
DRIM : A Low Power Dynamically Reconfigurable Instruction Memory
Hierarchy for Embedded Systems

Zhiguo Ge, Weng-Fai Wong
Department of Computer Science,
National University of Singapore

{gezhiguo,wongwf}@comp.nus.edu.sg

Hock-Beng Lim
ST Engineering

limhb@steng.com.sg

Abstract

Power consumption is of crucial importance to embedded sys-
tems. In such systems, the instruction memory hierarchy con-
sumes a large portion of the total energy consumption. A well
designed instruction memory hierarchy can greatly decrease
the energy consumption and increase performance. The per-
formance of the instruction memory hierarchy is largely de-
termined by the specific application. Different applications
achieve better energy-performance with different configura-
tions of the instruction memory hierarchy. Moreover, appli-
cations often exhibit different phases during execution, each
exacting different demands on the processor and in particu-
lar the instruction memory hierarchy. For a given hardware
resource budget, an even better energy-performance may be
achievable if the memory hierarchy can be reconfigured be-
fore each of these phases. In this paper, we propose a new
dynamically reconfigurable instruction memory hierarchy to
take advantage of these two characteristics so as to achieve
significant energy-performance improvement. Our proposed
instruction memory hierarchy, which we called DRIM, con-
sists of four banks of on-chip instruction buffers. Each of
these can be configured to function as a cache or as a scratch-
pad memory (SPM) according to the needs of an application
and its execution phases. Our experimental results using six
benchmarks from the MediaBench and the MiBench suites
show that DRIM can achieve significant energy reduction.

1 Introduction

With the proliferation of portable devices such as mobile
phones, digital cameras, etc, power consumption has become
a major design consideration. As the instructions are fetched
almost every cycle, the instruction delivery system constitutes
a significant portion of the total energy consumption by the
processor. Power consumption affects the battery life and the
heat dissipation of portable devices, which in turns affects
their usability. Thus, designing an energy efficient instruction
delivery system is very important for embedded systems.

Several approaches have been proposed for the reduction

of energy consumption in caches. First, there were propos-
als for customizable and reconfigurable caches that adapt to
the characteristics of a specific application. Cache banks are
shut down and the cache associativity is reconfigured when
necessary in order to decrease energy consumption [18, 1].

Another popular method is the use of scratchpad memories
(SPMs) as energy efficient on-chip buffers [2]. The SPM is
more energy efficient than a cache since it does not require
tag storage and its control logic is simpler. Tag access and
comparison occur with every cache access and therefore con-
sume significant amount of energy. Furthermore, a SPM can
be utilized by the application in such a way that instruction
conflicts are reduced. Mapping frequently used data and in-
structions to pure SPM or hybrid SPM and cache architectures
have also been explored [16, 9]. However, in these studies, the
memory hierarchies were assumed to be fixed.

Other researchers [11, 15] performed design space explo-
rations for the on-chip SPM, utilizing the characteristics of
an given application to further improve the energy savings.
There are two issues with such approaches. Firstly, the de-
sign choices for the memory hierarchy may be limited in re-
ality. Secondly, these approaches failed to take advantage of
the phased behavior of applications during their execution.

In this paper, we propose a novel dynamic reconfigurable
instruction memory hierarchy (DRIM) for embedded systems.
Our proposed architecture consists of four banks of storage,
each of which can be dynamically reconfigured to be part of a
cache or a SPM to suit an application and its execution phases.
We will also describe an algorithm that supports the dynamic
reconfiguration of DRIM and the selection and allocation of
code to be executed from the scratchpad memory. Our exper-
imental results using six benchmarks from the Mediabench
and the MiBench suites show that our framework can achieve
significant energy savings.

The rest of the paper is organized as follows. In Section 2,
we will discuss related works and our contributions. Sec-
tion 3 introduces our DRIM architecture. We then present the
compiler framework and algorithms for partitioning the mem-
ory hierarchy reconfiguration and allocating instruction to the
SPM in Section 4. In Section 5, we present our experimental



methodology and discuss the results. We conclude this paper
in Section 6.

