
Guppy: A GPU-like Soft-Core Processor
Abdullah Al-Dujaili 1, Florian Deragisch 2, Andrei Hagiescu 3, and Weng-Fai Wong 3

1 Nanyang Technological University, Singapore
2 ETH Zürich, Switzerland

3 National University of Singapore, Singapore
Corresponding author:wongwf@nus.edu.sg

Abstract—The popularity of GPU programming languages that
explicitly express thread-level parallelism leads to the question of
whether they can also be used for programming reconfigurable
accelerators. This paper describes Guppy, a GPU-like softcore
processor based on the in-order LEON3 core. Our long-term
vision is to have a unified programming paradigm for accelerators
- regardless of whether they are FPGA or GPU based. While
others have explored this from a high level hardware synthesis
perspective, we chose to adopt the approach of a parametrically
reconfigurable softcore. We will discuss the main architecture
features of Guppy, compare its performance to the original core.
Our design has been synthesized on a Xilinx Virtex 5 FPGA.

I. INTRODUCTION

Reconfigurable hardware accelerators have shown that they
can significantly improve performance of many applica-
tions. However, programming for hardware accelerators have
proven to be difficult, and remains one major hurdle to
their widespread adoption. The main issue is that writing
software is quite different from writing hardware descriptions
for synthesis. Softcore processors are low-cost yet efficient
means of achieving hardware acceleration that are easy to
program.

One of the most popular alternatives for hardware accelera-
tors these days is the graphics processing unit (GPU). Today,
they are programmed by explicitly parallel programming lan-
guages that ease the task of developers trying to use the GPUs
efficiently. The use of GPU programming languages for the
FPGA class of hardware accelerators has also been proposed
[1]. The idea is that this will provide a unified language that is
agnostic about the underlying hardware acceleration platform.
To this end, CUDA has been used as a hardware description
language for FPGAs [2]. However, using CUDA as a hardware
description language would require developers to provide a
significant amount of annotations in order that synthesis can
be performed.

In this paper, we take a different approach to the problem.
Instead of targeting CUDA (or CUDA-like) programs for
structural instantiation of random logic, we propose a soft
processor core that supports the CUDA model of parallelism.
The soft core is easily customizable, and programmers need
not have to struggle with descriptions for hardware synthesis.
In this paper, we will describe in detail the realization of such
a soft core, and present results of it performance.

Our GPU-like soft core called Guppy (GPU-like
cUstomizable Parallel Processor prototYpe) is based on
an existing general purpose parameterizable soft core, namely
the LEON3. There are many ways of producing a MPSoC
based on such single cores. Guppy is novel in that the basic
softcores are modified to execute CUDA-like threads in a
lock-step manner to emulate the CUDA execution model.
The execution and memory model in CUDA is unique, and
reduces the need to rely on locking or message passing.

It would be quite a stretch to expect Guppy to be able to
compete with a full-fledged GPU. Rather the aim is to have
a low-cost, energy-efficient accelerator that would execute
CUDA code the developer may have at hand. This is not
too unreasonable as code for many signal processing tasks or
matrix operations, for example, are readily available in CUDA.
Guppy is particularly well-suited to accelerate code running
in embedded processors processing smaller (especially integer
and bit) data sets.

The CUDA execution model will be described in the next
section. We will then describe the LEON3 architecture, and
how we constructed our GPU-like softcore using it. This is
followed by experimental results, and a conclusion.

II. THE CUDA EXECUTION MODEL

The CUDA programming model captures explicit paral-
lelism, as well as implicit synchronization derived from the
underlying target platform. On GPU devices, function units
(also called CUDA cores by nVidia) are grouped together
into streaming multiprocessors (SMs). The cores in an SM
are divided into execution clusters. In the current generation,
there can be up to 4 such clusters, each having 48 integer
cores, 16 double precision units, 16 load-store units, and 16
special functional units. All the cores in a cluster will execute
the same instruction from a warp. A warp is a collection of
user threads. The execution model organizes user threads into
a grid of thread blocks. All the threads in a thread block are
implicitly synchronized (warps benefit from SIMD execution,
while multiple warps are guaranteed to be concurrent), and
data is exchanged through the same piece of shared memory.
However, threads in one block have no access to the shared
memory of another block. For threads to share data across
blocks, they must rely on a large, but slow global memory. We

978-1-4673-2845-6/12/$31.00 c© 2012 IEEE

refer the interested reader to the vast array of CUDA literature
for a more detailed exposition.

