increase
caused by these instructions.

We use six benchmarks from the MediaBench and MiBench suites.
We compared the energy consumption and performance across three
different configurations: (1) a baseline system comprising of a tra-

ditional 4-way associative instruction cache, (2) a simple low VDD
scheme (Low-VDD ) (3) a selective way cache [1] (Sel-Way), and
(4) PRIM. We use two voltage settings, 0.5×VDD and 0.8×VDD ,
for different process technologies. We chose selective way cache
for comparison because it disables and puts under-utilized memory
banks into low power mode to save energy.

In our experiments, Sel-Way gates the clock of a certain num-
ber of cache banks if it is under-utilized. To do this, we analyze
the LPHG and put frequently executed loops into certain cache
banks and gate the rest of the cache banks. The instructions of the
frequently executed loops are locked for a certain time interval to
avoid unintentional replacement. Low-VDD scheme simply halves
supply voltage and clock frequency of L1 instruction cache to save
energy while the access latency to the instruction cache is doubled.

4.2 Energy Calculations
We model the energy consumption of the memory hierarchy us-

ing the CACTI [17] model for 0.13µm technology. In this work,
our focus is on reducing dynamic energy consumption. To calcu-
late the energy consumption of PRIM, we include the extra logic
elements not found in a normal cache, namely the ALFU, the Next
PC predictor and the two extra multiplexers. We assume that the
energy consumed by the PRIM’s comparators and multiplexers are
the same as the multiplexers and comparators components of the
normal cache assumed by CACTI. We approximate the energy con-
sumption of an adder or subtractor in ALFU as that of a multiplexer.
These hardware components are powered at regular voltage.

According to CACTI, the total per-access energy of a n way
cache is eC = et + ed + ecom + emux + eout where et, ed,
and ecom stand for the energy per access to all tags, data storages,
and comparators, respectively. emux is the energy consumption of
the multiplexer, while eout is the energy of the output driver. We
rewrite this formula as eC = n× eb + emux + eout where eb is the
energy per access for one cache bank. This includes the per-access
energy for the data and tag of one bank, and a comparator.

According to general energy equation, E = C×V 2×f×t, when
supply voltage and frequency is decreased to V ′, the energy con-
sumption becomes (V ′

V
)2×2f (we define this factor as Cf ) of the

original value. We assume that the energy of the data output drivers
of PRIM will be the same as that of a normal cache since this com-
ponent has to be powered at the regular voltage while that for the
cache banks, comparators and multiplexer is decreased. There are
three ways in which PRIM is accessed. When PRIM is in DVS
mode and the instruction is in one of the DVS banks, PRIM can
deliver it directly from the DVS bank without searching the other
DVS bank, the energy of an instruction fetch is: eD = eb+emux

Cf
+

eout + eO , where eO is the energy overhead per access due to the
extra hardware components described above. It is about 3.5% of
the total per-access energy of the baseline cache. When PRIM is
in DVS mode and the instruction is not in a DVS bank, the other
two cache banks powered at the regular VDD, will be searched. The
per-access energy for this is: e¬D = 2×eb +emux +eout +eO . If
PRIM is in normal cache mode, energy consumption is simply the
energy of the baseline cache plus the overhead: eN = eC + eO .

The last two energy components of PRIM are the energy con-
sumed during the loading of traces, EL, into the DVS banks, and
the energy caused by cache misses. EL is approximated by:

EL =

LX
l=0

sl

B
× eM

where L is the total number of traces loaded, sl is the size of trace
l and B is the size of a cache block. eM is the energy penalty of a



PRIM Sel-Way
base cache(eC ) Low-VDD e¬D eN eD (0.5×VDD ) eD (0.8×VDD ) 1way 2way 3way 4way

0.538 0.144 0.296 0.557 0.065 0.165 0.146 0.277 0.407 0.538

Table 1: Per-access energy consumption (in nJ).

cache miss. Its value is assumed 50 times of energy consumption
of one access to four way baseline cache [18]. Since the DVS con-
troller is only active during instruction trace loading to PRIM, and
because the energy of a cache miss is orders of magnitude greater,
we did not include it in the energy calculations. The total overall
energy consumption due to memory accesses to PRIM is given by:

EPRIM = AD × eD +A¬D × e¬D +AN × eN +AM × em +EL

where AD and A¬D are the numbers of accesses to the DVS banks
and two cache banks respectively when PRIM is in DVS mode,
while AN is the number of accesses to PRIM when it is in normal
cache mode. AM is the number of cache misses.

