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Abstract. As process technology scales down, power wall starts to hinder im-
provements in processor performance. Performance optimization has to proceed
under a power constraint. The co-optimization requires exploration into a huge
design space containing both performance and power factors, whose size is over
costly for extensive traditional simulations. This paper describes a unified model
covering both performance and power. The model consists of workload parame-
ters, architectural parameters plus corresponding power parameters with a good
degree of accuracy compared with physical processors and simulators. We apply
the model to the problem of co-optimizing the power and performance. Concrete
insights into the tradeoffs of designs for performance and power are obtained in
the process of co-optimization.

1 Introduction

The tradeoffs between power and performance especially in embedded processors have
attracted much attention. Although there have been many analytical models and sim-
ulators which address power or performance issue separately, there is still a need for
a holistic model that provides insights into complex tradeoffs in an integrated manner.
Because of the complexity, even integrated models tend to focus on a few processor
components such as pipelines or the instruction queue without offering a system-wide
view.

In order to arrive at a more realistic system-wide view of the power-performance
trade-off, we proposed an integrated model based on a previous performance model
of superscalar processors. In that model, nearly all major processor components in-
cluding instruction classes, instruction dependencies, the cache, the branch unit, the
decoder unit, the central instruction buffer, the functional units, the retirement buffer,
the retirement unit, and instruction issue policy were modelled. Later, we extended the
model to out-of-order-issue processors. We further extended this performance model by
linking the performance metrics with the dynamic capacitance of each processor com-
ponents, thereby deriving the power consumption for each of the processor components
and finally the processor as a whole. The major component of static power, leakage
power [1, 7] was also incorporated in the model.
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We validated this model by comparing its predicted power consumptions with sim-
ulation over the same benchmarks using Sim-Wattch [4] and the results are on average
within 10.9% accuracy. The average power consumption obtained by our model agrees
with the measured result reported by Synopsys Power Compiler with a power library
from Virginia Tech [12]. Our average result also agrees with analytical outcome of the
Berkeley Advanced Chip Performance Calculator (BACPAC) [13].

We explain the definitions and results of the performance model in Section 3. We
then present our power model in Section 5 and show how it is combined with the per-
formance model. Section 6 describes the validation results. In Section 7, we interpret a
co-optimization issue. Then we depict how the combined model handles the issue and
other concrete tradeoffs for co-optimization. This is followed by a conclusion.

2 Related Work

The performance component of our model resembles that of Noonburg and Shen [9] in
terms of the similar separable components. Part of our model, namely the modelling of
the instruction window, is based on the work of Pyun et. al. [10]. We go beyond their
work by proposing a comprehensive model that accounts for all the key components of
a state-of-the-art superscalar processor.

In addition to many traditional issues such as performance, area, cost and reliability,
power consumption has been recognized as a major concern of architects of portable
and embedded computer processors. High level models have been proposed to identify
areas of significant power density modelled by Cai [5]. The BACPAC calculator [13]
also falls into the category. Bergamaschi and Wang [2] added power states and symbolic
simulation into the calculation. These models are based on architectural complexity in
terms of gate equivalents, activities in a circuit, instruction-level costs, behavior-level
abstraction, or system-level power estimation. However, they did not consider power-
performance tradeoffs in an integrated way.

Some unified approaches to address both the power and performance have been
proposed recently. Brooks et. al. [3] introduced a measured metric called the power-
performance efficiency. Conte et. al. [6] separated architectural and technology com-
ponents of dynamic power, and used a near-optimal search to tailor a processor design
to different benchmarks. While Conte’s model used the trace-driven simulation to col-
lect high level statistics about pipeline stages, our model dwells into greater details of
each processor component. Their approach only considers a subset of the parameters
accounted for in our integrated model. Most importantly, they do not account for the
clock frequency. Some other unified approaches addressed part of parameters in our
model. Srinivasan et. al. [11] focused on the pipeline optimization in terms of the best
power-performance efficiency. Moreshet and Bahar [2] centered on the instruction issue
queue.

