
Interprocedural Placement-Aware Configuration Prefetching
for FPGA-based Systems

Joon Edward Sim, Weng-Fai Wong
School of Computing

National University of Singapore
Singapore

{esim, wongwf}@comp.nus.edu.sg

Gregor Walla, Tobias Ziermann, Jürgen Teich
Department of Computer Science
University of Erlangen-Nuremberg

Germany
{walla, ziermann, teich}@codesign.informatik.uni-erlangen.de

Abstract—One of the major impediments to deploying par-
tially run-time reconfigurable FPGAs as hardware accelerators
is the time overhead involved in loading the hardware mod-
ules. While configuration prefetching is an effective method
that can be employed to reduce this overhead, mispredicted
prefetches may worsen the situation by increasing the number
of reconfigurations needed. In this paper, we present a static
algorithm for configuration prefetching in partially reconfig-
urable FPGAs that minimizes the reconfiguration overhead.
By making use of profiling, the interprocedural control flow
graph, and the placement information of hardware modules,
our algorithm predicts hardware execution and tries to prefetch
hardware modules as early as possible while minimizing
the risk of mis-predictions. Our experiments show that our
algorithm performs significantly better than current-state-of-
the-art prefetching algorthms for control-bound applications.

I. INTRODUCTION

Configuration prefetching [1] seeks to address the problem
of high run-time reconfiguration overhead of FPGAs through
parallelizing the (partial) reconfiguration of the FPGA with
an application’s execution. However, as we shall show, a
misprediction in the prefetch can be very costly because it in-
creases the number of configurations. Therefore, the correct
scheduling of configurations is the key to good performance
of such accelerators. Ideally, the execution of a hardware
module should be predicted as early as possible (given the
huge configuration latency) and as accurately as possible (so
as to avoid costly recoveries). In this paper, we present an al-
gorithm that reduces configuration latency for specifications
written in interprocedural control flow graphs [3]. Through
the use of profile information, the algorithm predicts the
execution of hardware modules by computing ‘placement-
aware’ probabilities. These probabilities are in turn used for
the generation of prefetching codes that are then inserted
into the control-flow graph. Our experiments show that our
approach significantly outperforms previous works.

II. BACKGROUND

A. Architecture Model

We consider the architecture model as shown in Figure 1.
The model is based on actual silicon devices such as the

Xilinx Virtex family of FPGAs, especially Virtex-II Pro, IV
and V. The software code, data, and the bitstreams to be
loaded onto the reconfigurable region are stored in memory.
The CPU is the main controller of application execution and
is also responsible for initiating the reconfiguration of the
FPGA. The reconfiguration manager is a hardware module
that loads bitstream data from the memory upon requests
issued by the CPU.

The reconfigurable region is organized as n slots where
hardware modules can be placed. We consider any two
placements of the hardware modules with overlapping slots
to be in ‘physical placement conflict’ (or just ’conflict’ for
the rest of the paper). Conflicting hardware modules cannot
be loaded into the reconfigurable region at the same time.

CPU

slot
1

slot
2

slot
3

… slot
n

Reconfiguration
Manager Reconfiguration

Interface

Bridge
Interface Hardware Bus

Memory

P
eripheral B

us

Reconfigurable Region

Figure 1. Architecture Model

III. PROBLEM FORMULATION AND MOTIVATION

The aim of this paper is to minimize the reconfiguration
delay of a single, sequential program for the platform
described above. We have assumed that the placements of
the hardware modules are fixed. We represent the program
as an interprocedural control flow graph (ICFG), a directed
graph G = (V,E,C,U,HW) where every node on the graph
is either a basic block or a hardware node (a block of code
that invokes hardware execution). V is the set of all the
nodes in the graph. E is the set of all the edges in the graph.
head(e) and tail(e) refers to the begin and end node of edge
e respectively. C is the set of all call sites and C ⊂V . U is

a conflicts with b
c has no conflicts
R means reconfiguration of n

execution
reconfiguration

ld() – load HW
ex() – execute HW

a
Ra

time
Rb

b
Rc

c b
Rn means reconfiguration of n

ex(a) ex(b) ex(c) ex(b)

a
Ra Rb

b
Rc

c b

ex(a) ex(b) ex(c) ex(b)

timeex(a) ex(b) ld(c) ex(b)ex(c)

a
R R

b
R

c b
R RRa

time
Rb Rc

ex(a) ex(b) ld(a)ex(c)