As with PRIM, for Low-VDD cache, the voltage of data output
driver is assumed normal and the energy consumption of this com-
ponent remains same as that of baseline cache. For Sel-Way cache,
the energy is depend on the number of active cache banks, n, which
is shown as eS = n× eb + emux + eout

Table 1 shows the energy consumption per access to different
architectures. The result of our energy calculation is consistent with
the energy consumption of 32K L1 cache in [12] in which SPICE
was used to simulate the energy consumption. According to [12],
the total energy consumption of 32K L1 cache powere at 1V is
1.055nJ while the energy at 0.5V is 0.1250nJ.

4.3 Experiment results
Performance: The performance results are shown in Table 2.

‘fetch miss’ represents the miss rate of instruction fetch while ‘per-
form overhd’ stands for the performance overhead compared to the
baseline. ‘Pred-miss’ is the miss rate of address prediction of the
next speculatively fetched instruction in DVS mode. Compared to
the baseline cache configuration, we can see some miss rate reduc-
tion achieved by PRIM and Sel-Way schemes for certain bench-
marks. We attribute this to the locking of frequently executed in-
structions, thereby reducing conflict misses. The miss rate of ad-
dress prediction ranges from 0.63% to 8.45% with an average value
of 2.85%. The ‘pred-miss’ rate for mpeg2-dec and pegwit are quite
high. The loops in mpeg2-dec have many procedure calls resulting
in poor locality. For pegwit, there are many control flow transfers
inside the loops which is detrimental to the prediction process.

The performance overhead varies across different applications.
There are mainly four factors affecting the overhead: the latency
of cache accesses, the cache miss rate, the next address predic-
tion miss rate, and the overhead of cache reconfigurations. Low-
VDD suffers from a high performance overhead that averages 125.6%
because of the doubling of the latency in the instruction cache.
PRIM, on the other hand, has a low performance overhead rang-
ing from −6.65% to 2.82%. For the benchmark susan-edge, per-
formance is in fact improved because of the reduction in the cache
miss rate. On the other hand, for the benchmark pegwit, the poorer
performance is due to the penalty of pred-miss and reconfiguration
exceeding the gains from cache miss rate reduction.

Energy consumption: The total dynamic energy consumption
of the four instruction memory hierarchies are shown in Table 3.
We evaluated two PRIM configurations – one that halves VDD and
one that lowers VDD by 20%. In both these configurations, the op-
erating frequency is halved, doubling access times to these banks.
All the schemes achieve significant energy savings compared to

the baseline. The reduction in energy consumption achieved by the
Sel-Way cache is 39.0% for the benchmarks, while that for PRIM
is 56.6% at 0.5×VDD and 45.1% at 0.8×VDD . In other words,
PRIM at 0.5×VDD and 0.8×VDD achieved 17.6% and 6.1% more
energy saving than Sel-Way respectively. Energy savings of PRIM
at 0.8×VDD is smaller than PRIM at 0.5×VDD because the supply
voltage scaling down is more conservative.

Low-VDD achieved an average 56.5% energy savings which is
almost the same as PRIM at 0.5×VDD . However, Low-VDD comes
with significant performance loss as shown in Table 2 because of
the doubling of the cache hit latency. As the result, the additional
energy consumed by other parts of a processor can surpass the en-
ergy savings obtained by instruction memory hierarchy.

Energy savings come mainly from DVS mode access, clock gat-
ing of under-utilized ways, and cache miss rate reduction. Operat-
ing in the DVS mode, PRIM can save more energy than the clock
gating used in Sel-Way. This is evident in the benchmark FFT
where the improvement of PRIM over Sel-Way scheme is very sig-
nificant. In the case of FFT, the cache miss rate is very low and so
cache misses contribute only a small amount of total energy con-
sumption. The main contributor to the total energy is the on-chip
cache access energy which is significantly reduced in PRIM. For
the benchmark susan-edge, the energy improvement of PRIM over
Sel-Way is small. This benchmark has a big loop with a large num-
ber of iterations that is larger than the cache. As a result, it is ben-
eficial to allocate as many cache entries as possible and lock the
instructions of this loop in these cache entries to avoid cache con-
flict. Sel-Way allocates and locks three cache banks for the instruc-
tions in the loop, while our PRIM configuration can only allocate
two cache banks in DVS mode. Sel-Way is therefore able to avoid
more cache conflicts in this benchmark.