A recent work [16] briefed the model to integrate power and performance in an ex-
tended abstract. Another more recent work [17] focused on the co-optimization process
without full details of proofs for the analytical model. In this paper, besides full details
of the models, we provide for the first time, a generic solution to non-linear recurrences
involved in the analytical model.
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3 Performance Model

A multiple-class multiple-resource (MCMR) system is a queuing system where there
are several classes of customers, each requiring a particular set of resources to ser-
vice. To model a generic superscalar processor, we used a network of MCMR systems.
Each stage of the pipelines contributes to the final results of the processor. The lowest
throughput of all the pipeline stages is the bottleneck of the entire processor and deter-
mines the maximum possible throughput of the processor. We shall now recall the main
results of the performance model.

The throughput of the processor Θ is the minimum of the service rates of decoder
unit (μdec), central window (μwin), and retirement unit (μret):

Θ = min{μdec, μret, μwin}. (1)

Let Wdec denote the decode width, i.e. the maximum number of instructions that
can be decoded in one cycle. Let Ibr be the average number of (non-branch) instruc-
tions between two branch instructions (inclusive of one of the branches), Tbr be the
misprediction penalty time (the time taken to fetch and decode the correct instructions),
pins,miss be the instruction cache hit ratio, tins,pen be the instruction cache miss penalty
time, and pbr,prtd be the probability of a correct branch prediction. If Ibr < Wdec, the
average decoding rate without overflow in the central window, μdec is:

μdec = C1
C2+C3×tins,pen×pins,miss

. (2)

where C1, C2, and C3 are linear functions of Ibr, Tbr, Wdec, and pbr,prdt. The rest cases
for Ibr and Wdec relations are available in [15].

Let Wret denote the retire width, i.e. the maximum number of instructions that can
be retired in one cycle. Let D be the average dependence distance (inclusive of one of
the instruction in the dependence) between two instructions that have a data dependence
relation. Under an in-order retirement policy, the average retirement rate for D < Wret

is given below:

μret = (2×D)/(1 + Tdep) , (3)

where the average time for an antecedent instruction to pass through functional units is:

Tdep = [
type∑

i

(ti × Si)] × (1 + P dep) . (4)

where type ∈ {ieu, fpu, lsu, br} is the set of types of functional units in the pro-
cessor, namely the integer execution unit, the floating point unit, the load store unit
and the branch unit. Si ∈ [0, 1] is the fraction of the total number of instructions that
is executed on functional unit i for a given benchmark, and ti is the average service
time of each functional unit of type i. Typically, tieu ∈ {1, 2}, tfpu ∈ {3, ..., 6},
tlsu = pd,prtd + tdat,pen× (1−pd,prtd) and tbr = pi,prtd + tins,pen× (1−pi,prtd). The
parameters pd,prtd, pi,prtd ∈ [0, 1] represent the probabilities of the data cache predic-
tion and the instruction cache prediction, respectively. These parameters are determined
by benchmarks. Thus, they vary from one benchmark to another one.
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In the model, the central window works as the instruction buffer. Instructions stay
in the central window after they are decoded until they are issued. For out-of-order
processors, any independent and ready instruction in the instruction window may be
dispatched to an available functional unit. Given ρk,t(Zwin) as the probability that k
instructions of type t are issued from the window of size Zwin, then:

μwin =
∑type

t

∑Ft

k=1(ρk,t(Zwin) × k) . (5)

and ρk,t(Zwin) = Pk,t(Zwin) × φpipe,t(k), where Pk,t(Zwin) is the probability that
k independent instructions are extracted from Zwin instructions and φpipe,t(k) is the
probability that at least k pipeline units of type t are available [10, 15].

So, Pk,t(Zwin) = Pk−1,t(Zwin − 1)×p
(Zwin−1)
t +

+Pk,t(Zwin − 1)×(1 − pZwin−1
t ) . (6)

4 Solving the Recurrence

Let us solve the above challenging non-linear recurrences (6) by abstracting the type t
from it. In other words, we shall consider the simpler but an equivalent description of
the non-linear recurrences.
Initial cases (INI): P1(1) = 1 and Pi(j) = 0, ∀ i > j;
Recursive case (REC): Pk(Zwin) = Pk−1(Zwin − 1) × pZwin−1 + Pk(Zwin − 1) ×
(1 − pZwin−1)
where k and Zwin are natural numbers, and p ∈ [0, 1]. In practice, usually k ∈ {1, ...,
10} and Zwin ∈ {4, ..., 20}.