2 Related Work

Several researchers have studied the use of SPM in the in-
struction memory hierarchy, with the aim of saving energy
in embedded systems. Instruction may be statically mapped
into a given instruction memory hierarchy consisting of only
of SPM or a mixture of cache and SPM [16, 9]. Algorithms
to statically partition instructions for a SPM of a given size
(with or without the presence of a cache) have been proposed.
However, these works do not consider dynamic instruction
replacement and the possibility of changing hardware config-
urations. Such schemes suffer from a lack of flexibility and
the SPM is not efficiently used.

Dynamic instruction replacement to improve the utilization
of SPM has also been studied [7, 4, 14]. Different instruction
blocks may occupy and reuse the same SPM entries to im-
prove the SPM’s efficiency. Significantly greater energy sav-
ings can be achieved over the static methods. However, the
above works did not consider tuning the architecture parame-
ters for different applications. Several other researchers stud-
ied the problem of design space exploration so as to find the
best memory hierarchy parameters for a given application. Ge
et. al [11] partitioned the given storage resource budget into
a SPM and a cache, according to the application’s character-
istics. Van der Aa, et. al. [15] performed the exploration for
optimal configurations of the instruction loop buffer given an
application, and mapped selected loops into these loop buffers
so as to reduce the energy consumption.

The existing work on instruction SPM can be classified
into three categories: (i) static architecture with static map-
ping, (ii) static architecture with some dynamic replacement
strategies, and (iii) static architecture exploration with static
mapping. None of these considered the dynamic tuning ar-
chitectural parameters. Kondo et. al. [6] proposed a dynamic
reconfigurable data memory hierarchy consisting of SPM and
cache. However, they did not consider the instruction memory
hierarchy. The main contributions of our work are as follows:

1. We propose a new dynamic reconfigurable instruction
memory hierarchy (DRIM), which enables more flexible
use of a SPM than previous methods. It can be recon-
figured for different applications instead of being tuned
just for a particular program. Furthermore, DRIM can be
reconfigured for the different phases of execution of an
application, so as to minimize the energy consumption
of each phase.

2. We developed a compilation strategy to support this re-
configuration memory hierarchy.

To the best of our knowledge, dynamic reconfiguration of
SPM for instruction memory hierarchy has yet to be studied.

3 DRIM Architecture

SP
M

SP
M

SP
M

ca
ch

e

Tag

Bank 0 Bank 1 Bank 2 Bank 3

Instruction Memory

SP
M

SP
M

ca
ch

e

ca
ch

e

Bank 0 Bank 1 Bank 2 Bank 3

Instruction Memory

reconfigure

TagTagTag

TagTagTag Tag

Current phase
of application

Current phase
of application

Figure 1: Reconfiguring memory at runtime.

Differences between applications as well as between phases
of execution within an application can best be exploited if the
memory hierarchy can be reconfigured. Figure 1 illustrates
the idea of how the DRIM architecture works. In the configu-
ration of DRIM that we designed and studied, we reconfigured
four banks of storage dynamically as cache or SPM.

tag
address

a9...a0

a9

a8

a6..a0

a9..a8

tag address index line offset

T1 T2 T3 T4

= = = =

data
select

SPM
Controller

d1 d2 d3 d4

-

S1

S2

D1

D4

ENB

decoder

SPM_hit

iD
ird

index

addr

SPM_hit

1c 2c 3c 4c

ic

1c 2c 3c 4c

Tag array

Data Array

1c 2c 3c 4cCTR_Reg

ALFU

addr

1rt 2rt 3rt 4rt

1rd 2rd 3rd 4rd

lb_reg

hb_reg

ad
dr

≤

≥

Figure 2: DRIM architecture.

The architecture of DRIM is shown in Figure 2. It con-
sists of the tag logic, the data array, the SPM control logic,
and other logic. The DRIM architecture is based on a four
way associative cache architecture. One important difference
is that tag and data access is controlled by the SPM control
logic and a control register known asCTR_Reg. In Figure
2, theCTR_Regis collectively the four bits,c1, to c4. These
four bits determine the configuration of DRIM. Each bit is
associated with one bank of tag and data storage. If the bit
is one, the corresponding data bank will be configured as a
SPM. Also, the tag bank will be gated, thereby decreasing its
activity, which in turns results in energy savings. The value
of theCTR_Regis manipulated by the processor.