Ra Rb

ex(b)

(a) The fetch-on-demand Scenario

a
Ra

time
Rb

b
Rc

c b

a conflicts with b
Rn means reconfiguration of n

execution
reconfiguration

a
Ra

time
Rb

b
Rc

c b

ex(a) ex(b) ex(c) ex(b)

ex(a) ex(b) ld(c) ex(b)ex(c)

a
Ra

time
Rb

b
Rc

c b

ex(a) ex(b) ld(a)ex(c)

Ra Rb

ex(b)

ld() – load HW
ex() – execute HW

(b) Appropriate prefetch decrease execution time

a conflicts with b
c has no conflicts
R means reconfiguration of n

execution
reconfiguration

ld() – load HW
ex() – execute HW

a
Ra

time
Rb

b
Rc

c b
Rn means reconfiguration of n

ex(a) ex(b) ex(c) ex(b)

a
Ra Rb

b
Rc

c b

ex(a) ex(b) ex(c) ex(b)

timeex(a) ex(b) ld(c) ex(b)ex(c)

a
R R

b
R

c b
R RRa

time
Rb Rc

ex(a) ex(b) ld(a)ex(c)

Ra Rb

ex(b)

(c) Misprefetch increases execution time

Figure 2. How prefetching affects overall execution time
the set of exit nodes of all procedures and U ⊂V . HW is the
set of hardware nodes. We denote two conflicting hardware
nodes hw1 and hw2 as hw1 � hw2.

Consider the execution sequence abcb for hardware mod-
ules a, b and c. Hardware modules not yet present on the
FPGA by the time of invocation will be loaded prior to exe-
cution. Figure 2(a) shows the “fetch-on-demand” schedule of
the execution of the hardware modules (i.e., no configuration
prefetching). Figure 2(b) shows how the overall execution
time is reduced when c is loaded during the execution of
b. On the other hand, a mispredicted loading may result
in a schedule that is longer than the “fetch-on-demand”. In
Figure 2(c), the loading of a during the execution of c results
in an additional reconfiguration of b later, hence lengthening
the original “fetch-on-demand” schedule. This paper aims to
ensure that configurations are loaded at appropriate times so
that the reconfiguration overhead is minimized.

IV. INTERPROCEDURAL PLACEMENT-AWARE
CONFIGURATION SCHEDULING

The proposed algorithm has five stages. 1) Obtain the fre-
quency of executing each control-flow edge through profiling
and remove all edges that are not executed. The weight
function w of each edge is computed using the equation
w(e) = frequency of edge e

total frequency count of node head(e) . 2) Compute
post dominators [6] for every node, denoting the immediate
post-dominator of each v to be ipdom(v). 3) Compute the
intra post dominator paths (IPDP) information for each
node v, which are set of paths that start from v with the
following properties: a) There does not exist any node
along the path that is a post-dominator of any other node
along the path and b) the estimated probability of this
path being taken is greater than a threshold value. This
threshold value is set to be 0.0005 in our experiments. The
estimated probability of taking a path Ppath(p) is the product
of the weightage of the edges on the path. 4) Compute
for every node on the graph the estimated placement-aware
probability (PAP) of reaching each hardware node using the
IPDP and post dominator information through a fixed-point
iterative method. 5) Insert hardware loading instructions into

candidate basic blocks chosen based on the PAP information.
The rest of this section focuses on describing steps 4 and 5
in more detail.
Algorithm 1: Iterative Probability Updating

Result: Final placement-aware probabilities computed for each node
∀v ∈V

change ← true;
while change do

change ← false;
forall v ∈ V do

if v is an exit node i.e. v ∈ U then
continue;

else if v is a call site i.e. v ∈ C then
tmp change ← update probabilities for call site(v);

else
tmp change ← update general probabilities(v);

end
if tmp change then

change ← true;
end

end
end
return P;

