
“ANTI-CACHING”-BASED
ELASTIC MEMORY MANAGEMENT

FOR BIG DATA

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 1

Hao Zhang #, Gang Chen †‡, Beng Chin Ooi #,
Weng-Fai Wong #, Shensen Wu †‡, Yubin Xia *

‡ yzBigData Co., Ltd.
National University of Singapore

† Zhejiang University
* Shanghai Jiao Tong University

MOTIVATION
In-memory databases for Big Data
Memory never enough

Memory is still relatively scarce compared to HDD
Energy consumption

 Memory is a significant contributor to the total system power
N-minute rule

 cheaper to put the data in memory if it is accessed every N-
minute

 Cold data – stay on disk
 Hot data – resident in memory

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 2

OUTLINE

 Caching vs. “Anti-caching”
 State-of-the-art Approaches
 Understanding the components of anti-caching
 User-space Virtual Memory Management (UVMM)
 Conclusions

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 3

CACHING VS. “ANTI-CACHING”

Common
 Deal with the same level of storages

Difference
 Assumption about the memory size
 Target for different types of systems
 Different primary data locations

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 4

THE COMPONENTS OF IN-MEMORY DB

Access tracking
Granularity: Tuple vs page

Eviction Strategy
LRU, MRU, CLOCK, WSCLOCK

Book-keeping
Tables (hashed or otherwise), indexes, etc.

Swapping strategy
What, how much, and when

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 5

USER VS KERNEL

At user/application level
 More semantics information

 Different granularities (tuple, column, row, tables, page)

 Platform-independence (possible)

At kernel level
 Directly use hardware

 Only know pages

Crossing the user-kernel divide is expensive

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 6

STATE-OF-THE-ART APPROACHES

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 7

Approaches AccessTracking Eviction Strategy Book-keeping Data Swapping

H-Store anti-caching Tuple-level tracking LRU Evicted table and index Block-level swapping

Hekaton Siberia Tuple-level access
logging

Offline classification Bloom and range filter Tuple-level migration

Spark N/A LRU based on
insertion time

Hash table Block-level swapping

Cache Systems Tuple-level tracking LRU, approximate LRU,
etc

N/A N/A

Buffer Management Page-level tracking LRU, MRU, CLOCK,
etc

Hash table Page-level swapping

OS Paging h/w-assisted page-level
tracking

LRU, NRU, WSCLOCK,
PPRA, etc

Page table Page-level swapping

Efficient OS Paging Tuple-level access
logging

Offline classification
and OS Paging

OS-dependent OS-dependent

Access Observer in
Hyper

h/w-assisted page-level
tracking

N/A N/A N/A

A DETAILED STUDY OF THE
COMPONENTS

Platform
 Implement different approaches inside one system – Memcached

 To avoid interference introduced by other components

 More fair to various approaches

 Simple to monitor and perf

 Benchmark
 YCSB (synthetic)

 Varying skewness

 Varying ratio of available memory to data

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 8

ACCESS TRACKING OVERHEAD

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 9

ACCESS TRACKING - INSIGHTS

 Virtual memory access (VMA) is very expensive

 If the average tuple size is less than 4-KB for doubly-linked LRU list, or
1-KB for ALRU, their memory overheads are much higher than that of
page-table based tracking.

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 10

EVICTION STRATEGY

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 11

EVICTION STRATEGY - INSIGHTS

Kernel-based eviction approaches suffer from poor
accuracy
 Lack of semantics information

Access-logging based offline classification do well
LRU/ALRU do reasonably well

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 12

BOOK-KEEPING - INSIGHTS

Book-keeping using indexed eviction table has
higher space overhead

Bloom and other filters are quite space efficient
Page tables and VMA use tables that are there

anyway. So overhead is lowest.

“ANTI -CACHING”–BASED ELASTIC MEMORY
MANAGEMENT FOR B IG DATA 13

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 14

UVMM

Allocator

Memory Disk

Applications

memory allocation

key-value store, analytics

memory/disk management

Three-layer Hierarchy

malloc

allocate(addr, size)

logging(addr, size)

page table

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

Design Principles
 No indirection

 Real pointer

 Non-intrusiveness

 Backward compatibility and transparent upgrading

 API-based (e.g., malloc)

 Flexibility

 List of options for different levels of intrusiveness

 Optional user-provided access logging

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 15

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

Design Principles
 Reduced CPU overhead for normal operations

 Page table

 User-supplied access logging

 Reduced Memory overhead

 Page level tracking

 Access distribution provided by logging (within one page)

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 16

 Implementation
 Access Tracking

 A combination of access tracking methods

 Page table, malloc-inject, access logging, etc.

 Eviction Strategy

 Optimized LRU/WSCLOCK with consideration of user-provided access logging

 Standard eviction strategies: aging-based LRU, WSCLOCK, FIFO, RANDOM

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 17

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

 Implementation
 Book-keeping

 VMA protection

 Data swapping

 Compression – lz4

 Kernel Asynchronous I/O

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 18

TOWARDS AN EFFICIENT GENERAL APPROACH
- USER-SPACE VIRTUAL MEMORY MANAGEMENT (UVMM)

PUTTING THEM TOGETHER

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 19

Throughput

LRU – H-store ALRU – Redis Logging - Hekaton Siberia
OS Paging – standard Efficient OS Paging – Stoica & Ailamaki
UVMM – our proposal

CONCLUSIONS

User- and kernel-space approaches exhibit different strengths
 User-space: more application semantics, finer operation granularity, more

accurate eviction strategy
 Kernel-space: hardware (CPU, I/O) assistance, good resource utilization

Combination of user- and kernel-space approaches needed for
the best anti-caching performance
 CPU, I/O performance, memory utilization
 General and efficient
 User-space virtual memory management (UVMM)

“ANTI-CACHI NG”–B ASED ELASTIC MEMORY
MANAGEMENT FOR BIG DATA 20

THANK YOU
Q&A

21