The address lookup functional unit(ALFU) determines
whether an instruction is residing in the SPM or not. It con-
sists of two address registers and two parallel comparators.
The two registers,ub_reg and lb_reg , hold the upper-
bound and the lowerbound addresses for the instruction block

2



that is to reside in the SPM, respectively. If the address of an
instruction to be fetched falls within the range of these two
registers, then it is in the SPM and the ALFU will generate
the SPM_hit signal. This signal controls the selection and
gating of the tag and the data banks. In the DRIM design pre-
sented here, there is only one pair ofub_reg andlb_reg .
As a result, only one block of instructions may reside in the
SPM banks at any one time.

The SPM controller performs the loading of instructions
from main memory into the SPM, as well as the updating of
the upperbound and lowerbound registers.

The tag and data banks are selected or gated according to
the value ofCTR_Reg. The address of the instructions in
SPM will determine which SPM bank should be accessed. For
each tag arrayti, the gate signal isrti:

rti = ∼SPM_hit ∧ ∼ ci = ∼ (SPM_hit ∨ ci)

In other words, all the tag banks will be gated and de-activated
if SPM_hit is asserted. A de-assertedSPM_hit implies that
the instruction to be fetched is not in the SPM. In that case,
only the tags corresponding to the banks configured as cache,
i.e. those whoseci is true, will be searched.

For data arrayi, the corresponding gate signal,rdi is:

rdi = (∼SPM_hit ∧ ∼ ci) ∨ (SPM_hit ∧ Di)

whereDi is the data bank selection signal. If an instruction
is not in SPM, i.e.SPM_hit is false, the data array of the
storage banks configured as cache will be accessed. Other-
wise, i.e. ifSPM_hit is true, the SPM bank containing the
instruction will be selected byDi. The following simple ex-
ample illustrates howDi can be computed: Suppose all four
data banks are configured as SPM and the size of each data
bank is 256 bytes. In this case, bank 1, 2, 3, and 4 will hold
instructions for which the last 10 bits of the addresses are in
the range 0x000 to 0x0FF, 0x100 to 0x1FF, 0x200 to 0x2FF,
and 0x300 to 0x3FF, respectively. Clearly, the two most sig-
nificant bits can then be used as the bank selection signalDi.
The remaining eight bits can be used as the address supplied
to the data banks.

4 Compiler Framework

DRIM requires the compiler’s support to realise its dynamic
reconfiguration. The compiler also has to insert instructions
into an application in order to dynamically load selected in-
structions into the SPM. We have developed a compiler frame-
work that performs these functions.

4.1 Compilation Flow

The structure of our compilation flow is shown in Figure 3.
The inputs are the given application and the storage resource
budget for the instruction memory hierarchy. The outputs are

the partitioning decision for the instruction memory hierarchy
custom-made for the application, and the transformed appli-
cation with an optimized instruction layout. The framework
consists of several steps:

Build CFG and profile program

Intra-Procedural instruction layout optimization

Build LPHG, determine the dynamic
reconfigurations and partition instructions

Transformed Program

C program C compiler

Assembly files

Group instructions assigned to SPM, and insert the
reconfiguration and trace loading instructions

Figure 3: Design Flow

• Profiling the application: First, profiling is used to ob-
tain the runtime characteristics of the application. The
information collected include the execution counts of the
edges of the control flow graphs (CFGs) of all the proce-
dures and the number of the procedure invocations. This
is done by building a CFG for each procedure, and then
adding instructions to instrument each basic block of a
CFG. The instrumented program is executed to get the
required execution statistics.

• Intra-procedural instruction layout optimization: The
goal of this step is to optimize the instruction layout
within each procedure according to the profiling statis-
tics obtained in the previous step. We used the Top-down
Positioning algorithm proposed by Pettis and Hansen
[13] to perform intra-procedural layout optimization.
This step brings the frequently executed basic blocks to-
gether to make it easier to extract a frequently executed
trace.

