
Optimal Placement-aware Trace-based Scheduling of Hardware
Reconfigurations for FPGA Accelerators

Joon Edward Sim, Weng-Fai Wong
School of Computing

National University of Singapore
{esim, wongwf}@comp.nus.edu.sg

Jürgen Teich
Department of Computer Science

University of Erlangen-Nuremberg, Germany
teich@cs.fau.de

Abstract

Modern use of FPGAs as hardware accelerators involves
the partial reconfiguration of hardware resources as the ap-
plication executes. In this paper, we present a polynomial
time algorithm for scheduling reconfiguration tasks given
a trace of actors (invocations of hardware kernels) that
is both provably optimal and placement-aware. In addi-
tion, we will propose a dependence analysis to determine
whether for each actor instance, a reconfiguration task is
needed prior to its execution in hardware. A case study
using the H.264 encoder is presented to compare our algo-
rithm against the state-of-the-art heuristics.

1 Introduction

One of the key challenges in achieving real speedups
using in FPGA-based reconfigurable architectures is that
hardware reconfiguration of today’s massive FPGAs can be
very costly. The configuration cost need to be be amortized,
so that all benefits of hardware acceleration may not be lost
as the application has to wait for reconfiguration to com-
plete. Configuration prefetching [7] seeks to address this
problem by overlapping (partial) reconfiguration with the
execution of the application in FPGA. However, a prefetch
miss is costly because of the additional reconfigurations that
may be needed to recover from the miss. Therefore, the
scheduling of reconfiguration is crucial.

In this context, this paper solves the following problem.
Given a sequence (trace) of actors (an invocation of a hard-
ware module):
• Determine whether for a given actor in the trace, it is

necessary to schedule a reconfiguration task before it.
• Compute the earliest possible time a required recon-

figuration task may be scheduled. For the current tech-
nology, at most one reconfiguration task is typically
allowed at any time.

In essence, we will present a polynomial-time (in terms of
the length of the trace and the number of distinct hardware

modules) algorithm that schedules all the required reconfig-
urations such that the overall execution time (latency) of the
given actor trace is provably minimized. To the best of our
knowledge, this is the first time an algorithm of this nature
has been proposed.

2 Preliminaries

2.1 Architecture model

We consider an architecture with one micro-processor
that receives a trace of actors. For each actor, we assume
a corresponding hardware accelerator module that may be
loaded into the FPGA for subsequent execution by means
of partial hardware reconfiguration.

2.2 Scheduling model

Example 2.1 Figure 1 shows an example of a given appli-
cation consisting of a sequence of five actors (correspond-
ing to four tasks) with data dependencies, and a given con-
flict relation concerning the shared use of FPGA resources.
For example, when task B conflicts with C, this would mean
that they share some common hardware resources on the
FPGA which may be either I/O pins, memory resources
(such as block rams), or slices.
Set of Tasks = {A,B,C,D}
B conflicts with C, C conflicts with D

a0=B a1=C a2=C a3=A a4=D
Sequence of actors a0 to a4: a0=B, a1=C, a2=C, a3=A, a4=D

Figure 1. Example of actor trace

Assume for now that this conflict relation is given statically,
i.e., no module relocation is allowed. Thus we know the
conflicts between every pair of actors at compile time. More
formally, we define an actor trace and the corresponding
conflicts as follows:

1. Trace of actors: Sa = (a0, a1, a2, . . . , an) with ai ∈
T, i 6= 0. T is a set of tasks, and ‖T‖ = N , where N
is number of tasks.

2. Resource conflicts: The relation C = {(Ti, Tj)|Ti �
Tj} denotes that the placement of Ti conflicts with
placement of Tj .

3. Any actor ai ∈ Sa can only be scheduled for execution
on the FPGA if all its preceding tasks have completed
execution. Furthermore, if the corresponding module
is not in the FPGA, it needs to be loaded, i.e., the cor-
responding resources reconfigured, prior to execution.

3 Precedence Analysis

Before defining the scheduling problem, we need to dis-
tinguish three different types of dependencies: The first one,
data dependencies, is obvious. The second is the conflict re-
lation introduced above that is due to the sharing of FPGA
resources among the hardware modules. Finally, the third
kind of dependencies arise because some actors cannot be-
gin execution until its corresponding configuration task is
completed. In order to compute this, we first need to dis-
cuss the problem of reconfiguration task generation.

3.1 Generation of reconfiguration tasks

Definition 3.1 (True dependence) Given a sequence of
actors Sa. ai is called truly dependent on aj , written
aj ≺ ai iff

@k, j < k < i : (ak � ai) ∧ (∀k′, k < k′ < i : ak 6= ai)

True dependence is based on the intuition that, for an actor
ai of task t ∈ T , not every occurrence of conflicting prede-
cessors in the trace matters. It is the conflicting predecessor
ak that is closest to ai that will have an impact on the re-
configuration decision for ai. Furthermore, ai must be the
first actor of task type t in the trace subsequent to ak.

