"ANTI-CACHING"-BASED ELASTIC MEMORY MANAGEMENT FOR BIG DATA
Hao Zhang [#] , Gang Chen ^{†‡} , Beng Chin Ooi [#] , Weng-Fai Wong [#] , Shensen Wu ^{†‡} , Yubin Xia [*]
[‡] yzBigData Co., Ltd. [#] National University of Singapore [†] Zhejiang University * Shanghai Jiao Tong University
yzBigData <i>With Previow With Previow With Constituted To a Constitution of the Con</i>

MOTIVATION In-memory databases for Big Data Memory never enough Memory is still relatively scarce compared to HDD Energy consumption Memory is a significant contributor to the total system power ▶ N-minute rule cheaper to put the data in memory if it is accessed every Nminute Cold data – stay on disk Hot data – resident in memory

"ANTI-CACHING"–BASED ELASTIC MEMORY MANAGEMENT FOR BIG DATA

OUTLINE

Caching vs. "Anti-caching"

State-of-the-art Approaches

Understanding the components of anti-caching

User-space Virtual Memory Management (UVMM)

Conclusions

"ANTI-CACHING"-BASED ELASTIC MEMORY MANAGEMENT FOR BIG DATA

CACHING VS. "ANTI-CACHING" Common Deal with the same level of storages ▶ Difference Assumption about the memory size Target for different types of systems Different primary data locations Upper-layer Data View **Upper-layer Data View**

Memory Storage

Anti-Cache

Anti-Caching Architecture

"ANTI-CACHING"–BASED ELASTIC MEMORY MANAGEMENT FOR BIG DATA

Cache

Disk Storage

Caching Architecture

THE COMPONENTS OF IN-MEMORY DB Access tracking

Granularity: Tuple vs page
Eviction Strategy
LRU, MRU, CLOCK, WSCLOCK
Book-keeping

Tables (hashed or otherwise), indexes, etc.
Swapping strategy

What, how much, and when

"ANTI-CACHING"-BASED ELASTIC MEMORY MANAGEMENT FOR BIG DATA

USERVS KERNEL	
At user/application level	
More semantics information	
Different granularities (tuple, column, row, tables, page)	
Platform-independence (possible)	
►At kernel level	
Directly use hardware	
Only know pages	
Crossing the user-kernel divide is expensive	
"ANTI-CACHING"-BASED ELASTIC MEMORY MANAGEMENT FOR BIG DATA	6

STATE-OF-THE-ART APPROACHES

Approaches	Access Tracking	Eviction Strategy	Book-keeping	Data Swapping
H-Store anti-caching	Tuple-level tracking	LRU	Evicted table and index	Block-level swapping
Hekaton Siberia	Tuple-level access logging	Offline classification	Bloom and range filter	Tuple-level migration
Spark	N/A	LRU based on insertion time	Hash table	Block-level swapping
Cache Systems	Tuple-level tracking	LRU, approximate LRU, etc	N/A	N/A
Buffer Management	Page-level tracking	LRU, MRU, CLOCK, etc	Hash table	Page-level swapping
OS Paging	h/w-assisted page-level tracking	LRU, NRU, WSCLOCK, PPRA, etc	Page table	Page-level swapping
Efficient OS Paging	Tuple-level access logging	Offline classification and OS Paging	OS-dependent	OS-dependent
Access Observer in Hyper	h/w-assisted page-level tracking	N/A	N/A	N/A

MANAGEMENT FOR BIG DATA

ACCESS TRACKING - INSIGHTS

Virtual memory access (VMA) is very expensive

If the average tuple size is less than 4-KB for doubly-linked LRU list, or 1-KB for ALRU, their memory overheads are much higher than that of page-table based tracking.

"ANTI-CACHING"-BASED ELASTIC MEMORY MANAGEMENT FOR BIG DATA

TOWARDS AN EFFICIENT GENERAL APPROACH - USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)
Design Principles
► No indirection
Real pointer
► Non-intrusiveness
Backward compatibility and transparent upgrading
► API-based (e.g., malloc)
Flexibility
List of options for different levels of intrusiveness
Optional user-provided access logging
"ANTI-CACHING"-BASED ELASTIC MEMORY

MANAGEMENT FOR BIG DATA

TOWARDS AN EFFICIENT GENERAL APPROACH	
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (U	VMM)
Design Principles	
Reduced CPU overhead for normal operations	
Page table	
User-supplied access logging	
Reduced Memory overhead	
Page level tracking	
Access distribution provided by logging (within one page)	
"ANTI-CACHING"-BASED ELASTIC MEMORY MANAGEMENT FOR BIG DATA	16

CONCLUSIONS

User- and kernel-space approaches exhibit different strengths
 User-space: more application semantics, finer operation granularity, more accurate eviction strategy

 Kernel-space: hardware (CPU, I/O) assistance, good resource utilization
 Combination of user- and kernel-space approaches needed for the best anti-caching performance

• CPU, I/O performance, memory utilization

General and efficient

User-space virtual memory management (UVMM)

