Parallelizing Skip Lists for In-memory Multi-core
Database Systems

Zhongle Xie*, Qingchao Cai*, H. V. Jagadish', Beng Chin Ooi* and Weng-Fai Wong*

* National University of Singapore

T University of Michigan

*{zhongle, caiqc, ooibc, wongwf}@comp.nus.edu.sg Tjag@umich.edu

Abstract—Due to the coarse granularity of data accesses
and the heavy use of latches, indices in the B-tree family are
not efficient for in-memory databases, especially in the context
of today’s multi-core architecture. In this paper, we study the
parallelizability of skip lists for the parallel and concurrent envi-
ronment, and present PSL, a Parallel in-memory Skip List that
lends itself naturally to the multi-core environment, particularly
with non-uniform memory access. For each query, PSL traverses
the index in a Breadth-First-Search (BFS) to find the list node
with the matching key, and exploits SIMD processing to speed
up this process. Furthermore, PSL distributes incoming queries
among multiple execution threads disjointly and uniformly to
eliminate the use of latches and achieve a high parallelizability.
The experimental results show that PSL is comparable to a read-
only index, FAST, in terms of read performance, and outperforms
ART and Masstree respectively by up to 30% and 5x for a variety
of workloads.

I. INTRODUCTION

With exponentially increasing memory sizes and falling
prices, it is now frequently possible to accommodate the
entire database and its associated indices in memory, thereby
completely eliminating the significant overheads of slow disk
accesses. Non-volatile memory such as phase-change memory
looming on the horizon is destined to push the envelope
further. Traditional database indices, e.g., BT -tree [1], that
were mainly optimized for disk accesses, are no longer suitable
for in-memory databases since they may suffer from poor
cache utilization due to their hierarchical structure, coarse
granularity of data access and poor parallelism.

The heavy use of latches during the lookup of BT-tree n-
odes is another factor hindering the adoption of B™-tree as
in-memory database indices. In fact, merely latch inspection
can result in a significant penalty due to potential cache flush.
Latch modification is even more expensive, as it will invalidate
the latch replicas located at the caches of other cores, and
force the threads running on these cores to reread the latch
for inspection, incurring significant bandwidth cost. According
to [2], an in-memory database system today can spend almost
one quarter of its time in latching. Hence, removing the need
for latches is a must to achieve exceptional parallelism.

The above issues motivate us to reexamine the skip list [3]
as a possible candidate as the base indexing structure in place
of the B*-tree (or B-tree). Skip list employs a probabilistic
model to build multiple linked lists such that each linked
list consists of nodes selected according to this model from
the list at the next level. Skip lists have been known for
several decades now, but are seeing increased popularity in
recent years because of their appropriateness for main memory
indexing.

In this paper, we present PSL, a Parallel in-memory Skip
List. In PSL, we employ a fine-grained processing strategy to
avoid using latches. Queries are organized into batches and
each batch is processed simultaneously with multiple threads.
Given a query, PSL traverses the index in a breadth-first
manner to find the corresponding list node. To handle the case
in which two threads find the same list node for some keys,
PSL adjusts the query workload among execution threads to
ensure that each list node to be modified is accessed by exactly
one thread, thereby eliminating the need for latches.

As we implement this idea, there are additional considera-
tions from modern computer architecture that we have to keep
in mind to achieve good performance. Memory is typically
organized hierarchically with multiple levels of cache. Cache
addresses are tied at the bit level to memory addresses, so
designing to cache lines is necessary. To that end, we design
a novel storage layout for PSL by clustering together the
adjacent list nodes of each index layer. This storage layout
not only improves cache exploitation, but also enables the use
of Single instruction multiple data (SIMD) during the lookup
of indexed keys.

We conduct an extensive performance study between P-
SL and three state-of-the-art indices, namely Masstree [4],
ART [5] and FAST [6]. The results show that PSL performs
slightly better than the read-only FAST in terms of search
query processing, and up to 4 — 5x better than Masstree and
0.3x better than ART on a variety of query workloads.