Example 3.1 In Figure 1, a1 is truly dependent on a0 but
a2 has no true dependence because it executes after another
actor, a1, of the same task.

Now, each first appearance of a task in a trace will also
necessitate exactly one reconfiguration task. Hence, the set
of required reconfiguration tasks Sr = (r0, . . . , rl) may be
found by inspecting the given trace once.1

Theorem 3.1 (Reconfiguration task instantiation) For
an actor ai in a given trace Sa, there needs to be a
corresponding reconfiguration actor (task) ri if, and only
if, ∃aj ∈ Sa : aj ≺ ai. In other words, if there exists a
predecessor aj in Sa on which ai is truly dependent.

1Note that the subscripts of reconfiguration tasks in Sr are in sequence
but not necessary running as they correspond to the subscript of the asso-
ciated actor, and not all actors need reconfiguration.

For each reconfiguration task ri, two additional depen-
dencies must be created. First, each ri must complete be-
fore the corresponding actor ai starts executing. Second, for
aj such that aj ≺ ai, reconfiguration task ri for ai cannot
start earlier than the completion of aj on which ai is truly
dependent on because ri affects the execution of aj . The
two dependencies are shown by adding an outgoing edge
from ri to ai and one incoming edge from aj to ri.

Example 3.2 Figure 2 shows both the set of reconfigura-
tion tasks generated for the running example as introduced
in Example 2.1 and the additional scheduling dependencies.

a0=B a1=C a2=C a3=A a4=D

r4

r0 r1 r3

Figure 2. Dependence Relations

In summary, we have to consider the following three types
of dependencies for scheduling after having all the required
reconfiguration tasks generated:
• Sequential precedence:
Ps = {(ai, aj)|(0 ≤ i ≤ n− 1) ∧ (j = i+ 1)};
• Conflict (resource) precedence:
Pc = {(aj , ri)|aj ≺ ai}; and
• Reconfiguration precedence:
Pr = {(ri, ai)|(∃ri ∈ Sr)}.

The complete dependence relation is thus P = Ps∪Pr∪Pc.

3.2 Minimizing the schedule length

Given the above, we are now in a position to state the
scheduling problem formally. The following notation will
be used throughout the paper:
• l(ai): latency of actor ai

• s(ai): the start time of actor ai

• f(ai): the end time of actor ai

• l(ri): latency of reconfiguration task ri
• s(ri): the start time of reconfiguration task ri
• f(ri): the finishing time of reconfiguration task ri

Definition 3.2 (Feasible schedule) A feasible schedule is
an assignment of end times f(ai) and f(ri), respectively, to
every actor ai ∈ Sa and reconfiguration task ri ∈ Sr such
that all the above mentioned precedence constraints are sat-
isfied, i.e., ∀j such that (Xi, Xj) ∈ P then s(Xj) ≥ f(Xi).

The aim of a scheduling algorithm for this problem is
to find a feasible schedule where f(an) is minimized for a
trace of actors Sa = (a0, a1, a2, . . . , an).

2

4 Algorithm MLS

Algorithm 1: MLS Algorithm
Input: Trace of actors: Sa ;

Set of Conflicting Hardware Modules: C;
Set of tasks: T ;

Result: Optimal Schedule Length
ForAll(ft ,prevt: t ∈ T) ft ← true; prevt ← −1;
for ai ← a0 to an : ai ∈ Sa do

if fai
is true then
CreateReconfigurationTask (ri);
(ri).TimeRemaining← l(ri);
if prevai

6= −1 then AddEdge (aprevai
, ri ;);

AddEdge (ri ,ai);
ForAll(t ∈ T) if (t, ai) ∈ C then ft ← true; prevt ← i;
if ri has no preceding tasks then Insert (H, ri);

if TaskReady (a0) then current A← a0 ; else current A← empty;
length← 0;
while current A 6= an do

if current A is empty then
r ← ExtractMax (H);
length← length +(r).TimeRemaining;
current A← NextTask (r);

else
length← length +l(current A);
T ime ← l(current A);
while H not empty∧T ime 6= 0 do

r ← ExtractMax (H);
if l(r) < T then T ime ← T ime − l(r);
else

r.TimeRemaining← r.TimeRemaining−T ;
T ime ← 0;
Insert (H, r);

ForAll(r ∈ DependsOn (current A)) Insert (H, r);
if TaskReady (NextTask (current A)) then

current A← NextTask (current A);

else current A← empty;

length← length +l(an);
return length ;

We shall now present the main result of this paper,
namely a polynomial time, latency-optimal scheduling al-
gorithm for actors and reconfiguration tasks that we call
Modified List Scheduling (MLS). The algorithm assumes
that reconfiguration tasks can be pre-empted. This is based
on the way frame-based reconfigurable devices operate.
Configuration for frame-based devices such as Xilinx FP-
GAs is achieved by writing a set of frames into the SRAM
configuration memory of the device. It does not matter
whether the reconfiguration process is carried out in 1, 2, or
more phases as long as the affected area is not again rewrit-
ten by other module configurations in between. Also, the
algorithm prioritizes reconfiguration tasks by the order of
appearance of their corresponding actors in the actor trace.