• Determining the reconfiguration and partitioning in-
structions to SPM: In this step, the application’s runtime
profile is analyzed so as to determine the suitable points
to reconfigure DRIM and the corresponding configura-
tions. At the same time, the instructions blocks are par-
titioned to the dynamically configured SPM banks.

• Grouping partitioned instruction blocks, and inserting
reconfiguration and trace load instructions: After the
preceding step, the architectural configurations for dif-
ferent phases are determined and the instructions are par-
titioned to SPM banks. At this step, we generate code
chunks namely traces by taking out and grouping the in-
struction blocks assigned to SPM. Then, the instructions
for architecture reconfiguration and trace loading are in-
serted into the application. All the instructions in an trace
are contiguous and the whole trace will be loaded into

3



SPM when a loading happens. The jump instructions
might need to be added to maintain the control flow re-
lations between basic blocks.

We evaluate the proposed framework using the Sim-
plescalar tool set [3]. The Simplescalar simulator was ex-
tended to support DRIM. We also built an instruction opti-
mization tool which performs the program profiling and the
intra-procedural instruction layout optimization.

4.2 Dynamic reconfigurations and instruction
replacement

This section describes the second innovation of this paper
other than the DRIM architecture, namely an algorithm to
decide where and when to reconfigure DRIM as well as de-
ciding which instructions should go into the SPM. The recon-
figuration and the instruction allocation are determined by the
phaseal behavior of the execution of an application. Our pro-
posed algorithm is shown in Algorithm 1. The algorithm uses
the Loop-Procedure Hierarchy Graph (LPHG) [10] to repre-
sent a program. The LPHG captures all the loops, and proce-
dure calls of an application as well as their relations. In order
to estimate the cache misses for loops, the sizes of loops in
LPHG are computed (line 2 of Algorithm 1).

We assume that most of the energy consumed by instruc-
tion fetching as well as most of the instruction cache conflicts
occurs inside loops. The intuition is that if the number of
loop iteration are large enough to outweigh the overhead of
the reconfiguration and trace loading, then the loop should be
placed into the SPM. If the loop is too big to fit into the SPM,
then the cache is used to buffer the rest of it.

In a LPHG, the deeper a loop is, the higher is its execution
frequency. The algorithm therefore starts from the leaf loops
and work toward their parent loops. If the number of the loop
iterations is larger than a threshold value, the energy savings
obtained from the usage of SPM will overweigh the overhead
of reconfiguring DRIM. It is then beneficial to reconfigure the
data storage banks into SPM and use it. For this paper, we
empirically set the threshold value to be 30.

6090

A

B:300
C:200

D:500
64 64 64 64

100

E:60060

6090

A

B:300
C:200

C C

64 64 64 64

100

60

EDB,CB,C

SPM SPM

D:500

E:600

Figure 4: Example of loop allocation.

After a loop is examined, its parent loop will be added to
list loops (line 14). The algorithm may at some later point
examine it for more opportunities for reconfiguration. The al-
gorithm therefore proceed one level at a time from leaves up

Algorithm 1 : Algorithm for determining dynamic recon-
figuration and SPM instruction load points

Input : Proc list: Procedure list whose procedures have been intra-procedural
optimized

Output : Basic block list: list of instruction blocks of basic blocks assigned to
SPM

Variablelist loops : the list of loops;
Variablelist child loops : the list of loops;
Build Loop-Procedure Hierarchy Graph(LPHG)1
Get sizesof all loops();2
list loops←− all leaf loops;3
foreach loop l in list loops do4

if ((l is leaf loop) && (#iteration of l≥ Thresh hold)) then
Annotatereconfigpoint and instrspartitioned(l);

else ifl is non-leaf loopthen5
list child loops←− all child loops ofl;6
#banks occcupied = # of banks configured as SPM for loops in7
list child loops;
#free banks = #total banks - #banks occcupied;8
#SPM banks = evaluateConflict(#free banks,9
child loops of l ∪ l);
if (#SPM banks !=0) then10