II. RELATED WORK

There are two main directions towards enhancing the query
performance of B -trees in in-memory environments: cache
exploitation and latch-freeness. Rao et al. [7] present a cache-
sensitive search tree (CSS-tree), where nodes are stored in a
contiguous memory area such that the address of each node
can be arithmetically computed, eliminating the use of child
pointers in each node. Masstree [4] is a trie of BT-tree to
handle keys of arbitrary length with a high query throughput.
However, its performance is still restricted by the locks upon
which it relies to update records.

Due to the overhead incurred by latches, a large amount of
effort has been committed to building latch-free index trees.
The Bw-tree [8], which manages its memory layout in a page-
oriented manner and is hence well-suited for flash solid state
disks, is a representative by using Compare-And-Swap (CAS)
instructions to achieve latch-freeness. Sewall et al. propose
a latch-free concurrent B*-Tree, PALM [9], which adopts
bulk synchronous parallel (BSP) model to process queries

Search(8) Insert(102)
[J n

Entry1l =7
Layer 4

Entry 3

[+]
.

Layer 3

Entry 4

[[o]
.
i

Entry2 rT
5
>
EEERES

Entry 5

»
P

° .
L 5 Entry 6 *r7 Entry 7 r7 Entry 8 r7 Entry9 «r7 Entry 10 r7
ayer 1|18 |14|21 28|38 |49 |57 62|79 | 84|90 95 |100|114|123 129|130(147|151 eee

o
Layer 1

114

Fig. 1: An instance of PSL

in batches. FAST [6] uses a similar searching method, and
achieves twice the query throughput of PALM at a cost of not
being able to make updates to the index tree.

Compared with B -tree, a skip list has approximately the
same average search performance, but requires much less effort
to implement. In particular, even a latch-free implementation,
which is notoriously difficult for BT trees, can be easily
achieved for skip lists by using CAS instructions [10]. Abra-
ham et al. combine skip lists and B-trees for efficient query
processing [11]. Skip lists are more parallelizable than BT -tree
because of the fine-grained data access and relaxed structure
hierarchy. However, naive linked list based implementation has
poor cache utilization due to the nature of linked lists.

III. INDEX DESCRIPTION

In a traditional skip list, since nodes are dynamically
allocated, they do not reside within a contiguous memory
area. Non-contiguous storage of nodes causes cache misses
during key search and renders impossible SIMD processing,
which requires the operands to be stored within a contiguous
memory area. We shall elaborate on how PSL overcomes
these two limitations and meanwhile achieves latch-free query
processing.

A. Structure

Like a traditional skip list, PSL also consists of multiple
layers of sorted linked lists. The bottommost layer is a linked
list of data nodes, whose definition is given in Definition 1.
The remaining (upper) layers are called index layers, each of
which is composed of the keys randomly selected with a fixed
probability from those contained in the linked list of the next
lower layer.

Definition 1: A data node « is a triplet (k,p,I") where &
is a key, p is the pointer to the value associated with «, and
T" is the height of x, representing the number of linked lists
where key « is present. We say a key x € S if there exists
a data node « in the bottom layer of the index, S, such that
oK = K.

Compared to a B*-tree, the update operation in a skip list
is simplified and parallelizable in that nodes can be directly
inserted into or removed from linked lists without re-balancing.

PSL reserves this parallelizability by organizing its bottom
layer as a single linked list, and moves a step further towards
hardware consciousness. Each index layer of PSL consists of
a linked list of entries, each of which contains several keys
that can be loaded into a single SIMD register. Figure 1 gives
an instance of PSL where each of the three index layers is a
linked list of 4-key entries. The “RT” in the figure represents
routing table, which contains the address of the next entry to
access for each possible comparison result between the lookup
key and the current entry,

Given an initial dataset, the index layers of PSL can be
constructed in a bottom-up manner. We only need to scan the
bottom layer once to fill the high-level entries as well as the
associated routing table, This construction process is O(n)
where n is the number of records at the bottom layer, and
typically takes less than 0.2s for 16M records when running on
a 2.0 GHz CPU core. Further, the construction process can be
parallelized, and hence can be sped up using more resources.