Algorithm 2: update general probabilities(v)
Input: v
Result: Update probabilities for v based on post-dominator and

IPDP Prob information
change ← false;
forall hw ∈ HW do

if v is hw or conflicts with hw i.e. v = hw ∨v � hw then
continue;

max prob ← -1;
forall p ∈ IPDPv do

if no nodes in p conflicts with hw (i.e. @n : n ∈ p∧n� hw)
then

new prob ← Ppath(p)×P(end(p),hw);
new IPDP prob ← new prob − P(ipdom(v), hw);
if new IPDP prob > IPDP Prob(v,hw) then

IPDP Prob(v,hw)← new IPDP prob;
if new prob > max prob then

max prob ← new prob;

end
factor ← 1.0;
forall hw′ ∈ HW : hw′ � hw do

factor ← factor − IPDP Prob(v,hw′);
end
if factor × P(ipdom(v), hw) > max prob then

max prob ← factor × P(ipdom(v), hw);

if max prob < threshold then
temp p(hw) ← 0;

else
temp p(hw) ← max prob;

end
end
if ∃ hw ∈ HW : temp p(hw) 6= P(v,hw) then

change ← true;
P(v) ← temp p;

return change;
A. Iterative PAP Estimation and Prefetch Code Generation

Our configuration prefetch algorithm is based on a
placement-aware probability computed for every node.

Definition 4.1: Placement-aware Probability (PAP)
The placement-aware probability (PAP) of a node n of the
ICFG reaching hardware node g is the sum of the estimated

2

4

D

C 0.0

D 0.0

C 0.0

D 1.0

C 0.0

D 0.0

Initialization

C
C 1.0

D 0.0

2

4

D

C 0.75

D 0.25

C 0.0

D 1.0

C 0.0

D 0.5

Iteration 1

C C 1.0

D 0.0

2

4

D

C 0.75

D 0.25

C 0.0

D 1.0

C 0.375

D 0.5

Iteration 2

C
C 1.0

D 0.0

Figure 3. All edges except (D,4) are weighted 0.5. Hardware nodes C and
D conflict with each other.

probabilities of all paths from n to g such that there is no
conflicting hardware node of g on the path.

We estimate the PAP of reaching every hardware node
for each node in the ICFG through an iterative fixed point
method. Algorithm 1 shows a main loop that processes all
the nodes in the graph during each iteration and continues
doing so until a fixed-point (i.e., the estimated probabilities
for each node have stabilized.) is reached. Throughout
all iterations, we maintain two two-dimensional vectors
IPDP Prob and P. IPDP Prob(v,hw) are the estimated
probabilities that a node v may reach a hardware node hw
through its IPDP. P(v,hw) is the estimated PAP that a node
v may reach a hardware node hw through all possible paths
while P(v) is a vector of all estimated PAPs for node v. Every
P(v,hw) is initialized to zeros except when v = hw, where
P(v,hw) is initialized to 1. A procedure may have multiple
callers. Due to the uncertainty of the call context, we do not
compute PAPs for the exit nodes of the procedures.

We distinguish between the general case and call sites for
the updating of estimated PAPs. Algorithm 2 shows how the
estimated PAPs for a general node v (i.e., neither call site nor
exit node) is updated, by computing a vector of estimated
PAPs temp p that will be used to update P(v) if these 2
vectors are different. In the case when P(v) is updated, a
change is reported. We estimate the PAP of call sites by
taking the maximal value of a) either the weighted sum of
the PAPs of all its callee sites or b) the PAP of its own
immediate post-dominator.

Example: Figure 3 shows how the estimated PAPs
are computed for a simple CFG. During initialization, the
PAPs of reaching the hardware nodes are set to 0 except for
hardware nodes themselves (e.g., the probability of node C
reaching C is 1). We note that while C is a post dominator of
4, the estimated PAP of reaching C is 0.75. This is because
there is also a 0.25 probability of reaching D through 2 from
4. While this could be an over-estimation, it is sufficient
for our purposes to obtain relative size of probabilities for
reaching each hardware module.