Instr alloc(list child loops ∪ l, SPM);11
Updatereconfigpoint(l);12

end
if (!list loops.contain(parentof(l))) then13

list loops.addto tail(parentof(l)); //to traverse higher level loops later14
end

end
Hoist reconfigposition();15
Insert reconfigandcodeloading instructions();16
returnProc list;17

to the root. If a loop is an internal node (line 5), then the al-
gorithm will evaluate whether it is beneficial to allocate more
SPM space from the free storage banks (line 9). The evalu-
ation function we used is conservative and simple. If the re-
duction in cache size caused by the allocation of more space
to SPM does not severely increase the instruction miss rate,
then it is considered beneficial. The evaluation function takes
the number of free storage banks for reconfiguration and the
current loop as input. It returns the maximal number of ad-
ditional SPM banks (#SPM banks) which can yield bene-
ficial results.

Figure 4 is a example of how the algorithm evaluates con-
flicts and partitions the instructions. The left part of Figure 4
is a sample loop represented in LPHG, while the right are the
four banks storage resource available. The algorithm first try
to configure one bank as SPM and allocate it to loop E. Each
of the left three child loops (i.e. B, C, D) can fit into the re-
maining three storage banks, i.e. there will not be any conflict.
So, the algorithm will try to configure one more banks as SPM
and move loop D, the loop with the next highest execution fre-
quency, to it. Now, B and C, taken together, is smaller than
the size of the two storage banks, and thus it is safe to take
this configuration. If one more bank is configured as SPM,
then there will only be one bank left to buffer the remaining
loop and other code. It is therefore not beneficial to configure
banks as SPM any more since severe cache conflicts will be
caused with one of the loops.

The instruction allocation function allocates the frequently
executed instructions inside the loop to the allocated SPM

4



(line 11). The instruction allocation function considers two
factors. The first is the size of the loop. If it is larger than
the size of the allocated SPM, then as many instructions as
possible of the loop will be allocated to the SPM. The second
consideration is the execution frequency of instructions. The
most frequently executed instructions will be allocated to the
SPM.

After instruction allocation, all reconfiguration points in-
serted in the child loops by the previous iteration will be
deleted and a new reconfiguration point is added to the en-
try of the loop (line 12). This is because before aSPM_load
instruction loads a block of code, the child loop should not
load another instruction block. There can only be one block
of instructions residing in the SPM. The instructions loaded to
SPM are frequently executed. Therefore care must be taken
to avoid overlapping loops in the SPM.

A: // parent loop

…

B: // child loop

inst B_0

…

inst B_n

blt … B

…

blt … A

T: SPM_load B, n+1

jump U

B: // child loop

inst B_0

…

inst B_n

blt … B

…

A: // parent loop

…

jump T

U:

…

blt … A

T: SPM_load B, n+1

jump U

B: // child loop

inst B_0

…

inst B_n

blt … B

…

jump T

A: // parent loop

…

jump T

U:

…

blt … A

Transform for
SPM loading

Hoist
Reconfiguration

Point

Figure 5: Code transformation for reconfiguration.

Once all the loops are traversed and the reconfiguration po-
sitions and instructions assigned to SPM have been decided,
the instructions for reconfiguration and instruction loading are
inserted. There is an important optimization that can be ap-
plied. The number of reconfigurations can be reduced by
hoisting the reconfiguration point from inner loop to outer
loop (line 15). If a loop does not have any sibling loops,
the reconfiguration at its entry can be hoisted out to its par-
ent loop. An example of this code transformation is shown in
Figure 5. TheSPM_load instruction loads a block of code
into the SPM as well as set up the bound registers.

The last step in the algorithm (line 16), is to group all the
instructions allocated to the SPM for each reconfiguration and
insert the instructions used for reconfiguring the DRIM as
well as loading the instruction blocks to SPM after each re-
configuration yielding the final transformed program.