B. Queries and Algorithms

PSL, like most indexing structures, supports three types of
queries, namely search, insert and delete. The update query
is considered as insert here. An abstraction of the queries is
given in Definition 2.

Definition 2: A query, denoted by ¢, is a triplet (¢, x, [p])
where ¢ and x are the type and key of ¢, respectively, and if
t is insert, p provides the pointer to the new value associated
with key k.

We now define the query set @ in Definition 3. There
are two points worth mentioning in this definition. First, the
queries in a query set are in non-decreasing order of the query
key k, and the reason for doing so will be elaborated in Section
I1I-B4. Second, a query set () only contains point queries, and
we will show how such a query set can be constructed and
leveraged to answer range queries in Section III-BS5.

Definition 3: A query set @ is given by Q = {¢;|]1 <i <
N} where N is the number of queries in @, g; is a query
defined in Definition 2, and ¢;.x < g;.x iff i < j. For a query
g, we define the corresponding interception, I, as the data
node with the largest key among those in {a|a.I' > 1, 0.k <

q.K}.

Algorithm 1: Query processing
- S, PSL index
Q, query set
t1,...,tNy, N7 threads
Output: R, Result Set
1 R=10;
for : =1 — Nr do
| Qi=partition(Q,Nr);
/* traverse the index layers to get interceptions */
foreach Thread t; do
L II; = traverse(Q;, S);
waitTillAllDone();
8 /* redistribute query workload */
9 foreach Thread t; do
1 | redistribute(Il;, Qi t:);
11 /* query execution */
12 foreach Thread t; do
13 L R; = execute(Il;, Q;);
14 waitTillAllDone();
15 return UR;;

Input

[FJ N

N &

=

PSL accepts a query set as input, and employs a batch
technique to process the queries in the input. The detailed
query processing of PSL is given in Algorithm 1. First, the
query set () is evenly partitioned into disjoint subsets according
to the number of threads, and the i-th subset is allocated to
thread ¢ for processing (line 3). The ordered set of queries
allocated to a thread is also a query set defined in Definition 3,
and we call it a query batch in order to differentiate it from
the input query set. Each thread traverses the index layers and
generates for each query in its query batch an interception
which is also defined in Definition 3 (line 5 and 6). After
this search process, the resultant interceptions are leveraged to
adjust query batches among execution threads such that each
thread is able to safely execute all the queries assigned to
it after the adjustment (line 9 and 10). The waitTillAllDone
function may cause contention as the threads need to wait till
other threads finish their work. However, this barrier affect the
performance little according to our evaluation. Finally, each
thread individually executes the queries in its query batch (line
12 and 13). The whole procedure is exemplified in Figure 1,
where two queries making up a query set are collectively
processed by two threads. Following the red arrows (the dash
lines), thread 1 traverses downwards to fetch the data node
with key 8 and thread 2 moves along the purple arrows (the
dot lines) to insert the data node with key 102.

1) Traversing the Index Layer: For each query key, the
traversal starts from the top level of the index layers and
moves forward along this level until an entry containing a
larger key is encountered, upon which it moves on to the next
level and proceeds as it does in the previous level. The traversal
terminates when it is about to leave the last level of the index
layers, and records the first data node that will be encountered
in the bottom layer as the interception for the current query.

We exploit Single Instruction Multiple Data (SIMD) pro-
cessing to accelerate the traversal. In particular, multiple keys
within an entry can be simultaneously compared with the query
key using SIMD, which significantly reduces the number of
comparisons, and this is the main reason we put multiple keys
in each entry. In our implementation, keys in an entry exactly

occupy a whole SIMD vector, and can be loaded into the SIMD
registers directly. We also generate a routing table for each
entry during the construction of PSL to guide index traversal.
For each possible result of SIMD comparison, the routing table
contains the address of the next entry to visit.

2) Redistributing Query Workload: Given the interception
set output by index layer traversal, a thread can find for each
allocated query ¢ the data node with the largest key that is not
greater than ¢.x by walking along the bottom layer, starting
from I,. However, it is possible that two queries allocated to
two adjacent threads have the same interception, leading to
contention between them. To handle this case, each thread
iterates backward over its interception set until it finds an
interception different from the first interception of the next
thread, and hands over the queries corresponding to the iterated
interceptions to the next thread (except the last thread) if
it is not a search query. After the adjustment, a thread can
individually execute the allocated query set without contending
for data nodes with other threads.

