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ABSTRACT
The constant push for feature richness in mobile and em-
bedded devices has significantly increased computational de-
mand. However, stringent energy constraints typically re-
main in place. Embedding processor cores in FPGAs offers
a path to having customized instruction processors that can
meet the performance and energy demands. Ideally, the
customization process should be automated to reduce the
design effort, and indirectly the time to market. However,
the automatic generation of custom extensions for float-
ing point computation remains a challenge in FPGA co-
design. We propose an approach for accelerating such com-
putation via application-specific SIMD extensions. We de-
scribe an automated co-design toolchain that generates code
and application-specific platform extensions that implement
SIMD instructions with a parameterizable number of vector
elements. The parallelism exposed by encapsulating compu-
tation in vector instructions is matched to an adjustable pool
of execution units. Experiments on actual hardware show
significant performance improvements. Our framework pro-
vides an important extension to the capabilities of embedded
processor FPGAs which traditionally dealt with bit, integer,
and low intensity floating point code, to now being able to
handle vectorizable floating point computation.

Categories and Subject Descriptors
C.1.3 [PROCESSOR ARCHITECTURES]: Other Ar-
chitecture Styles—Adaptable architectures

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Co-synthesis, Custom instructions, SIMD

1. INTRODUCTION
Embedded applications vary widely in their code struc-

ture and profile. As they are often subjected to serious
power and resource constraints, specialized hardware exten-
sions are added very conservatively in embedded processors.
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Designers of such applications often use reconfigurable ex-
tensions to supplement their silicon processor [8, 22]. These
extensions are particularly effective when there is a large
amount of bit- or word-level parallelism. Although float-
ing point applications often come with even higher amount
of parallelism, they are generally not common in reconfig-
urable computing. They are deemed to consume too much
resources, and the desired performance can only be obtained
by hand-tuning the application, including conversion to fixed
point and then tackling the precision issue. Yet, floating
point computation is often the most straight-forward means
of expressing an algorithm, especially when fractions and ac-
curacy are involved. In this paper, we aim to show how par-
allelism in floating point code can be exploited automatically
using a flexible co-designed approach that includes support
for vector operations in a reconfigurable SIMD architecture.

A standard architecture for effective reconfigurable com-
puting consists of processor cores coupled with reconfig-
urable hardware fabric that often resembles field program-
mable gate arrays (FPGA) [1, 19]. The reconfigurable fab-
ric offers flexibility, but one cannot possibly hope to match
the speed and efficiency of a silicon processor core. On the
other hand, a silicon processor core with full vector capabil-
ities like those found in desktop- and server-class processors
would mean committing silicon without consideration for
the applications’ requirements. A dual approach requires
a dedicated interconnect, and the combined performance is
affected by the partitioning strategy and the data transfer
overhead. Finer grain partitioning proves beneficial only
when a fast interconnect is available (i.e. when both the
processor core and the reconfigurable fabric are placed on
the same die).

Embedded processors are getting faster. However, they
seldom offer the complete set of support for parallel instruc-
tion decoding and issue, as well as enough arithmetic units to
satisfy compute intensive applications. In particular, float-
ing point units with long pipelines and separate register file
are often not found in the embedded cores, and have only
been recently introduced as specialized coprocessors [14].
This deficiency goes beyond compute intensive applications
because many algorithms, such as DSP filters, are often de-
signed first in a tool like Matlab before being implemented
in an embedded setting [6]. To avoid slow software floating
point emulation, designers have to carefully tune their ap-
plications to use fixed point computing instead. However,
the complexity or certain characteristics of the applications
may prevent the scaling of this approach. When input or
key parts of the algorithm are changed, the application has



to be re-analyzed, often manually, for changes in precision
and error propagation. In this paper, we examine the al-
ternative of using the reconfiguration fabric to implement
floating point units when the need arises [7]. In particular,
we propose an automated design flow that takes advantage
of existing auto-vectorization capabilities in compilers, and
co-synthesizes code and customized floating point SIMD ex-
tensions in reconfigurable hardware. We also propose an al-
gorithm that determines the optimal configurations for our
SIMD architecture under the given resource constraints.

SIMD vector instructions are a natural candidate for hard-
ware extensions [2] because they yield an efficient encoding
of short instructions that capture a large number of opera-
tions and data transfers. Their regular structures also ex-
press large amounts of data parallelism. They are also flex-
ible and allow for customization by varying the number of
elements in the vector. Custom vector lengths can be used
for the register set, operands and operators. We designed
a novel architecture that supports the concurrent execution
of SIMD instructions with different vector lengths. In par-
ticular, our architecture supports the concurrent execution
of a mix of single precision 4-, 8-, and 16-float long vector
instructions1. The exact mix used is determined by how
the required processing throughput can be matched to the
available reconfigurable resources. We achieve the optimal
matching by folding the execution of larger vectors when
resource is scarce. In essence, we expose a set of virtual in-
struction set architectures (determined by instruction level
parallelism and other program characteristics) that is im-
plemented by a shared pool of floating point execution units
(determined by the reconfigurable resources available). Our
framework inherits from the advantages of both traditional
custom instructions and loop accelerators. We offer an al-
ternative at an abstraction level where it is easier to find
acceleration as well as resource sharing opportunities. On
top of that, this approach offers a tighter integration in the
design compilation flow. In summary, the major contribu-
tions of this paper are as follows.

• We present the design of a customizable SIMD floating
point extension on hybrid architectures that have both
embedded processor cores and a FPGA-like reconfig-
urable fabric.

• We implemented a co-design flow for this extension in
which both the executable and the hardware for the
selected configuration are automatically generated in
a single pass.