First, we show that the above recurrence has a finite number of iterations by deter-
mining the degree of the polynomial Pk(Zwin) in variable p for any parameter k and
Zwin. Moreover, for some particular cases, we can even point out the analytical form
of that polynomial. For the polynomial P (X) given by a0+ a1X+ ... +amXm, the
following notations can be done:

• deg(P ) = m if am �= 0, that is, m is the maximum exponent of P with a non-zero
coefficient. In this case, am is called the dominant coefficient;

• deg(P ) = m if am �= 0, that is, m is the maximum exponent of P with a non-zero
coefficient. In this case, am is called the dominant coefficient;

Lemma 4.1. The following relations hold for any k ≥ 2 and Zwin ≥ k:

(a) P2(Zwin) =
Zwin−1∑

i=1

pi ×
i+1∏

j=Zwin−1

(1 − pj);

(b) Pk(Zwin) =
Zwin−k+1∑

i=1

Pk−1(Zwin − i) × pZwin−i ×
Zwin−i+1∏

j=1

(1 − pZwin−j).

Proof. (a) Considering the identity (REC) for k = 2, it follows that P2(Zwin − i) =
pZwin−1−i + P2(Zwin − 1 − i) × (1 − pZwin−1−i), for any i ∈ {0, ..., Zwin − 2}.
According to (INI), the identity for Zwin − 2 is P2(2) = p. By replacing P2(2), ...,
P2(Zwin − 1), in this order, in the previous identities, it results the identity (a).
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(b) The identity is still a recurrence, but it is depending only in termsPk−1(Zwin−i),
that is, both arguments are smaller than Pk(Zwin). Considering the identity (REC) for
Zwin, Zwin−1, ..., k, it follows that Pk(Zwin−i) = Pk−1(Zwin−i−1)×pZwin−i−1+
Pk(Zwin − i − 1) × (1 − pZwin−i−1), for any i ∈ {0, ..., Zwin − k}. According to
(INI), the identity for Zwin − k is Pk(k) = Pk−1(k − 1)× pk−1. By replacing Pk(k),
..., Pk(Zwin − 1), in this order, in the previous identities, it results the identity (b).

The following result ensures the finiteness of (REC) by specifying deg, minDeg, as
well as the dominant and subordinate coefficients for the polynomial Pk(Zwin).

Theorem 4.1. The following relations hold for any k ≥ 2 and Zwin ≥ k:
(a) deg(Pk(Zwin)) = Zwin(Zwin−1)

2 and the dominant coefficient of Pk(Zwin)

is (−1)k+n
(

Zwin−2
k−2

)
;

(b) minDeg(Pk(Zwin)) = k(k−1)
2 and the subordinate coefficient of Pk(Zwin) is 1.

Proof. We proceed by induction on k ≥ 2.

Base: k = 2. According to identity (a) of Lemma 4.1, the highest exponent of p in
P2(Zwin) corresponds to p× p2× ... ×pZwin−1, so deg(Pk(Zwin)) = Zwin(Zwin−1)

2 .

Moreover, the dominant coefficient is (−1)
Zwin(Zwin−1)

2 . The subordinate coefficient,
as well as minDeg, can be easily obtained by considering i = 1 in identity (a) of
Lemma 4.1.

Inductive Step: We suppose that (a) and (b) hold for any Pk′(Z ′
win), where k′ < k,

Z ′
win < Zwin. Considering the identity (b) of Lemma 4.1, the subordinate coefficient

can be obtained by taking i = Zwin − k + 1, that is, according to the inductive hypoth-

esis, p
(k−1)(k−2)

2 × pk−1 = p
k(k−1)

2 .
To compute the dominant coefficient for Pk(Zwin), we need to sum all the dominant

terms for i = 1 to Zwin − k + 1. According to the inductive hypothesis, the dominant

term of Pk−1(Zwin − i) is (−1)k+Zwin−i−1×
(

Zwin−i−2
k−3

)
× p

(n−i)(n−i−1)
2 , ∀ i ∈ {1,

..., Zwin − k+1}. Applying the identity (b) of Lemma 4.1, it follows that the dominant

term of Pk(Zwin) is (−1)k+Zwin ×
k−3∑

i=Zwin−3

(
i
k−3

)× p
Zwin(Zwin−1)