The MLS algorithm is shown in Algorithm 1. It consists
mainly of 2 passes through the actor trace. In the first pass,
the algorithm finds true dependences between the actors and
generate the corresponding reconfiguration tasks Sr. To do
this, we maintain a flag ft for each task t ∈ T and an index
prevt. We traverse the trace from a0 to an. Assume that
ai is the current actor. If flag fai

is true, a corresponding
reconfiguration task ri will be created, and if prevt 6= −1,
ri is to be preceded by actor aprevt

(i.e. truly dependent on
aprevt

). prevt = 1 when the reconfiguration task created
is needed for the first occurrence of ai. Furthermore, we
record all ready reconfiguration tasks in a heap data struc-
ture H , ordered by the relative appearance order of the as-
sociated actor in the actor trace. In order to perform pre-

emptive scheduling of reconfiguration tasks, we maintain a
TimeRemaining attribute for each of the tasks and this is
initialized to the full reconfiguration latency required.

The second pass through the trace computes the actual
scheduling time using preemptive scheduling of reconfigu-
ration tasks. current A is the current ready actor. If there
are no ready actors, we schedule a ready reconfiguration
task r whose associated actor has the earliest appearance
order in the actor trace. Otherwise, we schedule actor cur-
rent A. In the time l(current A), we schedule as many re-
configuration tasks sequentially as possible to configure the
FPGA in parallel with the execution of current A. How-
ever, the space given by the scheduled actor may not be
enough for the TimeRemaining of r to fill up. Such r’s are
inserted back into H with updated TimeRemaining. The
algorithm terminates when the last actor an is scheduled.

5 Case Study

5.1 H264-encoder case study

We use a H.264 [10] encoder application as a case study
of the effectiveness of our algorithm. Based on profiling,
we identified 15 loops that take up most of the computation
time in the application. The hardware implementation of
these loops were synthesized using Xilinx’s ISE.

Table 1 shows the characteristics of the application using
two actor traces obtained with the 15 loops. It shows the
length of the actor traces and the number of unique patterns
occurring within the trace. A pattern is a maximal acyclic
sequence of actors that occurs repeatedly in the trace. Two
patterns are considered different if they differ in at least one
actor. In the shorter trace, we encode one frame while in the
longer trace we encode two consecutive frames. The frames
are 704 by 576 pixels in size. All the hardware modules are
assumed to be running at a frequency of 50 MHz.

Trace Num. of Num. of Num. Of
Frames Encoded Actors Unique Patterns

Short 1 35,622,092 52
Long 2 185,232,537 100

Table 1. Characteristics of the two traces

5.2 Experiment Setup

To demonstrate the effectiveness of our approach, we
compared it against three algorithms: two different online
Least Mean Square Predictor, and a simple scheduler.

Simple Scheduler Instead of prefetching, the Simple
Scheduler maintains a record of the current FPGA config-
uration and only schedules a reconfiguration on demand if
the actor to be executed is not yet in the FPGA. It is rea-
sonable to expect that any prefetching approach should do
no worse than the Simple Scheduler. We therefore used the
schedule length computed by the Simple Scheduler as the
baseline for our comparisons.

3

Least Mean Square Online Predictor A (LMSA-a)
This is an online predictor that is similar to that described
in [7, 2]. The Least Mean Square Filter is used as the pre-
dictor function. However, because the target FPGA archi-
tecture considered in our paper is different (their architec-
ture [3] supports relocation and defragmentation), our ap-
proach does not use the priority function that is based on
the configuration sizes and the different eviction policies.
Rather, the hardware module evicted are those in conflict
with the module currently being prefetched.
Least Mean Square Online Predictor B (LMSA-b)
This is a modification of LMSA-a. Instead of predicting
the next hardware task, the algorithm predicts and attempts
to prefetch the next task that conflicts in placement with the
currently scheduled task.

5.3 Experimental Results
In order to show the effect of increasing configuration

overhead on the schedule length, we ran experiments by
varying the reconfiguration speed from between 1µsec to
20µsec per CLB column.

-5

0

5

10

15

20

25

30

35

40

45

50

55

1 5 10 20
Reconfiguration time (microsec per CLB column)

Pe
rf

or
m

an
ce

 in
cr

ea
se

 o
ve

r
ba

se
lin

e
(P

er
ce

nt
ag

e)

MLS (short trace) LMSA-a (short trace) LMSA-b (short trace)
MLS (long trace) LMSA-a (long trace) LMSA-b (long trace)

Figure 3. Speedup over baseline plotted
against increasing reconfiguration time.