• We propose a technique for further improving resource
usage and energy efficiency by the independent folding
of each kind of execution units in the final design.

2. MOTIVATION
In silicon-based processors, the vector instruction set and

the vector length of the SIMD extension have to be chosen
to suit a broad spectrum of computation patterns and in-
struction level parallelism exposed across all the application
domains. However, if the SIMD extension is reconfigurable,
then one may choose to only implement a particular set of
vector instructions that best benefit the application at hand,

1For brevity, in the rest of the paper, we shall call these ‘x4’,
‘x8’, and ‘x16’, respectively.
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Figure 1: Our target architecture.

and have the system reconfigured to something altogether
different when the demand changes. The overall system ar-
chitecture we target is abstracted in Figure 1. Scalar and
vector floating-point (FP) instructions are executed outside
the processor core, in the attached FPGA extension. These
instructions are issued in program order on a dedicated inter-
face. One of the key insights behind our work is that unlike
general integer computation, many floating point applica-
tions have the proper granularity to overcome the inherent
penalty of issuing instructions outside the processor cores.

In our target system, load and store instructions have to
transfer data through the processor core to the memory.
Most instructions are autonomously executed by the FPGA
with the exception of vector stores which require data com-
puted in the extension to be written back to memory. The
latter entails blocking the subsequent instruction issue un-
til the data transfer is complete. Otherwise, for most other
types of instructions, new instructions can be issued in con-
secutive clock cycles.

The following are some of the considerations that affect
the selection of the vector extension to be implemented.

• The use of longer vectors will decrease the number of
instructions issued to the extension, each instruction
encoding computation of larger granularities.

• As the overall number of issued instructions decreases,
the performance bottleneck will shift from the instruc-
tion issue to execution. There is an opportunity here
to reorganize the individual operations encapsulated
by each instruction, and determine a compact hard-
ware implementation according to the exposed data
dependencies.

• Larger grain computation requires more data to be
transferred before computation can begin. This may
cause delays especially in systems where the memory
latency is large. In other words, the use of longer vec-
tors may prevent the effective overlapping of memory
transfers with computation.

• The kind of data movement is often limited by what
the instructions can do. This can degrade the perfor-
mance of certain operations, such as data transposi-
tions, or the epilogue of vector reductions.

The following example shows the impact of the selected
vector length on the execution time of a loop. Figure 2a
shows a simple loop expressed in a C-like language based on
the Altivec instruction set. The vectorization process iden-
tifies computation patterns across multiple loop iterations
and coalesces them into vector operations. SIMD architec-
tures available today mostly use vector length of four [5].
Our pseudo-compiled code example uses vector registers vr
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Figure 2: Executing a loop using x4 and x8 vector instructions.

that can store four single precision floating point numbers.
The LV instructions bring the operands from memory into
the registers. VADD instructions perform the parallel addi-
tions of the corresponding four vector elements, while the
STV instructions store data back to memory. Because the
loop is vectorized, each iteration corresponds to four scalar
loop iterations.

We first analyze the issue and execution schedule of this
vectorized loop as it would be handled by our target archi-
tecture with a vector length of four (i.e., x4). Figure 2b
shows the issue and execution of instructions correspond-
ing to two consecutive vector iterations processing elements
with base index i and i + 4 respectively. The compiler un-
rolled the loop twice and software pipelined the LV and STV

instructions, placing them in adjacent cycles. Loop un-
rolling increases register pressure, but can partially hide
the latency of the memory transfer operations and subse-
quently run the pipelines of the execution units more effi-
cient. Each instruction requires a distinct issue cycle which
corresponds to the data transfer between the core processor
and the vector extension. Once issued, most instructions
execute autonomously, spending one or more clock cycles in
the pipeline of a hardware execution unit. The exception
is the vector store (STV) instruction which occupies the is-
sue bus for several cycles until it returnsdata from the vr

to the processor core for subsequent stores to memory. In
this example the critical path consists of the two dependent
additions, VADD1 and VADD2. LV instructions are software
pipelined in the available issue cycles before the start of the
current iteration, while STV instructions are issued after the
end of the current iteration.

However, due to the sequential data exchange between
the core processor and the extension, repeated issuing of
vector operations to the vector extension is costly. This can
be detrimental to the overall performance because it lim-
its the issue rate of compute instructions. Alternatively, the
same vector loop can be compiled for a vector length of eight
(x8), as shown in Figure 2c. However, in this architecture,
the processor core remains unchanged, and thus all memory
transfers, which are routed through the core processor, are
split into chunks of four elements. Accordingly, LV instruc-
tions now require two issue cycles, while STV instructions
require four cycles to transfer the operands. In this configu-
ration, a single x8 loop iteration can handle the computation
previously handled by both x4 loop iterations. The schedule
becomes shorter, because less VADD instructions are issued.

We can compare the execution time of N iterations of an
unrolled vector loop to a single equivalent iteration of a vec-
tor loop where vectors were lengthened N times. We assume
that once the instructions are issued, they will execute au-
tonomously. Ideally, performance is maximized if there is an

execution schedule where, once instructions are issued, they
can execute without delay caused by operand dependencies.
Let tM and tI be the number of issue cycles used by memory
transfer and non-memory transfer instructions in one itera-
tion of the vectorized loop body, respectively. In this model,
the unrolled version takes N · (tM + tI) cycles to complete,
while a single iteration of the loop with longer vectors takes
N · tM + tI cycles. Thus, the latter approach will improve

performance by (N−1)tI
N(tM +tI )

. For example, if tI = tM and

N = 4, this translates to 37.5% improvement. In practice,
this speedup is generally higher for longer vectors, because
the compiler generated schedule may not be able to com-
pletely hide the instruction dependencies. However, irregu-
lar data movement patterns can make it harder to use longer
vectors as additional data movement instructions will be re-
quired to correctly marshal data into the vector registers.
In the final analysis, which vector length yields better per-
formance depends on the computation pattern and available
instructions.