III. THE LEON3 ARCHITECTURE

The LEON3 is a open source softcore [3]. It is a synthesis-
able VHDL model that executes the SPARC V8 instruction set
on a 7-stage pipeline with hardware multiply and divide units.
It also has a fully-pipelined IEEE-754 FPU and a memory
management unit. Guppy

7-Stage SIMT Integer
Pipeline with

configurable L data
lanes and I iterations

Trace Buffer

Debug Port

Interrupt Port

IEEE-754 FPU

Co-Processor

HW MUL/DIV

3-Port Register File
3-Port Register File
3-Port Register File

W*L*I
Register
Files

D-Cache I-Cache Local DRAM

3-Port Register File

Local IRAM

I/O MMU

AHB I/F

AMBA AHB MASTER
(32-bit)

Cache
Assistant

W Warp-
Synchronizer

W Warp-
Scheduler

Original Component

Modified Component

Fig. 1. The block diagram of Guppy.

IV. THE PROPOSED GUPPY ARCHITECTURE

Guppy is based on the LEON3 core. In order to support
the CUDA concept of SIMD execution (warps), we replicated
the data path to obtain the equivalent of multiple hardware
threads. The following describes the modifications.

A. Pipeline Parallelization (Parallel Data Lanes)

Guppy is built around a key modification to the original
LEON3. The integer pipeline has been widened such that a
fixed (user configurable) number of data lanes are executed
in parallel. The block diagram of Guppy is shown in Figure 1.
All parallel lanes (pipelines) have their own register files, and
they execute the same instruction but with different data in a
way much similar to Single Instruction Multiple Data streams
(SIMD) paradigm, where the same instruction is applied to
many data streams. Such implementation is particularly effi-
cient for computations such as vector or matrix addition/ mul-
tiplication. Widening the data path imposes additional pressure
on the data cache bandwidth as there are now multiple data
streams per request (either from a load or a store instruction)
instead of a single data stream for each request in the original
pipeline. We handled this memory bottleneck through a cache
assistant.

B. Iterative Instruction Execution

In order to support as many threads as possible without
undue explosion in the target FPGA resource requirement, we
need to multiplex several threads onto the available lanes. To
do this, we introduced additional logic that would re-execute
the same instruction for threads whose thread ID is greater
than the number of actual data lanes. For example, if we
have 32 threads but only 8 data lanes, we will split them
into 8 groups with 4 iterations each. This yields a 4-cycle
SIMD core because now each lane must repeatedly execute
the same instruction 4 times, each for a different thread. As
with the number of data lanes, the number of iterations is
also customizable. This modification further increases the size
of the register files, as well as the length of the pipeline
initiation interval. The number of register files would be equal
to the number of data lanes multiplied by the number of the
iterations.

C. Cache Assistant

GPU caches need to offer a very high bandwidth as they
must handle several requests (addresses) per clock. A multi-
bank or multiported arrangement of memory arrays would
be an architectural solution for this problem. As mentioned
before, the LEON3 data cache supports a single data stream
per request. We came up with a work-around solution for this
problem by implementing a cache assistant unit that is situated
between the wider Guppy pipeline and the original LEON3
data cache. The function of this unit is to fetch and serialize the
parallel data stream for each request from the Guppy pipelines.
Accordingly, it will communicate with the LEON3 data cache
on a single-stream basis. Then it fetches and parallelizes the
responses from LEON3 data cache before responding to the
Guppy. In other words, parallel requests from Guppy are
multiplexed onto the serial communication to the LEON3
cache, and responses are de-multiplexed accordingly.

The cache assistant consists of two parallel circuits. The
Guppy Core-Cache Assistant (AC-CA) circuit handles of com-
municating with Guppy pipelines whereas the other one, the
Cache Assistant- Data Cache (CA-DC) circuit, deals with the
data cache. Both circuits exchange information of interest via
a scoreboard which gets updated by both circuits in a conflict-
free manner listing the addresses along with their associated
data chunks to be stored/ loaded.

The inclusion of the cache assistant introduces an additional
latency to memory transactions between the data cache and
the processor pipeline. This allows the processor to continue
executing other instructions when one data stream is waiting
for a load or store instruction to be serviced. With the
multiplexing support of the cache assistant, it is possible to
deal with more data streams than the product of the data lanes
number and number of iterations.

D. Warp Scheduler

Memory latency along with the cache assistant overhead
would make Guppy idle for a relatively large number of clock
cycles. For instance, if we have 32 memory access instructions,

it would take at least 32 × 4 clock cycles for the memory
transaction to be processed. Without any architectural solution,
this would be a major obstacle in dealing with a larger number
of data streams. To support more parallel instruction streams
than there are actual physical lanes, a scheduler is needed
to switch from one group of instructions (warp) to another.
The warp scheduler collaborates with the cache assistant
to schedule a warp that has already completed its memory
transaction, and unschedule one that is about to engage in
a new transaction. Currently, the selection mechanism for a
specific warp among a group of ready ones is based on a
priority encoder circuit that changes its priority levels over
the clock cycles by a linear feedback shift register (LFSR)
circuit.