5 Experimental Evaluation

5.1 Experimental Methodology

We used the Simplescalar/PISA 3.0d simulator [3] for
our experiments. The full-featured simulator in the suite,
sim-outorder , was modified to support DRIM. The cache
line modeled in the simulator is 64 bytes, corresponding to

32 bytes in 4-byte instruction systems. The instruction mem-
ory hierarchy consists only of the L1 instruction buffer (i.e.
DRIM) and the main memory. Our DRIM implementation
has four banks of data storage, each of size 256 bytes. The
latency of accessing DRIM is 1 cycle. The main memory is
assumed to be pipelined. The latency of the first access to
the main memory is 10 cycles, while that of the subsequent
accesses is 2 cycles.

In our experiments, we used six application benchmarks
from the MediaBench [12] and MiBench [8] suites. We com-
pared the energy consumption and performance of executing
each benchmark on two different architectures: (1) a baseline
system comprising of a traditional 4-way associative instruc-
tion cache and (2) a DRIM based system.

We modeled the energy consumption of the memory hierar-
chy using the CACTI [17] model for0.13µm technology. For
the calculation of the energy consumption of DRIM, we in-
cluded the logic elements that perform address checking and
control the SPM. The energy consumption of loading a trace
into the SPM is modeled as the number of SDRAM burst ac-
cesses up to the size of the trace. The dynamic energy con-
sumption per access of different architectures is shown in Ta-
ble 1. ‘1way’, ‘2way’, ‘3way’ and ‘4way’ represents the en-
ergy consumption of the cache portion when DRIM is config-
ured as a combination of 1, 2, 3, or 4 banks cache and the SPM
respectively. ‘SPM’ is the per access energy consumption for
the SPM in DRIM. This is the sum of the energy consumption
for one data bank of the 4-way associative cache and the en-
ergy overhead for accessing the SPM. The energy consumed
by each burst access of SDRAM is 32.5 nJ [5].

DRIM
base cache 1way 2way 3way 4way SPM SDRAM

0.538 0.152 0.283 0.413 0.544 0.133 32.5

Table 1: Per access energy consumption (in nJ).

5.2 Performance Improvements and Energy
Savings

Performance: The performance results are shown in Table 2.
Compared to the baseline cache configuration, the decrease
in the instruction cache miss rate provided by DRIM ranges
from 0% to 40.7% for the benchmarks studied. The average
improvement in the miss rate is 15.6%. This improvement
comes from reconfiguring some storage banks to SPM and
the mapping of the frequently executed instructions into the
SPM for important loops. For the benchmarksmpeg2-dec
andmpeg2-enc , there is no improvement on the miss rate
because they are dominated by small size loops with very
large number of iterations. Such benchmarks performs well
on a pure cache architecture. As a result of the improvement
in miss rates, the execution times of the applications are de-

5



creased by an average of 10.2%.

miss rate(%) execution cycles(K)
Benchmark base DRIM Imprv base DRIM imprv(%)

gsm-dec 0.42 0.40 4.8 7,617 7,603 0.2
gsm-enc 6.10 3.62 40.7 70,076 47,633 32.0
g721-enc 3.09 2.43 21.4 381,509 331,266 13.2

susan-edge2.76 2.03 26.4 2,346 1,962 16.4
mpeg2-dec 1.36 1.36 0.0 27,329 27,427 -0.4
mpeg2-enc 0.11 0.11 0.0 836,006 836,121 -0.0

average - - 15.6 - - 10.2

Table 2: Miss rate and Performance

Energy consumption: The total energy consumption of the
two instruction memory hierarchies are shown in Table 3.
Compared to the baseline cache cofiguration, the reduction
in the energy consumption provided by DRIM ranges from
14.3% to 65.2% for the benchmarks studied. The average re-
duction in the energy consumption is 41%.

gsm- gsm- g721- susan- mpeg2- mpeg2-

dec enc enc edge dec enc

baseline(mJ)8.39 98.34 558.52 3.27 37.39 1,019.7

DRIM(mJ) 4.60 53.84 336.3 2.08 32.04 354.75

improv(%) 45.2 45.2 39.8 36.5 14.3 65.2

Table 3: Energy consumption.