Operations of a vector instruction may be mapped onto
a reduced set of execution units by means of multiplexing,
thereby trading off performance for lower resource demands.
By doing so, the overall execution time may increase if the
affected instructions are on the critical path. In our pro-
posed framework, we evaluate the profitability of each vec-
tor length during compilation, and select the best based on
a static model. In the resulting platform, multiple versions
of the same instruction corresponding to different vector
lengths may coexist. The proposed architecture allows these
versions to share the execution units. Due to the sizable re-
sources involved, the alternative of switching via runtime
reconfiguration between platforms each implementing a sin-
gle vector length introduces significant delays, potentially
eliminating most of the performance benefits of SIMDiza-
tion.

3. THE PROPOSED CO-DESIGN FLOW
An established approach for getting good performance in

compute intensive applications is the use of mathematical li-
braries such as ATLAS [20]. The granularity and semantics
of the data structures are key factors in achieving optimal
results over large portions of the application. Hence, the
trend to capture computation at a higher level of abstrac-
tion such as vectors or matrices. Libraries rely internally
on compiler auto-vectorization of carefully written code to
deliver the best performance. For our purpose, we further
require support for the new vector instructions that we in-
troduce at the hardware level.

Our choice is Eigen [9], a C++ template library for linear
algebra, achieving comparable performance to ATLAS. It in-
cludes the data structures for vectors and matrices, as well
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Figure 3: Our proposed vectorization flow.

as their related algorithms. Eigen uses code inlining exten-
sively to automatically rewrite and lower the code represen-
tation, applying vectorization where possible. Its recursive
template inlining and instantiation also removes unneces-
sary temporaries, thereby building loops with large bodies.
Multiple instances of the same function template are gener-
ated and inlined in different code fragments. We shall use
the term kernel to refer to a section of the code that has
dependencies that are satisfied using (virtual) vector reg-
isters. Each kernel may consist of one or more loop nests
and the code in between. What is important is that kernels
are independent of each other and can be implemented us-
ing different vector lengths. The original Eigen compilation
flow is presented in Figure 3a. For each computation ker-
nel, the C++ preprocessor uses Eigen library templates and
proceeds to recursive inlining which lowers the computation
down to built-in functions mapping directly to assembler in-
structions. Internally, Eigen uses a layered instantiation and
its lowest level relies on a set of primitive function templates
that correspond to the actual vector instructions supported
by the target architecture. The resulting executable code
contains all the properly vectorized code inlined into the
original functions.

The recursive template instantiation mechanism is shown
in Figure 3b. The C++ computation is expressed in terms
of vectors v and matrices m. The C++ code in this example
sums each of the columns of m, adding the resulting vector
to v1 and v2. The template library breaks up this sequence
of operations hierarchically into a vector addition, which ex-
pects to add the result of v1 + v2 with m.colwise().sum().
At this point the addition is expressed in terms of abstract
packets which will later be transformed to fit the length
of the hardware vectors. The inlining process continues by
mapping the addition of packets from v1 and v2 to a VADD

instruction, while the matrix column summation is mapped
to a loop that sums packets of elements from different rows.
This loop and the previous VADD are combined in a loop
nest in the final assembly code. It is only during the final
mapping that the hardware vector length gets used. The
packet length is propagated as a constant throughout the
kernel. The compiler backend then optimises the result-
ing code. Recursive template instantiation and inlining are

merely techniques for code rewriting. Therefore, despite the
heavy use of template instantiation and inlining, the final
executable does not suffer from code explosion.

In our single-pass co-synthesis flow shown in Figure 3c we
have modified the library to cease automatic instantiation
at the level of kernels, so that we can control and fine-tune
the compilation of each template. Because kernels do not
share code, we can compile each kernel independently. We
pass each of these kernels to the compiler for explicit instan-
tiation. We repeat the explicit instantiation steps so that we
get all the different vector length versions of all the kernels.
We project the performance of each kernel version as a func-
tion of the parameters of our SIMD extension configurations
(Section 5). We also collect the list of instructions used by
all versions of all the kernels. This information is used in
a global selection step (Section 6) that determines the ver-
sions of each kernel to be used in the final executable, as well
as the extension to be synthesized in order to execute the
selected kernels. This is done in a single pass and does not
require repeated hardware synthesis. We use the link-time
optimization feature of GCC [12] to derive all versions of the
kernels as well as inline the selected kernel versions for the
final executable.

Eigen includes an ISA specific set of primitive template
functions that corresponds to vector instructions and their
GCC built-ins. We have added templates for other vector
lengths in Eigen, and modified GCC by adding new built-ins
and machine descriptions. It is important to note that while
our choice of Eigen minimized our engineering effort, our
approach can be adapted to any vectorizer that is capable
of handling multiple vector lengths. This includes the GCC
vectorizer, Fortran 95 vector operations, SUIF and other
vectorizing compilers.

4. A CUSTOMIZED SIMD EXTENSION
In this section, we shall describe the details of the novel

SIMD hardware extension that executes the vector instruc-
tions generated by our design flow. Our implementation uses
the Xilinx Virtex-5 chip with its embedded PPC440 proces-
sor core. We therefore had to be compatible with the IBM
AltiVec instruction set architecture [5]. However, with some
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amount of re-engineering, it should be possible to port this
work to other similar architectures of which several alterna-
tives are commercially available [1, 8].