Energy delay product: ‘En*delay’ in Table 3 represents nor-
malized energy delay product relative to the baseline cache. PRIM
at 0.5×VDD , PRIM at 0.8×VDD , Low-VDD and Sel-Way achieved
average normalized energy delay product value 0.43, 0.54, 0.93,
and 0.61 respectively. Although Low-VDD achieves significant en-
ergy savings, the energy delay product is about the same as the
baseline cache due to the large performance overhead. PRIM at
0.5×VDD and 0.8×VDD achieved the best energy-delay product
since it can effectively decreased energy consumption with only a
slight performance loss.

5. RELATED WORK
A lot of research have been done on the memory hierarchy with

the aim of saving energy. Schemes were proposed to shut down
certain number of cache ways when the cache is under-utilized [1,
16]. Zhang [18] proposed a highly reconfigurable cache whose as-
sociativity can be dynamically changed.

Many schemes and algorithms utilizing dynamic voltage and fre-
quency scaling have also been developed for low energy proces-
sors. In [13, 2], the worst-case slack time and workload-variation
slack time were exploited using DVS. When the utilization com-
puted based on the WCETs of tasks is lower than 1, it may be
possible to run some of tasks at a slower clock and a lower sup-
ply voltage without delaying their deadlines. Some researchers [2,
8] developed compilation flows that detect code regions for DVS



Baseline Low-VDD PRIM Sel-Way
Benchmark fetch perform fetch pred-miss perform fetch perform

miss(%) overhd(%) miss(%) (%) overhd(%) miss(%) overhd(%)

mpeg2-dec 1.35 107.0 1.30 4.8 -0.03 1.49 3.07
gsm-dec 0.42 121.8 0.40 0.71 0.20 0.41 0.07

susan-edge 2.76 80.9 2.36 1.11 -6.65 2.15 -13.5
FFT 0.06 146.5 0.09 1.42 2.82 0.09 0.85

pegwit 0.38 45.8 0.35 8.45 0.78 0.38 3.54
sha 0.054 252.1 0.35 0.63 1.66 0.046 3.85

Average - 125.6 - 2.85 - - -

Table 2: Miss rate and performance overhead

Baseline Low-VDD (0.5×VDD ) PRIM(0.5×VDD ) PRIM(0.8×VDD ) Sel-Way
Benchmark En(mJ) En(mJ) impr(%) En*delay En(mJ) impr(%) En*delay En(mJ) impr(%) En*delay En(mJ) impr(%) En*delay

mpeg2-dec 34.5 19.43 43.7 1.17 25.6 25.8 0.74 27.55 20.1 0.80 30.26 12.3 0.90
gsm-dec 8.10 3.20 60.5 0.88 3.66 54.7 0.45 4.61 43.0 0.57 4.35 46.3 0.54

susan-edge 2.92 2.02 30.8 1.25 1.89 35.2 0.60 2.00 31.4 0.64 1.98 32.3 0.59
FFT 1.06 0.31 71.0 0.71 0.21 80.0 0.21 0.40 62.0 0.39 0.51 51.5 0.49

pegwit 19.78 7.63 61.5 0.56 7.78 60.7 0.40 10.19 48.5 0.52 11.21 43.4 0.59
sha 7.53 2.16 71.3 1.01 1.25 83.4 0.17 2.58 65.8 0.35 3.89 48.4 0.54

Average - - 56.5 0.93 - 56.6 0.43 - 45.1 0.54 - 39.0 0.61

Table 3: Energy consumption.

and determine the optimal frequency scaling. There are also many
proposals to apply DVS to the memory hierarchy. Kim et. al. [11]
proposed the drowsy cache architecture where cache lines will be
put into drowsy mode if they are not accessed for a certain time in-
terval. This technique is quite similar to the selective way cache [1]
in which under-utilized cache lines are set to a low power mode.
The main difference between them is that the drowsy cache can
hold data when switching between low and normal power modes.
All these previous works tried to disable under-utilized memory
resources to prevent these parts from consuming energy. Instead
PRIM tries to make use of these resource in DVS mode so as to
retain the energy savings while recovering the performance loss.

6. CONCLUSION
In this paper, we propose PRIM, a pipelined, DVS-based dy-

namically reconfigurable instruction memory hierarchy. A number
of ways in a PRIM cache can be reconfigured as low-VDD , low fre-
quency loop buffer. This achieves better energy savings over meth-
ods that disable unused resources for energy reduction. Pipelined
speculative reads are used to maintain the throughput of instruction
fetch in the low-VDD buffer. To support PRIM, we also developed
an algorithm to partition instructions and determine reconfiguration
points. Our experimental results showed significant energy savings
while performance is affected only marginally.
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