3) Query Execution: For each query ¢, an execution thread
iterates over the bottom layer to get the final result, starting
from the corresponding interception, and executes the query
against the data node with the largest key that is less than or
equal to g.k. If the query type is delete, we do not remove
the data node immediately from the bottom layer, but merely
set a flag Fy.; instead, which is served for latch-free query
processing. For the search query, the Fy.; flag of the resultant
data node will be checked to decide the validity of its pointer.
For the update query, a new data node will be inserted into
the bottom layer if the query key does not match that of
the resultant data node. Unlike a typical skip list, PSL only
allocates a random height for the new node, but does not update
the index layers immediately.

We employ a background thread in PSL to realize the
deferred updates to the index layers. It monitors the update
operations made to the index, and rebuilds the whole index
once the number of update operations hits a pre-defined
threshold. The new index layer will be put into use after all
the running threads complete the processing of current query
batch, and meanwhile the old index layer will be discarded.
The rebuilding process is highly parallelizable and can thus be
shortened with more rebuilding threads.

4) Latch-free Processing: Query processing in PSL is
naturally latch-free. In the traversal of the index layers, the
use of latches can be avoided since the access to each entry is
read-only. For the adjustment of query workload, each thread
communicates with its adjacent threads via messages and thus
does not rely on latches. In addition, each query ¢ allocated
to thread ¢ after the adjustment of query workload satisfies
Il .k < q.k < IT'.k, where I} and I.F! are the first element
in the interception sets of thread ¢ and ¢ + 1, respectively.
Consequently, thread ¢ can individually execute without latches
all its queries except those which require reading I or
inserting a new node directly before I’ !, since the data nodes
that will be accessed during the execution of these queries will
never be accessed by other threads. The remaining queries can
still be executed without latches as the first interception of each
thread will never be deleted.

—%= search(2M)
| -5 search(16M)
—= search(128M)
—#- search(1G)

—+ insert(2M)
& insert(16M)

4 insen(i2eM)
v insen(16)

Throughput (M queries/sec)
Throughput (M queries/sec)
@

8
T

L L
16384 32768

L L L L L L L L L L L L L L
2M 4M 8M 16M 32M 64M 128M256M 512M 1G 1024 2048 4096 8192

size of batch

(b) Batch size

Size of dataset

(a) Dataset size

Throughput (M queries/sec)

—+— PSL_insert FAST
50 |- —>— PSL_search ART insert .
—&— MT_insert —a— ART search _—
40 |- —®— MT_search ==

3 PSL(2M)

PSL(128M)CS] MT(2M) MT(128M)
[Z1 MT(16M) £z MT(1G)

[PSL(16M) EE PSL(1G)

Throughput (M queries/sec)

012 4 8 16 32

of Threads Write Ratio(%)

(c) Thread number (d) Skewed and mixed workload

Fig. 2: Experiment Results

5) Range Query: Range query is supported in PSL. Given
a set of range queries we first sort them according to the lower
bound of their key range and then construct a query set defined
in Definition 3 using these lower bounds. This query set is then
distributed among a set of threads to find the corresponding
interceptions, as in the case of point queries. The redistribution
of query workload, however, is slightly different. We use [;1
to denote the first element in the interception set of thread «.
For each allocated query with a key range of [k, k|, where
ke > IJF!, thread 7 partitions it into two queries with the
key ranges being [k, I\ k) and [I}1!.k, k], respectively,
and hands over the second query to thread ¢ + 1. After the
redistribution, each thread then executes the allocated queries
one by one. Starting from the corresponding interception, PSL
iterates over the bottom layer to find the first data node within
the key range, and then executes the query upon it and each
following data node until the upper bound is encountered.
The final result of an original range query can be acquired
by combining the result of corresponding partitioned queries.