The instructions for longer vector lengths are semantically
simple extensions of the standard AltiVec instructions. Par-
allel vector operators are extended by increasing the range of
their vector indexes. Several of the data movement instruc-
tions that do not use operands with absolute element index-
ing can also be extended in the same manner. For the in-
structions where an index is given as an immediate operand
(i.e. VSLDOI, a left shift instruction), or where such indexes
are included in one of the vector registers (i.e. VPERM, a
generic permutation instruction that receives an index-based
permutation pattern in a vector register) we need to cope
with bit-width limitations in the index encoding. When pos-
sible, we used previously unused bits in the operand field to
encode the larger index. Otherwise, we increase the gran-
ularity of the indexes, which by default is a byte. As we
implement only the vector FP operations, we can increase
this granularity four-fold.

The custom SIMD extension is implemented in the FPGA
reconfigurable area and attaches to the Auxiliary Processor
Unit (APU) interface of the embedded PowerPC processor.
The overall architecture of the extension and its connections
to the APU interface are presented in Figure 4. Scalar FP
instructions use an IP library module provided by Xilinx,
also attached to the same APU interface. The PowerPC
core issues floating point instructions to the extention via
the APU interface. Our SIMD extension includes a collec-
tion of vector FP instruction control blocks, a unified vector
register file and a set of scalar FP pipelined execution units.
An instruction control block implements one or more related
vector instructions. For example, a single control block im-
plements both the vector add and subtract instructions. The
execution units are shared by the vector instructions. In-
structions and execution units are connected together with
minimal glue logic. We have maintained clear design bound-
aries between the execution units, instruction control blocks
and the SIMD extension interface, allowing for a modular
synthesis flow. This will also facilitate our future work to
move to a run-time partial reconfiguration platform.

Assuming that there are M distinct types of execution
units (i.e., adders, multipliers, fused multiply-add units), a
configuration E is defined as the tuple (e1, . . . , eM ) where
each ei is the number of execution units of type EUi to
be instantiated. The extension implements the instructions
using N instruction control blocks I = {I1, . . . , IN}. Note

that an instruction and its control block have the same vec-
tor length, denoted by ‖Ik‖, that is implicitly encoded. The
pair (E, I) fully characterizes our SIMD extension.

A single register file is used by all the vector instructions,
irrespective of their vector lengths. It is configured such
that it can store the longest supported vectors. Instructions
handling shorter vectors will use only the lower bits of each
register. The register file is implemented using the Virtex-
5’s block RAMs (BRAMs). To handle the longest vectors,
it has to be W = 32 × maxIk∈I

(‖Ik‖) bits wide since each

single precision floating point number occupies 32 bits. Al-
tivec instructions can have up to three input and one output
operands. However, the exact position of each in the instruc-
tion encoding varies. To avoid the overhead of multiplexing
the possible positions to the register file, we implemented a
register file with four read ports, and one write port. The
amount of BRAM available in the Virtex-5 is large enough
to implement four identical copies of the register file, each
allowing one synchronous read and write. Read requests
from different instruction operands will be serviced concur-
rently by the different copies of the register file. However, all
the register file copies are written concurrently on any up-
date. This ensures that all copies of the register file contain
identical data, and hence consistency is enforced.

A variant of scoreboarding is employed throughout the
SIMD extension. It manages instruction issue and retire-
ment, enabling out-of-order completion. As soon as instruc-
tions appear on the APU interface, they are copied into an
instruction buffer. A confirmation is immediately returned
to the PowerPC core. The only exception is the vector store
(STV) instruction, which needs to return data from a vector
register to the PowerPC core. This instruction sends out a
confirmation signal once it completes.

In the instruction buffer, a vector instruction will wait
for its dispatch to the corresponding vector instruction con-
trol block Ik. The instruction is dispatched only when all
its operands are available in the register file, and when the
hardware determines, based on the known execution time
of Ik, that the write port of the register file is available to
commit the result during the clock cycle when the execu-
tion completes. These conditions together ensure that, once
dispatched, instructions execute and commit their results
without blocking. We keep track of when instructions will
commit their results to the register file using a set of commit
slots that correspond, in order, to reservations during future
cycles to the write port of the register file. These commit
slots are maintained consistent by shifting their contents to
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add 621 0 188 5
mul 132 2 188 3

mul-add 1101 2 152 7

Table 1: Characteristics of execution units.

the previous slot at every clock cycle.
When an instruction is dispatched to a vector instruction

control block, its operands are read from the register file.
The control block will latch them and execute an internal
schedule that accomplishes the desired functionality using
the available execution units. If there are enough execution
units, all operations can be launched in the same clock cycle
(such as I2 in Figure 4). Otherwise, a folding mechanism,
described in Section 4.1, schedules the operations on the
available execution units over several clock cycles. Once the
execution of the instruction completes, the result is placed
on the write bus and the destination register is marked as
available in the operand availability table.

Some of our design decisions were driven by the idiosyn-
crasies of our Virtex-5 development board [15]. Vector load
(LV) and store (STV) instructions are handled in a special
way so as to account for the fact that the memory APU
bus width is a fixed 128 bits, regardless of the vector length.
The processor core performs all memory accesses including
those made by the extension. Our solution for dealing with
this constraint is a special load-shift semantics for vector
load operations: consecutive loads targeting the same vec-
tor register will shift the content of the register before in-
corporating the incoming data in the lower bit positions. If
the instructions require a vector length of 128 bits, a single
load is issued, and the corresponding data is placed in the
lower 128 bits of the longer vector register, while the rest of
the vector register, containing shifted data, becomes irrele-
vant. If instructions require longer vectors, multiple 128 bit
loads are issued. Each of these loads will shift the previously
loaded data to more significant positions. If loads are issued
in the correct order, the long vector load can be replaced by
a sequence of regular loads.