After PAP estimation, we proceed to select basic blocks
that become candidates for insertion of hardware prefetch
instructions. The number of candidates can be reduced by
clearing the PAPs for nodes where all its parents have the
same PAPs as the node itself. The basic blocks with non-zero

PAPs are where we insert hardware prefetch instructions.
The exact hardware module loaded, however, depends on
run-time conditions. If the most probable hardware module
is not yet loaded and not being reconfigured, it will be loaded
at the candidate basic block. Otherwise if there is no ongoing
loading, the next most probable hardware module that is
not yet loaded and not conflicting with the most probable
hardware module will be loaded on the FPGA.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

To evaluate the effectiveness of our approach, we per-
formed experiments with two applications, 429.mcf from
the SPEC2006 benchmark suite [7], and h264enc from
the MediaBench II video benchmark suite [8]. 429.mcf
performs single-depot vehicle scheduling while h264enc[9]
is a H.264/AVC (Advanced Video Coding) encoder. Through
profiling, we identified 6 compute-intensive regions for
429.mcf and 7 such regions for h264enc that are to be
implemented in hardware. These compute-intensive regions
are either basic blocks or loops in the original program. For
our experiments, we assumed that the hardware performance
is 5 times faster than the software counter-parts.

We modeled our experimental platform along the lines
of ReCoBus [10] which supports complex run-time re-
configuration. The ReCoBus’s reconfiguration regions are
organized in terms of reconfigurable slots that are 6 CLB
columns in size. A slot is the smallest granularity that
any hardware module can occupy on the FPGA. For our
experiments, we assumed a hardware device that has a
similar geometry as Xilinx Virtex II Pro XC2VP30 [11] that
is organized as a CLB matrix of 80 rows and 56 columns,
with the PowerPC CPU operating at 300MHz and the 32
bits wide reconfiguration port at 100Mhz. The overhead of
reconfiguring each slot can be calculated based on the data
in the datasheet[11]. It is approximately 81,576 PPC cycles.

We performed our experiments using a trace-based sim-
ulator that takes in the basic block trace and the execution
time information and computes the execution time of the
application on the reconfigurable computing architecture we
modeled. We compared the performance of our algorithm by
comparing it against four other algorithms described below.

Fetch-on-demand (FOD): In the FOD schedule, there
is no prefetching of configurations. The hardware modules
are loaded if they are encountered during execution, and if
it is not already residing on the FPGA. It is reasonable to
expect that any prefetching approach should do better than
this. We used the execution time of the fetch-on-demand
scenario as the baseline for comparison in our experiments.

Optimal prefetching (OPT): Our implementation of
OPT relies on the algorithm described in [15]. It can be
done only if the entire execution trace is already known
beforehand. We do not expect any static approach to be able

to perform better, but the gap between OPT and FOD serves
as a useful gauge for the effectiveness of our approach.

Placement-blind probabilistic algorithm (PBP): The
implementation of PBP is based on [5]. It should be noted
that the PBP was developed for relocatable and defrag-
mentable FPGAs, and not for the Xilinx FPGA architectures.
Therefore, this approach does not account for conflicts
between the hardware modules.

Conservative analysis (CA): The implementation of
CA is based on [4]. Reconfigurations are not preempted in
this case. Instead, all previously issued prefetches (main-
tained in a queue) must be completed before a hardware
module that is yet to be configured can execute. The prefetch
queue is cleared only at the insertion edges.

B. Experimental Results

The specific placement of the hardware modules affect
the conflict relationship between them. Therefore, in order
to evaluate the effectiveness of our algorithm, we performed
experiments for different placements and Figure 4 shows
the various speedups/slowdown results. Each placement is
named after the corresponding applications. Hence, place-
ments starting with h264- refers to placements for h264enc
while labels starting with mcf- refers to placements for
429.mcf. The placements that are labeled with ‘s6’ are
placements generated for a reconfigurable region of 6 recon-
figurable slots while those labeled with ‘s8’ were generated
for a reconfigurable region of 8 reconfigurable slots.