There are two major reasons for the reduction in energy
consumption. First, the instruction cache miss rate has im-
proved. The per access energy consumption of SDRAM is
much higher than that of the cache and SPM. Thus, fewer
cache misses will translate to energy savings. Second, the
per access energy consumption of the SPM is lower than
that of the cache. By configuring one or more instruction
storage buffer as SPM and loading the frequently executed
instructions into them during the program execution, sig-
nificant energy savings can be obtained. For example, al-
though there were no miss rate reduction formpeg2-dec
andmpeg2-enc (as shown in Table 2), there is actually en-
ergy savings. mpeg2-enc has a higher energy reduction
thanmpeg2-dec since its miss rate is very low and the en-
ergy consumption is dominated by on-chip instruction buffer
accesses. By reconfiguring on-chip storage buffer banks as
SPM, the total energy consumption is decreased significantly.

6 Conclusion

In this paper, we proposed a low power dynamically reconfig-
urable instruction memory hierarchy, called DRIM, for em-
bedded systems. The on-chip instruction storage banks can
be reconfigured as SPM or cache for different applications as
well as different phases of the application’s execution. We

also developed a compilation flow to support DRIM. Our ex-
perimental results showed significant energy savings as well
as satisfactory performance improvement. We believe that our
approach is more flexible than previous schemes and can be
easier applied to embedded systems.

References
[1] David H. Albonesi. Selective cache ways: on-demand cache resource

allocation. InProceedings of MICRO-32, pages 248–259, 1999.

[2] Rajeshwari Babakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and
Peter Marwedel. Scratchpad memory: A design alternative for cache
on-chip memory in embedded systems. InProc. of CODES ’02, pages
73–78.

[3] Doug Burger and Todd M. Austin. The simplescalar tool set, version
2.0. Technical Report #1342, University of Wisconsin-Madison Com-
puter Sciences Department, May 1997.

[4] Andhi Janapstya et. al. Hardware/software managed scratchpad mem-
ory for embedded system. InICCAD’04, 2004.

[5] Aviral Shrivastava et. al. Compilation techniques for energy reduction
in horizontally partitioned cache architectures. InProc. of CASES’05,
pages 90–96, 2005.

[6] Kondo M et. al. SCIMA: Software controlled integrated memory archi-
tecture for high performance computing. InProc. of ICCD’2000, pages
105–111, 2000.

[7] M. Balakrishnan et. al. Reducing energy consumption by dynamic
copying of instructions onto onchip memory. InProc. of ISSS’02, pages
213–218, Kyoto, Japan, October 2002.

[8] Matthew R. Guthaus et. al. Mibench: A free, commercially representa-
tive embedded benchmark suite.IEEE 4th Annual Workshop on Work-
load Characterization, December 2001.

[9] Federico Angiolini et.al. A post-compiler approach to scratchpad map-
ping of code. InProc. of CASES ’04, pages 259–267, September 2004.

[10] Yanbing Li et.al. Hardware-software co-design of embedded reconfig-
urable architectures. InProc. of DAC ’00, pages 507–512.

[11] Zhiguo Ge, Weng Fai Wong, and Hock Beng Lim. A reconfigurable in-
struction memory hierarchy for embedded systems. InProc. of FPL’05,
pages 7–12, 2005.

[12] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A tool
for evaluating multimedia and communications systems.In Proceed-
ings of the Micro-30, December 1997.

[13] Karl Pettis and Robert C. Hansen. Profiling guided code positioning.
In Proc. of PLDI’90, pages 16–27.

[14] Ranjiv A. Ravindran. Compiler managed dynamic instruction place-
ment in a low-power code cache. InProc. of CGO’05, pages 179–190.

[15] Tom van der Aa et al. Instruction buffering exploration for low energy
vliws with instruction clusters. InProc. of ASP-DAC’04, pages 824–
829, 2004.

[16] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Cache-aware
scratchpad allocation algorithm. InProc. of DATE ’04, pages 1264–
1269.

[17] Steven J. E. Wilton and Norman P. Jouppi. Cacti: An enhanced cache
access and cycle time model.IEEE Journal of Solid-State Circuits,
31(5):677–688, May 1996.

[18] Chuanjun Zhang, Frank Vahid, and Walid Najjar. A highly configurable
cache architecture for embedded systems. InProc. of ISCA-30, pages
136–146, 2003.

6