Unfortunately, vector stores cannot be handled transpar-
ently. Stores may be canceled and reissued by the PowerPC
due to branch mispredictions or page faults. There is there-
fore no easy way to check if a previous store has succeeded
or not that is also compatible with our extension. To work
around this issue, we implemented an explicit bank selec-
tion instruction that specifies which part of the longer vector
needs to be stored via the 128 bit APU bus. The bank index
is initially reset, thereby making this mechanism transparent
to the x4 instructions.

The overall extension is feasible if the total resources (i.e.,
LUTs) occupied by all the instruction control blocks, exe-
cution units and other logic, including the scalar FP unit
fit the resources of the FPGA. Because we implement the
register file in BRAM, we freed up a significant number of
additional LUTs. We use post-synthesis resource informa-
tion for individual modules of our design, and account for
the additional LUTs used for multiplexers, in order to derive
the total requirement of our design. Besides resource con-
straints, the scalability of our design is also limited by the
critical path of multiplexing the results back to the register
file’s write port via a single result bus. Nonetheless, we have
successfully placed and routed extensions with as many as

32 multiplexed write sources.
We designed our own execution units, including the single-

precision floating point adder, multiplier and fused multiply-
adder. Their post-synthesis resource usage and performance
are shown in Table 1. The multiply-adder unit fuses the two
operations without the intermediary result normalization,
and hence is equivalent to its standard AltiVec counterpart.
Note that this does not preclude the use of other arithmetic
unit designs.

4.1 Folding of SIMD operations
Folding is the mechanism used by the vector instruction

control blocks to schedule the execution of vector opera-
tions on a smaller set of execution units. Our implementa-
tion currently supports folding only for vector lengths and
a number of execution units that are powers of two. The
folding mechanism sequences the inputs for all operations
to the execution units over several clock cycles. Because
the execution units are pipelined, we can launch a new set
of operations each clock cycle, i.e., the initiation interval is
one. In particular, for a vector instruction I executed by a
control block Ij , the number of consecutive cycles required
to place all the operations in the ek execution pipelines of
type Ek is: fold(I, Ek) = ‖Ij‖/ek if the control block Ij re-
quires the use of the execution units of type Ek. Otherwise,
fold(I, Ek) = 0.

Folding requires hardware multiplexers to redirect data
from several vector locations to the execution units. These
multiplexers are embedded in the instruction control block
and driven by state machines. The instruction control block
is aware of the number of execution units available in hard-
ware. During instruction execution, after data is fetched
from the registers, a sequence of data insertions into the
pipeline of the execution units is initiated. We choose to al-
low the instruction to drive the folding based on a run-time
configuration, which leads to slightly larger (generic) mul-
tiplexers inside the vector instruction control block. Never-
theless, we believe that this is a small price to pay for design
modularity and reuse.

Folding affects the rate at which the instruction control
block can handle incoming instructions. If the operators are
not folded, the entire instruction execution is fully pipelined,
and a new instruction can be initiated every cycle. Other-
wise, the instruction control block flags the execution units
as busy, and this is an additional factor that may block the
dispatch of the next instruction from the instruction buffer.
The total execution latency of an instruction L(I) is also
affected by folding. This latency consists of a fixed number
of clock cycles spent in the instruction control block and in
the execution pipeline, and a variable number of clock cycles
required to fold the instruction. The latter depends on the
vector length of the instruction and the number of execution
units available to it.

5. PERFORMANCE PROJECTION MODEL
A key component of our design flow is the static evalua-

tion of design points. In this section, we shall describe the
model by which we project the performance of each kernel.
Without such a model, it would be impossible to offer an
automated single-pass design flow that selects the best pos-
sible hardware configuration without trial synthesis of many
candidate configurations.

The SIMD extension described in the previous section has



two degrees of flexibility. We can adjust the number of exe-
cution units of each type. We can also choose whether or not
to implement instructions of various vector lengths. Recall
that while a kernel can only be of one vector length, different
kernels in a single application are allowed to have different
vector lengths. We can estimate the performance of each
kernel on a configuration E and use this metric to drive the
instruction selection and implementation in Section 6.

We start by identifying the sequence of vector instruc-
tions I = {I1, . . . , In} for each loop body in the kernel k.
For most practical situations, there is usually only one loop
body in the kernel. These instructions will be issued by
the PowerPC processor in program order to the SIMD ex-
tension. We assume that the remaining scalar instructions
execute out-of-order and have no impact on the execution
time. Furthermore, the PowerPC processor is able to start
prefetching the data for all the vector loads as soon as they
are encountered. The PowerPC core maintains a look ahead
window of δ instructions, prefetching additional instructions
while it attempts to issue an instruction to the SIMD exten-
sion. In our performance model we assumed that memory
accesses will hit the cache and that a 128-bit load or store
transaction takes d cycles, based on the processor memory
bandwidth. We also determine the execution time L(Ip) of
instruction Ip. Any folding will also be accounted for in
L(Ip) as previously described.

Based on the above assumptions, we estimate the number
of clock cycles T (E, k) required to execute one iteration of a
loop in kernel k on a configuration E using Algorithm 1. For
each instruction Ip, we derive the following timings relative
to the beginning of the iteration: (a) the time when the
instruction reaches the look-ahead window (αp), (b) the time
when it is issued to the SIMD extension (βp), and (c) the
time when it finishes execution (γp). We also track the time
when the memory bus becomes available (Ξ), and the time
when execution units of each type i are available (Fi). The
timing obtained at the end of an iteration is used to seed
the computation of the next iteration. We then iterate till
we reach a fixed point, and return that as the result. In the
description, ‘in(Ip)’ are the predecessor instructions of Ip in
the data dependency graph, and ‘fold(Ip, E)’ was defined in
the previous section.