2 . Based on the

obvious combinatorial identity
(
m
j

)
=

(
m−1
j

)
+

(
m−1
j−1

)
, it follows that

(
Zwin−2
k−2

)
=

(
Zwin−3
k−3

)
+

(
Zwin−3
k−2

)
= ... =

k−3∑

i=Zwin−3

(
i
k−3

)
. Therefore, (a) and (b) hold for the

general case.

The analytical form of the polynomial Pk(Zwin) is very hard to be obtained. However,
there are two general forms which allow that (Theorem 4.2).

Theorem 4.2. For any k ≥ 2, we have Pk(k) = p
k(k−1)

2 and Pk(k + 1) = (1 − k)

p
k(k+1)

2 +
k(k+1)

2 −1∑

i= k(k−1)
2

pi.
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Proof. Taking Zwin = k in (REC), it follows that Pk(k) = Pk−1(k − 1) × pk−1. By
iterating this relation for k ≥ 1, it follows that Pk(k) = P1(1)× pk−1× ... ×p2 × p =
p

k(k−1)
2 .

For obtaining Pk(k + 1), we proceed by induction on k. The case k = 2 holds
obviously. According to (REC), we have Pk(k + 1) = Pk−1(k)× pk+ Pk(k)× (1 −
pk) = Pk−1(k)× pk+ p

k(k−1)
2 × (1 − pk). According to the inductive hypothesis, this

can be continued by p
(k−1)(k−2)

2 +k+ p
(k−1)(k−2)

2 +1+k+ ... +p
k(k−1)

2 −1+k− (k − 2)×
p

(k−1)(k−2)
2 +k+ p

(k−1)(k−2)
2 − p

(k−1)(k−2)
2 , which is equivalent to what was needed to be

proved.

5 Power Model

The power consumption of a resource consists of a dynamic and a static component, i.e.,
πtot,res = πstatic,res+πdyn,res. The static portion is given by πstatic,res = Istatic,res×
Vdd. The leakage current Istatic,res is an exponential function of threshold voltage Vt

(in mV) by Sylvester and Keutzer [14]:

Istatic,res = 10 × ω × 10−Vt/95. (7)

where ω is the device width in micro meter. According to the formula, the static power
increases with the downsizing process technologies. For any technology node, the static
power takes a usually stable portion of the total power. Khouri and Jha [7] summarized
the ratios of the static power over the total power based on 6 different circuits, which
are listed in Table 1.

For the dynamic power component, which is dependent on workloads, we used a
model that is similar to that of several recent studies [2], [8]. We model dynamic power
as a function of dynamic capacitance (Cres), the supply voltage (Vdd) and the clock
frequency (Ω):

πdyn,res = Cres × V 2
dd × Ω . (8)

For each component of the processor, the capacitance is obtained by either using
the same empirical formulas used by Sim-Wattch or by means of summing up the
bit stream changes. With total dynamic capacitance and number of accesses of a
resource, we can obtain the dynamic capacitance per access to the resource (Ca,res)

Table 1. The Proportions of Leakage Power in Total Power

Tech. stat. pwr. /tot. pwr. stat. pwr./tot. pwr. Vdd

without leakage opti. with leakage opti.
0.35μm 9.8% 6.6% 3.3
0.18μm 22.6% 11.7% 1.8
0.13μm 43.4% 26.9% 1.5
0.10μm 48.1% 25.5% 1.2
0.07μm 56.2% 25.1% 0.9
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for each benchmark. The values of the various Ca,res used by the model are shown in
Table 3.

The total power of a processor is the sum of the power consumption by each re-
source/component.

πdyn,tot = πwin + πret + πdec + πieu + πfpu + πlsu + πbr+
+πicache + πdcache . (9)

6 Validation of Models

The earlier version of the performance model was for in-order-issue processors, and
it was validated against the results measured physically on an UltraSPARC processor
with an average error of 5.1%. This performance model was extended to out-of-order is-
sue processors, and validated with SimpleScalar out-of-order issue simulated processor
with a small average error of 5.9%.

