
“ANTI-CACHING”-BASED
ELASTIC MEMORY MANAGEMENT

FOR BIG DATA

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 1

Hao Zhang #, Gang Chen †‡, Beng Chin Ooi #,
Weng-Fai Wong #, Shensen Wu †‡, Yubin Xia *

‡ yzBigData Co., Ltd.
National University of Singapore

† Zhejiang University
* Shanghai Jiao Tong University

MOTIVATION
In-memory databases for Big Data
Memory never enough

Memory is still relatively scarce compared to HDD
Energy consumption

 Memory is a significant contributor to the total system power
N-minute rule

 cheaper to put the data in memory if it is accessed every N-
minute

 Cold data – stay on disk
 Hot data – resident in memory

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 2

OUTLINE

 Caching vs. “Anti-caching”
 State-of-the-art Approaches
 Understanding the components of anti-caching
 User-space Virtual Memory Management (UVMM)
 Conclusions

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 3

CACHING VS. “ANTI-CACHING”

Common
 Deal with the same level of storages

Difference
 Assumption about the memory size
 Target for different types of systems
 Different primary data locations

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 4

THE COMPONENTS OF IN-MEMORY DB

Access tracking
Granularity: Tuple vs page

Eviction Strategy
LRU, MRU, CLOCK, WSCLOCK

Book-keeping
Tables (hashed or otherwise), indexes, etc.

Swapping strategy
What, how much, and when

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 5

USER VS KERNEL

At user/application level
 More semantics information

 Different granularities (tuple, column, row, tables, page)

 Platform-independence (possible)

At kernel level
 Directly use hardware

 Only know pages

Crossing the user-kernel divide is expensive

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 6

STATE-OF-THE-ART APPROACHES

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 7

Approaches AccessTracking Eviction Strategy Book-keeping Data Swapping

H-Store anti-caching Tuple-level tracking LRU Evicted table and index Block-level swapping

Hekaton Siberia Tuple-level access
logging

Offline classification Bloom and range filter Tuple-level migration

Spark N/A LRU based on
insertion time

Hash table Block-level swapping

Cache Systems Tuple-level tracking LRU, approximate LRU,
etc

N/A N/A

Buffer Management Page-level tracking LRU, MRU, CLOCK,
etc

Hash table Page-level swapping

OS Paging h/w-assisted page-level
tracking

LRU, NRU, WSCLOCK,
PPRA, etc

Page table Page-level swapping

Efficient OS Paging Tuple-level access
logging

Offline classification
and OS Paging

OS-dependent OS-dependent

Access Observer in
Hyper

h/w-assisted page-level
tracking

N/A N/A N/A

A DETAILED STUDY OF THE
COMPONENTS

Platform
 Implement different approaches inside one system – Memcached

 To avoid interference introduced by other components

 More fair to various approaches

 Simple to monitor and perf

 Benchmark
 YCSB (synthetic)

 Varying skewness

 Varying ratio of available memory to data

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 8

ACCESS TRACKING OVERHEAD

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 9

ACCESS TRACKING - INSIGHTS

 Virtual memory access (VMA) is very expensive

 If the average tuple size is less than 4-KB for doubly-linked LRU list, or
1-KB for ALRU, their memory overheads are much higher than that of
page-table based tracking.

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 10

EVICTION STRATEGY

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 11

EVICTION STRATEGY - INSIGHTS

Kernel-based eviction approaches suffer from poor
accuracy
 Lack of semantics information

Access-logging based offline classification do well
LRU/ALRU do reasonably well

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 12

BOOK-KEEPING - INSIGHTS

Book-keeping using indexed eviction table has
higher space overhead

Bloom and other filters are quite space efficient
Page tables and VMA use tables that are there

anyway. So overhead is lowest.

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 13

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 14

UVMM

Allocator

Memory Disk

Applications

memory allocation

key-value store, analytics

memory/disk management

Three-layer Hierarchy

malloc

allocate(addr, size)

logging(addr, size)

page table

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

Design Principles
 No indirection

 Real pointer

 Non-intrusiveness

 Backward compatibility and transparent upgrading

 API-based (e.g., malloc)

 Flexibility

 List of options for different levels of intrusiveness

 Optional user-provided access logging

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 15

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

Design Principles
 Reduced CPU overhead for normal operations

 Page table

 User-supplied access logging

 Reduced Memory overhead

 Page level tracking

 Access distribution provided by logging (within one page)

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 16

 Implementation
 Access Tracking

 A combination of access tracking methods

 Page table, malloc-inject, access logging, etc.

 Eviction Strategy

 Optimized LRU/WSCLOCK with consideration of user-provided access logging

 Standard eviction strategies: aging-based LRU, WSCLOCK, FIFO, RANDOM

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 17

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

 Implementation
 Book-keeping

 VMA protection

 Data swapping

 Compression – lz4

 Kernel Asynchronous I/O

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 18

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

PUTTING THEM TOGETHER

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 19

Throughput

LRU – H-store ALRU – Redis Logging - Hekaton Siberia
OS Paging – standard Efficient OS Paging – Stoica & Ailamaki
UVMM – our proposal

CONCLUSIONS

User- and kernel-space approaches exhibit different strengths
 User-space: more application semantics, finer operation granularity, more

accurate eviction strategy
 Kernel-space: hardware (CPU, I/O) assistance, good resource utilization

Combination of user- and kernel-space approaches needed for
the best anti-caching performance
 CPU, I/O performance, memory utilization
 General and efficient
 User-space virtual memory management (UVMM)

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 20

THANK YOU
Q&A

21