Let V be a set of vector lengths. In our current context,
V = {4, 8, 16}. The different versions of the kernel kx are
denoted by the set {kvi

x }, vi ∈ V . The Eigen library is mod-
ified so that we can obtain the relative iteration counts of
the kernel loops compiled for each of the vector lengths. If a
kernel has more than one loop, then we apply Algorithm 1
to each loop inside the kernel. We derive a combined per-
iteration execution time for each kernel by summing the per-
iteration execution times of each loop weighed by their rela-
tive counts. We also combine the relative counts of different
kernels with actual profiling data from a scalar execution of
the application to project the normalized weight ωvi

x of each
vectorized kernel kvi

x . Profiling needs to be done only once
for the non-vectorized application and can be accomplished
with a regular GCC compiler and gprof.

The performance estimate T (E, k) has to be recomputed
for all kernels over all the configurations as the latency of the
instructions varies as a function of the folding factor. Even
though we can reuse some of the estimations, the number
of design points and combination of kernels is large. In our
experimental setup, for example, we had 25 configurations,

Algorithm 1 T (E, k) for a single loop in a kernel

Require: A configuration E = (e1, . . . , eM ) and the se-
quence of vector instructions I = {I1, . . . , In} that forms
the loop body inside kernel k

1: Ξ = F1 = . . . Fn = −∞
// These hold the previous iteration’s issue times:

2: β−δ = . . . = β−1 = −∞
3: repeat
4: for Ip ∈ I do
5: αp = βp−δ + 1 // models PowerPC lookahead
6: t = max(0, βp−1 + 1, αp, max

m∈in(Ip)
γm)

7: βp = max
Ei used by Ip

(t, (Fi)); // models blocking

8: for functional unit type i used by Ip do
9: Fi = βp + fold(Ip, Ei)

10: if Ip is memory transfer then
11: Ξ = max(Ξ, αp) + d
12: βp = max(βp, Ξ)
13: γp = βp + L(Ip) // instruction ready time
14: τ = γn // ready time of last instruction
15: for j < δ do
16: β−j = βn−1−j − τ
17: for Ei do
18: Fi = Fi − τ
19: Ξ = Ξ− τ
20: until τ does not increase

return τ

and 36 instruction candidates. We can prune the explo-
ration space based on the timing relationships between the
configurations. Suppose there are two configurations, E1 =
{e1

1, . . . , e
1
M} and E2 = {e2

1, . . . , e
2
M}. For a configuration

Ei, the minimum overall execution time T (Ei) is reached
when the version selected for each kernel kx has the low-
est execution time. In other words, T (Ei) =

P
x

min
vi∈V

(ωvi
x ×

T (Ei, k
vi
x )). However, this lower bound on execution time

may not be achieved if some of the required instructions are
not accommodated by the resource constraint.

6. EXTENSION SELECTION
The selection of the best extension (shown in Algorithm 2)

is based on statically projecting the performance achievable
by the entire application on the feasible extension configu-
rations. As its input, it takes the independently vectorized
kernel versions of the application. It also requires the set of
possible vector lengths, the relative weights of the kernels in
the execution time, and a resource constraint.

The output of the algorithm consists of a recommended
configuration and the subset of our extended AltiVec in-
struction set to finally instantiate. In particular, for the lat-
ter, suppose there are N distinct instructions control blocks
in the set I, and that the set of possible vector lengths
is V . The algorithm outputs a Boolean decision matrix
Φ = {{φv1

1 , . . . , φv1
N }, . . . , {φv|V |

1 , . . . , φ
v|V |
N }}. φvi

j = 1 if the
control block of instruction j for vector length vi is to be
supported in hardware. The resource usage of this instruc-
tion is denoted by avi

j .
The design space is explored using a dominance relation-

ship. Let E1 = (e1
1, . . . , e

1
M ) and E2 = (e2

1, . . . , e
2
M ) be two

configurations. We say that E1 is dominated by E2 (denoted
as E1 ≺ E2) if ∃i, e1

i < e2
i and ∀j, j 6= i, e1

j ≤ e2
j . In other



Algorithm 2 SIMD extension selection

Require: A set of vector lengths (V ), all kernels vectorized
by the various vector lengths (K = {kvi

j }, vi ∈ V ), the

relative weight of all kernels ({ωvi
j }, k

vi
j ∈ K), and a

resource constraint (A)
Output A configuration (Π), and the subset of instructions

to be implemented (Φ)
1: SFU = {E|@E′, E ≺ E′ ∧ res(E) ≤ A};
2: R̂ = ∞; Π = Φ = ∅;
3: while SFU 6= ∅ do
4: E = pop(SFU );
5: T (E) =

P
j

min
vi∈V

(ωv
j × T (E, kvi

j ))

6: if T (E) < R̂ then

7: Φ′ = {{φv1
1 , . . . , φv1

N }, . . . , {φv|V |
1 , . . . , φ

v|V |
N }}.

8: SATslv minimize R =
P

j,vi∈V

(T (E, kvi
j ) ·ωvi

j ·svi
j )

subject to
9:

P
j,vi∈V

φvi
j · avi

j ≤ A− res(E)

10: ∀j∀vi ∈ V, svi
j ≤ φvi

x if instruction x of length vi

is needed in the implementation of kernel kvi
j .