-20

0

20

40

e
ov

er
 B

as
el

in
e

ge
)

-100

-80

-60

-40

-20

0

20

40

Pe
rf

or
m

an
ce

 In
cr

ea
se

 o
ve

r B
as

el
in

e
(p

er
ce

nt
ag

e)

Optimal
Placement-aware
Placement-blind
Conservative Analysis

-100

-80

-60

-40

-20

0

20

40

Pe
rf

or
m

an
ce

 In
cr

ea
se

 o
ve

r B
as

el
in

e
(p

er
ce

nt
ag

e)

Benchmarks with Different Placements

Optimal
Placement-aware
Placement-blind
Conservative Analysis

Figure 4. Speedups over baseline

We make the following observation of the results shown:
a) Performance degrades seriously when conflicts are not
taken into account. The PBP suffers 20% to 90% degradation
in performance for most of the placement sets tested in
our experiments. b) CA is consistently either very close
to baseline or slightly worse than baseline. Being conser-
vative, prefetches inserted in control flow points are very
near to where the hardware modules need to execute. c)
For the same benchmark, the speedup that can be gained
in our approach depends on the placement. In particular,
h264-s6-1 is the best for h264enc, achieving a speedup
of nearly 30% that of the optimal prefetch algorithm. This
shows how placements affect both the overall performance

and the opportunities available for configuration prefetching.
d) On the whole, our algorithm returned results that fall
between 17% and 72% of the OPT results without having
to deal with gigabytes of traces needed by the latter.

VI. CONCLUSION

In this paper, we have described a novel method that
statically determines the places in an application’s control
flow graph where prefetches of hardware modules into the
FPGA should be initiated such that the reconfiguration
overhead is minimized. Our approach performs consistently
better than our baseline and also out-performs the state-
of-the-art static prefetching algorithms, coming to 72% of
optimal prefetching at its best. As future work, we intend
to extend the algorithm such that it will also take into
consideration the execution phases of the applications.

REFERENCES

[1] S. Hauck, “Configuration prefetch for single context recon-
figurable coprocessors,” in FPGA ’98, 1998, pp. 65–74.

[2] F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5,
no. 7, pp. 1–19, 1970.

[3] S. Sinha, M. J. Harrold, and G. Rothermel, “Interprocedural
control dependence,” ACM Trans. Softw. Eng. Methodol.,
vol. 10, no. 2, pp. 209–254, 2001.

[4] E. M. Panainte, K. Bertels, and S. Vassiliadis, “Interproce-
dural compiler optimization for partial run-time reconfigu-
ration,” J. VLSI Signal Process. Syst., vol. 43, no. 2-3, pp.
161–172, 2006.

[5] Z. Li and S. Hauck, “Configuration prefetching techniques
for partial reconfigurable coprocessor with relocation and
defragmentation,” in FPGA ’02, 2002, pp. 187–195.

[6] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding
dominators in a flowgraph,” ACM Trans. Program. Lang.
Syst., vol. 1, no. 1, pp. 121–141, 1979.

[7] “SPEC Benchmark Suite 2006. http://www.spec.org.”
[8] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf,

“Mediabench II video: Expediting the next generation of
video systems research,” Microprocessors and Microsystems,
vol. 33, no. 4, pp. 301–318, 2009.

[9] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” Circuits
and Systems for Video Technology, IEEE Transactions on,
vol. 13, no. 7, pp. 560–576, 2003.

[10] D. Koch, C. Beckhoff, and J. Teich, “A communication
architecture for complex runtime reconfigurable systems and
its implementation on Spartan-3 FPGAs,” in FPGA ’09, 2009,
pp. 253–256.

[11] Xilinx Virtex-II Pro Platform FPGAs: complete data sheet,
Xilinx Inc., San Jose, CA, United States.

[12] “The Open IMPACT IA-64 Compiler.” http://gelato.uiuc.edu.”
[13] Intel Itanium 2 Processor Reference Manual for Software

Development, Intel Corp, June 2002.
[14] PowerPC 405 Processor Block Reference Guide, Xilinx

Inc., San Jose, CA, United States, July 2005, avaiable at
http://www.xilinx.com.

[15] J. E. Sim, W. F. Wong, and J. Teich, “Optimal placement-
aware trace-based scheduling of hardware reconfigurations for
FPGA accelerators,” in FCCM ’09, Apr. 2009, pp. 279–282.