E. Branch Predication

For the Guppy to manage and execute hundreds of threads
efficiently, it is necessary that it employs a single-instruction
multiple-thread (SIMT) architecture in which one instruction
can be applied to multiple independent threads that are free to
diverge and branch. To support control divergence, we made
use of the instruction annulment mechanism present in the
SPARC V8 architecture [4], and implemented a branch pred-
ication circuit [5]. The annul signal through the data lanes is
modified to selectively activate/deactivate the lanes according
to their condition codes. The current implementation supports
predication for if statements that are not followed by else
conditions. However, this is not a major limitation as it is easy
to translate if-then-else statements to if-thens.

F. Warp Synchronizer

As warp switching is based on memory transactions, we
must have an additional mechanism that enforces synchro-
nization between multiple warp executions. In other words,
we need a synchronization barrier. Currently, the barrier is
implemented in hardware based on a specific address within
the program counter (PC). In the future, we intend to use a
software-based warp-synchronizing mechanism instead.

V. SYNTHESIS RESULTS FOR GUPPY

We have synthesized and tested a version of the Guppy with
two warps, two iterations and four data lanes on a Xilinx Virtex
5 FPGA [6] achieving an operating frequency of 70 MHz.
We used the LEON3 monitor and debug software, GRMON,
along with Xilinx board ML510 [7] to verify the correctness of
the implementation in executing an application that performs
the multiplication of two matrices. Table I shows the resource
utilization and running frequency of Guppy compared to the
original LEON3.

VI. GUPPY’S PERFORMANCE

In this section, we compare the performance of Guppy with
that of the LEON3 using a matrix multiplication application.
The LEON3 suffers from a single type of latency or penalty
which is the data cache miss penalty whereas Guppy has the
additional latency of warp switching and synchronization. It

LEON3 Guppy
(2 warps,

2 iterations,
4 lanes)

Number of Slices 10493 (51%) 13877 (67%)
Number of Reg 12717 (15%) 17519 (20%)

- used as flip flops 12716 17046
- used as latches 0 472

Number of LUTs 22036 (26%) 30956 (37%)
Minimum Period 12.455 ns 14.256 ns
Maximum Frequency 80.289 MHz 70.146 MHz

TABLE I
SYNTHESIS RESULTS FOR GUPPY ON VIRTEX 5.

is important to note that the performance speed up is mainly
affected by three factors:

1) Code optimization: LEON3 instructions do not take the
same number of clock cycles. As the parallel code
exhibits significant overhead due to index manipulation,
code optimizations could result in better performance.

2) Data cache configuration: The original data cache deals
with a single data stream for each request to the LEON3
that may be able to make use of the spatial and temporal
locality in the data stream to improve its hit ratio.
However, this is not the case for the Guppy. Consider a
configuration of 4 warps, 2 iteration, and 2 lanes. When
a warp has a pending request from the data cache, each
warp expects 4 data streams with different spatial and
temporal locality patterns to be provided by the data
cache. This may yield worse performance compared
to when there is only one warp. In other words, for
the same Guppy data cache configuration, we expect a
higher miss rate as we increase the number of warps,
iterations, or lanes. Increasing the cache size and/or
associativity could alleviate the sitation.

0

0.5

1

1.5

2

2.5

3

3.5

4x4 8x8 16x16 32x32 64x64

With data cache Without data cache

Size of matrix

S
pe

ed
up

Fig. 2. Speedups of Guppy over LEON3 for different area sizes.

3) Guppy configuration: The number of pipelines (lanes),
iterations, and warps affects the speed up significantly.
By increasing the number of data lanes, we would
expect a speed up that approaches the number of data
lanes. By increasing the number of iterations, we will

still get a performance improvement due to the parallel
lanes, but it would also increase the miss rate of the
data cache. Having more warps increases the switching
and synchronizing overhead which is detrimental to the
overall performance.

0

0.5

1

1.5

2

2.5

3

3.5

[2,2,4] [4,2,2] [2,4,2]

[warp, iteration, lane] configuration

S
pe

ed
up

Fig. 3. Speedups of Guppy over LEON3 for different area Guppy configu-
rations.