IV. PERFORMANCE EVALUATION

We evaluate the performance of PSL on a platform with
512 GB memory evenly distributed among four NUMA n-
odes. Each NUMA node is equipped with an Intel Xeon
7540 processor, which supports 128-bit SIMD processing, and
has 18MB L3 cache and six 2 GHz cores. By default, the
dataset has 16M records, and we use 8 threads to process
query batches, each consisting of 8192 queries. The query
workload is generated using Yahoo! Cloud Serving Benchmark
(YCSB) [12]. The lookup keys in the workload have a length
of 4 bytes and follow a Zipfian distribution. The parameter 6
for skewed and mixed workload is 1.2. The whole index layer
is asynchronously rebuilt after a fixed number (15% of the
original dataset size) of data nodes have been changed.

For comparison, the results of three state-of-the-art indices,
Masstree [4] (marked as “MT” in the figures), FAST [6] and
ART [5], under the same experiment setting are also given,
whenever possible. As can be observed in Figure 2, PSL beats
all the competitors among all comparisons. Generally, PSL
performs 2 to 5 times faster than Masstree and is 20% to
35% better than ART. FAST is slightly worse than PSL but it
only supports search queries. PSL and FAST exhibit a similar
trend in the increasing rate in terms of scalability (number of
threads), and achieve the best scalability as demonstrated by
the substantial gap in the increasing rate between them and
the other two. We can observe that query skew has only a
little impact on the performance of PSL in terms of query
processing.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we argue that skip list, due to its high par-
allezability, is a better candidate for in-memory indexing than
BT -tree in concurrent environment. Based on this argument,
we propose various parallelizing and optimization strategies
and design a cache-friendly, latch-free and hardware-conscious
index called PSL to provide efficient support of both point
query and range query. PSL consists of index layers, which are
in charge of key search, and a bottom layer responsible for data
retrieval, and the layout of the index layer is carefully designed
such that SIMD processing can be applied to accelerate key
search. The performance study shows that PSL achieves a
similar query performance to a read-only index, FAST, and
meanwhile respectively performs up to 5x and 30% faster than
Masstree and ART, the other two state-of-the-art indices.

ACKNOWLEDGMENT

This research was in part supported by the National Re-
search Foundation, Prime Ministers Office, Singapore, un-
der its Competitive Research Programme (CRP Award No.
NRFCRP8-2011-08). Zhongle Xie’s work was partially sup-
ported by the National Research Foundation Singapore under
its Campus for Research Excellence and Technological Enter-
prise (CREATE) programme (E2S2-SP2 project).

REFERENCES

[1] D. Comer, “Ubiquitous B-tree,” ACM Computing Surveys, vol. 11, no. 2,

pp. 121-137, 1979.

M. Stonebraker, “The Traditional RDBMS Wisdom is (Almost Certain-
ly) All Wrong,” http://slideshot.epfl.ch/play/suri_stonebraker, 2013.

W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees,”
CACM, vol. 33, no. 6, pp. 668-676, 1990.

Y. Mao, E. Kohler, and R. T. Morris, “Cache Craftiness for Fast
Multicore Key-Value Storage,” in EuroSys, 2012, pp. 183-196.

V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” in /CDE, 2013, pp. 38—49.

C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey, “FAST: Fast Architecture
Sensitive Tree Search on Modern CPUs and GPUs,” in SIGMOD, 2010,
pp. 339-350.

J. Rao and K. A. Ross, “Cache Conscious Indexing for Decision-
Support in Main Memory,” in VLDB, 1999, pp. 78-89.

J. Levandoski, D. Lomet, and S. Sengupta, “The Bw-tree: A B-tree for
New Hardware Platforms,” in /CDE, 2013, pp. 302-313.

J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey, “PALM:
Parallel Architecture-friendly Latch-Free Modifications to B™ Trees on
Many-Core Processors,” PVLDB, vol. 4, no. 11, pp. 795-806, 2011.
M. Herlihy and N. Shavit, The Art of Multiprocessor Programming,
Revised Reprint. Elsevier, 2012.

1. Abraham, J. Aspnes, and J. Yuan, “Skip B-trees,” in OPODIS, 2006,
pp- 366-380.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in SOCC, 2010.

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