As further validations, we also compared our results with those of other power mod-
els. The BACPAC [13] calculator shows that the typical power consumption is 24.03
watts for a 5-million-transistor processor running at 600MHz and Vdd of 2.5V. The
power consumption is close to the averaged analytical power of 27.38 watts. Using the
same Vdd, clock frequency and a 0.25μm technology based power library by Sulistyo
and Ha [12], we also obtained a total power of 32.1 watts reported by the Synopsys
Power Compiler. for a similar RISC processor design in the scale. More details of the
validations are available in [17].

The inputs to the performance model are given in Table 2. The capacitance param-
eters from Table 3 are inputs to our power model. Our architectural analysis yields
values of Na,req,res: Na,req,win = 6, Na,req,regfile = 2 and Na,req,dec = Na,req,ieu =
Na,req,fpu =Na,req,lsu =Na,req,br =Na,req,icache =Na,req,dcache =1. We assume the
service rate of register file equals the one of retirement unit, that is μret = μregfile.

Table 2. Benchmark Characteristics for the performance model

Bench. bzip2 equake mcf mesa vpr
Sieu 45.7% 26.3 % 39.4 % 42.2 % 43.6 %
Sfpu 0.0% 15.3% 0.0 % 7.0 % 5.6 %
Sbr 15.9% 6.1% 2.7 % 1.0 % 1.0 %
Slsu 28.5% 41.5% 48.2% 53.4 % 53.4 %
D 1.996 1.955 2.016 1.873 1.911
Ibr 7.26 6.69 3.65 4.18 4.74

P dep 0.562 0.504 0.620 0.425 0.589
Tdep 1.972 2.403 2.085 2.248 2.187

p 0.438 0.4962 0.3802 0.5755 0.5178
q 0.991 0.975 0.995 0.95 0.983

pins,miss 0.0110 0.0343 0.0038 0.0296 0.0067
pdat,miss 0.0227 0.0552 0.1589 0.0221 0.0820



Co-optimization of Performance and Power in a Superscalar Processor Design 875

Table 3. Capacitance (in 10−10 farad) Primitives for Our Power Model

Bench. bzip2 equake mcf mesa vpr
Ca,win 0.631 0.898 1.004 0.762 0.769

Ca,regfile 2.665 3.806 4.527 3.330 3.590
Ca,dec 0.421 0.603 0.614 0.485 0.501
Ca,ieu 16.32 24.09 26.18 19.56 20.33
Ca,fpu 16.32 24.09 26.18 19.56 20.33
Ca,lsu 2.527 3.981 4.087 3.912 3.035
Ca,br 38.90 53.14 37.39 28.84 43.83

Ca,icache 2.751 3.911 3.846 3.152 3.194
Ca,dcache 17.09 27.02 27.72 27.35 24.33

7 Co-optimization Applications of the Models

We shall now show by examples how the model can be used to explore the design space
to reach a co-optimized solution.

A Co-optimization Issue: To co-optimize power and performance, we need to min-
imize πdyn,tot in (10), while maximizing the throughput in terms of number of in-
structions per second, i.e. Θ × Ω. Firstly, we let the user set an upper limit, πU say,
i.e. πdyn,tot ≤ πU . Within this constraint, we seek to maximize Θ in (1) along with
varying Ω. In short, this approach is to maximize the throughout under a power
budget.

In order to obtain the configuration with the least energy consumption for a com-
putation, we look for the minimal total energy to finish the task whose number of in-
structions is ni. Let πu,x be the upper power limit for the x-th optimization case, the
constraint πdyn,tot ≤ πu,x ≤ πU should hold when seeking for the maximum per-
formance θ × Ω. If such a case x exists, then the time to execute the application is
ni/(θ×Ω). Consequently, this will also yield the minimal total energy, at the x-th case
where the power is πdyn,tot:

Ex = ni × πdyn,tot/(θ × Ω) (2)