Figure 3 shows the performance increase of the differ-
ent approaches over the schedule produced by the Simple
Scheduler. The threshold of the minimum average exe-
cution cycles between two conflicting hardware module is
set to 1000 cycles for this experiment. We observe that
as reconfiguration speed decreases, the performance gain
achieved by all the approaches decreases. With a high re-
configuration overhead, execution just has to wait till recon-
figuration completes. The single reconfiguration port also
becomes a bottle-neck. Over the range of reconfiguration
overheads we considered, the schedule produced by MLS
outperforms the others in every case. At best, it can be 30
percent better than those produced by the other schemes.

6 Related works
Configuration prefetching [5, 6, 7, 2, 4] is one of the

techniques proposed to reduce the reconfiguration overhead
In [7], the author described a prefetching technique for
partially reconfigurable FPGAs, exploiting the overlap be-
tween hardware execution and reconfiguration. In particu-
lar, a Markov predictor was introduced for deciding on the

next reconfiguration operation. An extension of the work
was presented in [2]. Morphosys[8] presented a heuristic
context scheduling for its coarse-grained reconfigurable ar-
chitecture.

In most FPGAs and partially reconfigurable FPGA-
based platforms such as the Erlangen Slot Machine
(ESM) [1, 9], the reconfiguration interface may be con-
sidered as just another resource. Hence, for applications
that have static reconfiguration needs, resource-constrained
scheduling techniques may be used to schedule FPGA re-
sources and reconfiguration interface simultaneously [4]. In
this paper, we consider traces of actors which are requests
for hardware activations of complex tasks. Therefore, our
work goes beyond earlier ones done mainly on simple un-
conditional data-flow graphs.

7 Conclusions
In this paper, we presented an algorithm for the schedul-

ing of reconfiguration tasks for FPGA-based hardware ac-
celeration at the electronic system level. A realistic case
study using the H.264 encoder has been provided to show
the benefits and sensitivity of the results.

References

[1] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich. In-
creasing the flexibility in fpga-based reconfigurable platforms: The erlangen slot
machine. In IEEE 2005 Conference on Field-Programmable Technology (FPT),
pages 37–42, Singapore, dec 2005.

[2] Y. Chen and S. Y. Chen. Cost-driven hybrid configuration prefetching for partial
reconfigurable coprocessor. In IPDPS, pages 1–8, 2007.

[3] K. Compton, Z. Li, J. Cooley, S. Knol, and S. Hauck. Configuration relocation
and defragmentation for run-time reconfigurable computing. IEEE Trans. Very
Large Scale Integr. Syst., 10(3):209–220, 2002.

[4] S. P. Fekete, J. C. van der Veen, J. Angermeier, C. Göhringer, M. Majer, and
J. Teich. Scheduling and communication-aware mapping of HW/SW modules
for dynamically and partially econfigurable SoC architectures. In ARCS ’07
- 20th International Conference on Architecture of Computing Systems 2007,
pages 151–160. VDE-Verlag, Berlin, 2007.

[5] S. Hauck. Configuration prefetch for single context reconfigurable coprocessors.
In FPGA ’98: Proceedings of the 1998 ACM/SIGDA sixth international sympo-
sium on Field programmable gate arrays, pages 65–74, New York, NY, USA,
1998. ACM.

[6] Z. Li, K. Compton, and S. Hauck. Configuration caching management tech-
niques for reconfigurable computing. In FCCM ’00: Proceedings of the
2000 IEEE Symposium on Field-Programmable Custom Computing Machines,
page 22, Washington, DC, USA, 2000. IEEE Computer Society.

[7] Z. Li and S. Hauck. Configuration prefetching techniques for partial reconfig-
urable coprocessor with relocation and defragmentation. In FPGA ’02: Pro-
ceedings of the 2002 ACM/SIGDA tenth international symposium on Field-
programmable gate arrays, pages 187–195, New York, NY, USA, 2002. ACM.

[8] R. Maestre, F. J. Kurdahi, M. Fernández, R. Hermida, N. Bagherzadeh, and
H. Singh. A framework for reconfigurable computing: task scheduling and con-
text management. volume 9, pages 858–873, Piscataway, NJ, USA, 2001. IEEE
Educational Activities Department.

[9] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. The Erlangen Slot Machine:
A dynamically reconfigurable FPGA-based computer. Journal of VLSI Signal
Processing Systems, 47(1):15–31, March 2007.

[10] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of the
H.264/AVC video coding standard. Circuits and Systems for Video Technology,
IEEE Transactions on, 13(7):560–576, 2003.

4