11: ∀j,
P

vi∈V

svi
j = 1

12: if R < R̂ then
13: Π = E; Φ = Φ′; R̂ = R;
14: if R > T (E) then
15: SFU = SFU ∪ {E′|E′ ≺ E ∧ @E′′s.t.E′′ ≺ E′ ∧

E′′ ≺ E};
return Π and Φ

words, configuration E1 has strictly less number of units of
type i than E2, and at most the same number of units as
E2 for all other types. In a dominated configuration, i.e.
E1 here, one may implement even more vector instructions
using the difference in the resource of E2 and E1. Even so,
we note that E1 ≺ E2 ⇒ T (E1) ≥ T (E2) regardless of what
instructions are added to E1. This means that if the current
configuration is E, and T (E) is larger than the best found

so far (R̂ in Algorithm 2), then none of the configurations
dominated by E can do better, and so can be discarded.

Algorithm 2 starts with considering the configurations
that use less resources than the given resource constraint,
and are not dominated by any other configuration (line 1),
one at a time. For each configuration E being explored,
we compute T (E) by selecting the best version of each ker-
nel without any resource constraints (line 5). If this uncon-
strained lower bound (i.e., T (E)) is no better than what has
been already found, we discard E as well as all the configu-
rations dominated by E, and proceed to the next candidate.
Otherwise, E is a possible solution. A set of resource-based
constraints (lines 9-11) is built, and we invoke a SAT solver
to generate feasible solutions with the help of an evolution-
ary optimizer [17] with the goal of deriving a solution with
the minimum execution time. The binary decision variable
svi

j indicates whether kernel j vectorized with length vi is

part of the solution. φvi
j indicates if instruction j with vec-

tor length vi is to be part of the final extension ISA. The
constraint in line 10 is to ensure that if a particular vector-
ized kernel is chosen, then all the instructions used by the
kernel are also chosen. The auxiliary function ‘res(E)’ es-
timates the resources used by configuration E. If the SAT

software scalar FP 9K (min) x4 without folding 54K (max)
simplemul 1 1.87 1.98 2.91
vecmat 0.32 1 1.78 1.88 2.28
linear 0.1 1 2.07 2.07 5.13
matmat 0.044 1 1.83 2.03 2.77
hessenberg 0.052 1 1.79 1.86 2.93
qmr 1 1.69 1.78 2.21

simplemul vecmat linear matmat hessenberg qmr
1 1 1 1 1 1

0.87 0.78 1.07 0.83 0.79 0.69
0.11 0.1 0 0.2 0.07 0.09
0.93 0.4 3.06 0.74 1.21 0.43
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Figure 5: Speedup of different design points com-
pared to scalar FP execution.

solver is able to arrive at a solution R that is faster than the
existing best solution (R̂) (line 12), then the newly found
solution replaces it (line 13). Furthermore, if R is worse
than the unconstrained bound of T (E) (line 14), it would
imply that there is room for improvement. We will then
add all configurations immediately dominated by E to the
list of configurations to be considered (line 15). The idea
here is that in one of these (say E′), it may be possible to
obtain an improved execution time by implementing addi-
tional instructions using the resource difference between E
and E′.

The algorithm is guaranteed to terminate because (a) we
limit the number of iterations of the optimizer, and (b) only
smaller configurations are added for future consideration. In
practice, for the benchmarks reported in Section 7, it took
no more than a minute on a Intel Core 2.

The solution returned by the algorithm is fed into an ap-
plication of ours that puts together a mix of Verilog and
VHDL modules that is then pushed through the Xilinx syn-
thesis flow to obtain the bitstream of the SIMD extension.
The solution is also used in our modified version of the GNU
assembler which is utilized in conjunction with our modified
GCC-LTO compiler to generate the executable.

7. RESULTS
We implemented our extensions on a Xilinx ML510 sys-

tem [15]. The Virtex-5 VFX130 FPGA on board includes a
PowerPC 440 core, and 81,920 look-up tables (LUTs). All
the experiments reported here are based on the HDL code
generated automatically by our toolchain that consists of
our modified versions of Eigen and GCC. 18.5% of the LUTs
were used for a system wrapper, a scalar FP unit from the
Xilinx library and the SIMD extension interface. We se-
lected a set of linear algebra benchmarks that would be ideal
candidates for vectorization in embedded applications such
as media processing [16], sensor array data processing, global
positioning systems and beamforming solutions [14]. Several
vector and matrix benchmarks are provided in Eigen. These
benchmarks are compute intensive functions and reach per-
formance comparable to BLAS on standard architectures.
Furthermore, we used Eigen to vectorize benchmarks from
the Iterative Template Library [13], which provides itera-
tive methods for solving linear systems. We explored an
extensive range of design points for the SIMD extension, al-
locating up to 67% additional LUTs. For all these points we
were able to synthesize extensions with the same frequency
constraints. The core processor runs at 400 MHz, while the
extension runs at 133 MHz.
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Figure 6: Resources used by execution units vs. instructions throughout the design space.

Figure 5 shows the speedup achieved by our co-synthesized
design compared to scalar FP execution using the Xilinx IP
core. We present the performance for three design points
for each benchmark: (1) a design that utilizes a very low
amount of resources, hence the execution units and instruc-
tions are constrained to 10% of the total LUTs, (2) an x4
mapping where the number of execution units matches the
vector length (no folding, would correspond to a naive im-
plementation), and (3) a design using the optimal mix of
x4/x8/x16 instructions, constrained only by the maximum
available resources. The minor performance improvement
observed between the former two designs, which use x4 in-
structions, supports the observation that, for short vectors,
the bottleneck is at instruction issue, and merely adding ex-
ecution units has a limited impact on performance. Instead,
using longer vectors led to up to 5.13× improvement.