Impact of Clock Frequency: We will now use bzip2 as an example to show how
co-optimization is achieved. To begin, we set an upper bound on the dynamic power,
πdyn,U = 25 watts. The co-optimized solution is obtained by the following search pro-
cedure:
1. Read the performance values of 256.bzip2 from Table 2: {Sieu = 0.457, Sfpu =
0.0, Slsu = 0.285, Sbr = 0.159, D = 1.9960, Ibr = 7.26, pdep = 0.562, pins,miss =
0.0110, pdat,miss = 0.0227, pd,prtd = 1−pdat,miss, pi,prtd = 1−pins,miss, pbr,prtd =
1 − pins,miss}. These benchmark specific parameters along with architectural parame-
ters {tieu = 1, tfpu = 3, tdat,pen = 3, tins,pen = 2, Zwin = 8, type = 4, Wdec = 4}
are fed into (2), (3) and (5) to obtain μdec, μret, and μwin then μlsu = μdec × Slsu,
μicache and μdcache.
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2. For the power constraint on the dynamic power, πu,x from 25 watts down to 1 watt
in steps of −1 watt do:

2.1. For each clock frequency Ω from 100 to 600 MHz at a step of 100 MHz, we
repeat the following steps to obtain the maximum performance θ × Ω under the power
constraint of 25 watts.

2.1.1. With the above performance service ratios of resources and Ω, we obtain πres

in (8), where Ca,res is obtained from Table 3.
2.1.2. Sum up πres for all components. If the total πdyn,tot is less than πu, then we

have found a configuration within the constraints. We also note down the performance
θ × Ω and πdyn,tot.
3. Find the maximum of θ × Ωi and its associated πdyn,tot and Ωi.

Impact of Leakage Power: Using our model, we can study the impact of leakage
power on the maximum clock frequencies and dynamic power consumptions If we
vary the clock frequencies while keeping the rest parameters fixed, we can obtain clear
changes in both leakage power and dynamic power. We find the leakage power without
optimization grows consistently along with the reduction of feature size. For the tech-
nology node of 0.07μm, the leakage power overtakes the dynamic power as the dom-
inant power factor. This trend hinders the increase of clock frequencies which ranges
from 400 Mhz for 0.35μm technology to 3 Ghz for 0.07μm technology. With optimiza-
tions [7] on leakage power, the total power budget can be more effectively spent on
the dynamic power consumption. The leakage power will be kept lower than the dy-
namic power. The maximum clock frequency for 0.07μm technology can be improved
to 5.2 Ghz.

Projection of Minimum Dynamic Power: We also apply our model to gauge the min-
imum dynamic power for different benchmarks. We keep the processor configuration
fixed, and seek for a possible low for a certain workload. In practice, we use the service
rates of resources μres and the capacitance primitives of resources Ca,res in Table 3
to obtain the dynamic capacitances of resources Cres. The dynamic power πdyn,res is
obtained by feeding Cres, Vdd and Ω into Equ. (8).

For example, the minimum Ca,win for the instruction window is 0.631 (10−10 farad)
in Table 3, and the minimum μwin for the instruction window is 1.548. Along with the
average number of access to the instruction window per request, Na,req,win = 6, we
obtain the minimum Ca,win as Ca,win = 0.631× 10−10 × 1.548× 6 ≈ 5.861× 10−10.
Then the minimum πdyn,win = 5.861 × 10−10 × 2.52 × 600 × 106 ≈ 2.198 watts.
The minimum total dynamic power of 15.81 watts is found by repeating the above
process for all the resources. This bound implies that the processor dynamic power can
be reduced to lower than the bound with proper scheduling and choice of workloads.

8 Conclusion

In this paper, we raise an approach to power and performance co-optimization using
our unified model accounting for both issues. Validation against an established power
simulator using large SPEC2000 benchmarks indicates the accuracy of the model. The
results are also in agreement with previous analytical studies and experimental results.
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In the process of co-optimization, we showed the impact of leakage power on the
performance improvements for different technology nodes. We also obtained a bound
of the minimum dynamic power. In addition, we found that the clock frequency is
the dominant factor compared to the cache, instruction window and functional units
in improving performance under dynamic power constraints. These results illustrate
our model is a useful tool for designers to make power-aware decisions at early stages
of co-optimization.
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