Figure 2 shows the performance improvement of the Guppy
over the LEON3 for a matrix multiplication program using
different array sizes. In this experiment, Guppy was configured
with 2 warps, 2 iterations and 4 lanes. The speed up in
this experiment was mainly limited by the data cache miss
penalty and the warp switching and synchronizing overhead.
The maximum speed up we obtained for this configuration was
close to 1.4. To investigate the effects of Guppy’s overhead on
the speed up, we omitted the data cache miss penalty in second
set of bars of Figure 2. As can be seen, the speedup is close
to the ideal. It is obvious that data cache misses account for
the most significant performance loss in Guppy.

The second component of Guppy’s overhead is the warp
switching and synchronizing overhead. To see the effect of
this component, the number of warps, iterations and lanes
was varied while keeping the total number of physical threads
constant. Figure 3 shows the effect of varying the Guppy
configuration on the speedup. In this figure, the data cache
miss latency has also been omitted. The speed up depends
significantly on the number of data lanes as it constitutes
its upper bound. The number of iterations seems to have a
negligible impact. However, changing the number of warps
does impacts performance as the warp switching and synchro-
nizing overhead increases with the introduction of new warps.
In summary, the number of data lanes has a positive impact
on performance whereas both the number of warps and the
current data cache configurations have a negative impact.

VII. RELATED WORKS

There are numerous ”C-like” behavioural languages for pro-
gramming FPGAs. These includes Handel-C [8], SystemC [9],
and others [10]. It is generally accepted that such languages
will ease the adoption of FPGAs. However, it is necessary to
extend C with parallel constructs so as to take advantage of
hardware parallelism.

The recognition that the GPU programming languages can
form the basis for programming FPGAs has motivated a
number of groups to use CUDA as a hardware description
language. The most representative of these is FCUDA [2]. It
is able to convert CUDA code into hardware on the FPGA.
However, the main drawback is that it requires a substantial
amount of annotations. Separately, there is a major effort at
Altera to use the other major GPU programming language,
namely OpenCL, for programming FPGAs [11].

The aim of Guppy is a lot more modest. It does not attempt
to realize CUDA code directly as hardware. Rather, it is a
softcore processor that supports CUDA code execution. The
goal is to allow for the customization (either automatic or
semi-automatic) of the softcore for the computation at hand.

VIII. CONCLUSION

This paper introduces Guppy, a softcore processor built
from an existing general purpose in-order LEON3 softcore
processor. It was never a goal of Guppy to outperform GPUs
especially on thread-parallel applications that needs to process
a huge amount of floating point data. Instead, the aim is
to have a softcore accelerator that can execute CUDA code
on smaller (especially integer and bit) data sets in a cost-
effective manner. Despite its significant compute capabilities,
the cost and energy requirements of a full blown floating point
GPU cannot be justified especially in embedded processing.
However, our modest Guppy softcore readily outperforms the
single LEON3 softcore, and is efficient even for small data
sets. Its CUDA programming model also circumvents the
problem of getting software developers to work on hardware
description in order to accelerate their code. Our long-term
goal is to run CUDA-like code on future versions of Guppy.
For that we will need to work on a CUDA-based compile chain
(which is now open source), optimize the architecture further,
and perhaps extend it to floating point code. We also would
like to complete the memory hierarchy support to include local
shared memory.

REFERENCES

[1] A. Papakonstantinou, et. al. “High-performance CUDA kernel execution
on FPGAs.” Proc. of the 23rd International Conference on Supercom-
puting. 2009.

[2] A. Papakonstantinou, et. al. “FCUDA: Enabling efficient compilation of
CUDA kernels onto FPGAs,” Proc. of IEEE 7th Symp. on Application
Specific Processors, pp.35-42, Jul 2009.

[3] Aeroflex Gaisler. LEON3 Processor. http://www.gaisler.com
[4] Oracle Corp., The SPARC Architecture Manual Version 8.
[5] S.A. Mahlke, et. al. “A comparison of full and partial predicated

execution support for ILP processors,” Proc. of 22nd Ann. Int. Symp.
on Comp. Arch., pp.138-149, Jun 1995.

[6] Xilinx Inc., Virtex 5 Family Overview. Feb 2009.
[7] Xilinx Inc., ML510 Embedded Development Platform User Guide. June

2011.
[8] Celoxica Ltd. Handel-C Language Reference Manual. 2001.
[9] Accellera. SystemC Synthesizable Subset Draft 1.3. Aug 2009.

[10] Mentor Graphics. Catapult C Synthesis Overview.
http://www.mentor.com/esl/catapult/overview.

[11] Altera Corp. Implementing FPGA Design with the OpenCL Standard.
Nov 2011.