There is a non-trivial balance between the execution units
configuration E, and the instructions control blocks imple-
mented I. x16 instructions encapsulate larger multiplexers
and hence use significantly more resources than the shorter
vector versions, but deliver better performance. However,
there are numerous cases where, due to resource constraints,
the optimal solution involves using a smaller set of possibly
shorter vector instructions complemented by a higher num-
ber of execution units. In Figure 6 we present performance
and resource utilization for three benchmarks, for a set of de-
sign points when the resource constraints are relaxed. This
figure presents only the total amount of resources used for
each of the two configurable portions of the design (E, I).
While performance increases monotonically, the non-trivial
distribution of resources between the instructions and the
execution units shows the need for our search algorithm.
In addition, Figure 7 gives the composition of the instruc-
tions implemented for ‘qmr’ at the given design points. It
shows the resource usage associated with instructions of dif-
ferent vector lengths. x4 instructions use significantly less
resources than x16.

Beside speedup, using vector instructions also leads to sig-
nificant energy savings. We compare the total energy of the
fastest design to that of a design using solely the scalar FP
Xilinx IP core. The result reflects the total energy con-
sumption of the FPGA core, which includes the energy of
the PowerPC embedded processor. We used the current
sensor provided on the ML510 board and measured its av-
erage value during program execution using a multimeter.
Table 2 reports the energy consumption derived from our
measurements using the best mix of instructions. The en-
ergy consumption of the best mix can be as low as 22% of
the original scalar version.

8. RELATED WORK
There are a number of customized vector processor archi-

tectures [8, 21, 23] that have been proposed or are available
on the market. They provide a rich set of reconfigurable
parameters. However, the final result is a monoltihic pro-
cessor instance with all instructions tightly integrated into
the base pipeline. As such, resulting processors are imple-
mented exclusively either in silicon or as soft-cores.

A more modular approach can be found in the sizable
body of prior work on custom instructions, including a num-
ber of commercial products such as those developed by Ten-
silica [8] and Stretch [19]. They also provide SIMD cus-
tom instructions for integer applications. The typical ap-
proach used in custom instructions involves the analysis
of data flow graphs obtained as a result of compilation,
followed by the selection of dataflow subgraphs as candi-
dates for custom instructions implementation [4, 24]. While
the selected subgraphs are identified during compilation,
platform-dependent optimizations that simplify or share re-
sources are applied during hardware mapping. This phased
approach prevents compiler optimizations from fully taking
advantage of resource sharing opportunities. This is par-
ticularly important for floating point computation because
the number of execution units that can be implemented in
hardware is small, and a co-optimization approach can po-
tentially yield better designs.

As shown in Section 2, issuing the instructions to the
hardware extension leads to significant overhead. Special-
ized hardware loop accelerators [18, 25] have been proposed,
relieving the processor of the permanent issue of instructions
and operands. Using this approach, loop specific optimiza-
tions such as unrolling and pipelining can be used to improve
the efficiency of the execution units. Several tools [3, 10] ex-
ist that are capable of deriving dedicated loop accelerators
from source code applying static transformations to extract
the necessary parallelism. This approach, however, does not
support irregular loop structures or complex control flow.
Also, dedicated memory connections are required to pro-
vide data for the loops. Our approach, on the other hand,
relies on the core processor to resolve all control flow issues
and data transfers, issuing scheduled vector instructions and
operands in the proper order to the hardware.

Lastly, some vendors already offered SIMD floating point
coprocessors for their embedded processors [14]. This is ev-
idence for its growing importance in the embedded space.
The iPhone, for example, includes such a core [11]. However,
these offerings are silicon-based, and hence do not possess
the flexibility of our solution.



Benchmarks
simplemul vecmat linear matmat hessenberg qmr

data size 256 128 1024 128 128 1024

Best time (sec) 2.45 3.11 2.42 1.45 2.22 14.98

Best energy (joule) 7.5 9.1 7.6 5.7 8.2 42.2
Scalar energy (joule) 18.4 18.3 34.1 13.9 14.3 83.4

Best / Scalar energy ratio 41% 50% 22% 41% 57% 51%

Table 2: Execution time and energy.
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Figure 7: Distribution of resources among x4, x8
and x16 instructions for ‘qmr’.

9. CONCLUSION
In this paper, we have examined the issues involved in

the acceleration of floating-point computation on a hybrid
reconfigurable architecture consisting of standard (integer)
processor cores and a FPGA-like reconfigurable fabric. We
observed that obtaining good performance for compute in-
tensive applications on such extensions depends on a number
of issues including the amount of parallelism available in the
application, the structure of the loops, the processor cores’
issue rate, memory bandwidth, and the reconfigurable re-
sources available. Due to the intricate balances involved, we
found that a ‘one size fits all’ approach to SIMDization is not
always optimal. In fact, we found that for a SIMDizable ap-
plication, we require a mix of vector lengths. Furthermore,
this mix differs from application to application.

Based on the above insights, we built what we believe
is the first fully automated toolchain that co-optimizes and
co-synthesizes an application and its custom floating point
SIMD extension. The toolchain leverages the latest compiler
techniques in SIMDization and link-time optimization, and
determines the best vector length mix for each individual
kernel in a single pass, requiring only hotspot profiling.

The novel SIMD extension architecture proposed for the
toolchain is able to share SIMD execution units, so as to
meet a given resource constraint. Our co-synthesis toolchain
has been implemented on a Xilinx Virtex-5 board. The out-
put of the experiments were checked for correctness and the
results reported are actual measurements. The experiments
showed that our approach yielded up to 5.13× speedup when
compared to the use of the standard Xilinx floating point IP
cores. This also translated into an energy consumption that
is as low as 22% of the scalar execution. As future work, we
would like to examine how partial reconfiguration and the
fusing of operations can yield even better designs.
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