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Abstract

Reconfigurable System-on-a-Chip (RSoC) proces-
sors promise a low cost and rapid means of proto-
typing complex systems of integrated software and
hardware, especially for embedded applications. Due
to need to manage a wide diversity of resources on-
chip, an embedded operating system is needed. In
this paper, we will report on our experience in port-
ing an industrial-strength embedded operating sys-
tem, namely Microsoft Windows CE .NETR©, on a
state-of-the-art RSoC processor platform, namely the
Altera ExcaliburR©. We will report performance eval-
uation using a set of kernel micro-benchmarks. We
will also illustrate how the reconfigurable hardware
resource, theprogrammable logic device(PLD), can
be used in an application running under Windows
CE.

1 Introduction

Reconfigurable System-on-a-Chip (RSoC) proces-
sors integrate an industrial standard, full instruction
set architecture microprocessor, peripherals, and re-
programmable logic in a single chip. Such a sophisti-
cated yet generic platform opens up many interesting
new possibilities. This includes the rapid prototyping
of complex hardware - software solutions, as well as
remote upgrading and bug fixes for systems already
deployed [8]. The diversity of hardware resources
available on-chip necessitates an operating system.
We have ported Microsoft’s Windows CE .NET to
Altera’s most recent Excalibur board, the EPXA10.
As our experience shows, the advantages of an op-
erating system (OS) on the target board are multi-
ple. The characteristics of the memory system are ab-
stracted away from the programmer. Thereby appli-
cation programs written on one platform is portable
to the other. The nuances of configuring the repro-

∗This work is funded by Microsoft Research Contract Number
2003-308.

grammable hardware, theprogramming logic device
(PLD), are delegated to a device driver. All that a
programmer has to do to dynamically reconfigure the
PLD, is to provide the configuration data file. More-
over the programmer is able to utilize the rich envi-
ronment provided by the operating system which will
significantly increase the ease of use.

The main contribution of this paper is to describe
the port along with some initial performance evalua-
tion of this port. Using examples, we will also show
how the PLD can be used in support of applications.
Although we just found out that there was another
parallel effort in porting Windows CE to the Altera
Excalibur albeit using a different board [15], this pa-
per presents the first set of detailed evaluation of such
a port along with evidence of the efficacy of using the
PLD.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief description of WinCE architecture,
Section 3 highlights the characteristics of Excalibur
family. Section 4 gives some details regarding our
port. In Section 5, we evaluate the performance of
the kernel by means of micro-benchmarks. Section
6 and 7 describe how we use the PLD of the Excal-
ibur as well as evaluate its effectiveness by means of
a hardware-software benchmark. This is followed by
a conclusion.

2 Windows CE Architecture

Windows CE is Microsoft’s solution to embed-
ded operating systems. Unlike Windows XP embed-
ded, which is a componentized version of Windows
XP professional, Windows CE is designed from the
ground up for the embedded marketplace. It was in-
troduced in the Handheld PC range of products in
November 1996.

Windows CE has a hierarchical architecture with
the boot loader, OAL (OEM adaptation layer) and
device drivers forming the lowest layer. The ker-
nel, GWES (Graphics, Windowing and Events Sub-
system) and the communication stacks form the next
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Figure 1. Microsoft Windows CE R© Architecture

layer. Remote API (RAPI) capability is built on top
of the communication layer. Database and file sys-
tem is built on top of the kernel. RAPI enables re-
mote applications running on desktop PC’s to con-
nect to devices running Windows CE. Application
executes in its own address space and interacts with
the rest of the OS via the Win32 system call inter-
face [6, 12]. Of the layers, all except the lowest are
implemented by Microsoft. The well defined OEM
adaptation layer makes Windows CE easily portable
to other platforms.

Other key features of Windows CE includes a sub-
set of the Win32 API that addresses the most com-
monly needed services, a low overhead user level de-
vice driver model and a built-in power management.

Windows CE requires a 32 bit processor with
MMU support for virtual memory management.
While this requirement restricts the range of embed-
ded processors on which it can be ported to, it has
two fundamental advantages. Firstly, virtual memory
simplifies the programming paradigm significantly.
Secondly, it allows for portability of the code across
systems supporting the same OS. The Windows CE
architecture also places restrictions on processes’ ad-
dress spaces.

Windows CE is a fully multitasking, multithreaded
operating system. A process can have any number of
threads, but at any time there can be only a maximum
of 32 processes and the virtual address space of each
process is limited to 32 MBytes. Processes in Win-
dows CE communicate using message passing and
memory mapping. Memory mapping facilitates very
fast data transfers between cooperating processes and
can be used to dramatically enhance real-time perfor-
mance [6,12,13].

Windows CE requires about 500 KBytes for a min-
imal kernel with some communication support. This

is comparable to embedded Linux.
The key advantage of Windows CE is that it is an

industrial strength operating system and a full mem-
ber of the Microsoft .NET Compact framework. This
is a feature rich infrastructure that enables the rapid
development and deployment of web enabled and
real-time applications. This compliments well the in-
tended market of RSoC processors.

3 The Excalibur EPXA10 Development
Board

The EPXA10 DDR development board, the lat-
est and most sophisticated among the Altera Excal-
ibur family embeds an ARM922TR© processor core,
memory, memory controllers and common periph-
erals with up to 1 million gate-equivalent of pro-
grammable logic [2].

The ARM922T processor core, with its support for
MMU, facilitates deployment of numerous operating
systems including Windows CE and Linux. Another
advantage of ARM922T core is its support of the high
performance Advanced Microcontroller Bus Archi-
tecture (AMBA) specification utilizing the advanced
high-performance bus (AHB) standard.

The programmable logic device (PLD) in the Ex-
calibur chip is configurable under processor control.
A distinct advantage of Excalibur family is its inte-
grated processor sub-system that is capable of con-
figuring the PLD. This facilitates dynamic reconfig-
uration of the PLD under processor control. The
EPXA10 DDR development board has around one
million logic gates, which makes it the largest of all
other members in the Excalibur family.

Although Altera provides a rich set of develop-
ment and design tools for its Excalibur devices, an op-
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erating system such as Windows CE that can abstract
the memory characteristics and that is capable of dy-
namically loading and unloading device drivers can
greatly enhance the usability of this platform. The
next section provides a more detailed description of
our experience in porting Windows CE to the Excal-
ibur [1].

4 Porting Windows CE

To port the kernel of Windows CE, the lowest
layer of its hierarchy, described in Section 2, has to
be implemented. This involves implementing a boot
loader, an OAL layer and the required device drivers.
The boot loader consists of platform specific code,
written in ARM assembly with the rest being library
code supplied by Microsoft. We implemented a flash
boot loader, which is a boot loader capable of boot-
ing an operating system image residing in the flash,
for the Excalibur board. Altera provides a flash pro-
gramming utility which is used to program the flash
with the boot loader image. When the board is reset,
the platform specific code of the boot loader starts
executing. It performs the necessary platform set up
which include setting up the Excalibur clocks which
drives the embedded processor and other peripherals,
setting up the memory map of peripherals on board,
initializing the SDRAM etc. The boot loader copies
the kernel code to RAM and passes control to the
startup routine in the kernel sources.

The kernel code itself consists of Microsoft sup-
plied libraries and a platform specific OAL layer
which is to be implemented by the original equipment
manufacturer. In other words, porting the kernel in-
volves building a customized kernel for the custom

platform. The set of OAL routines carry the pre-
fix ‘ OEM’ to indicate that they are associated with
hardware manufacturers developing custom CE plat-
forms. Although Microsoft has documented the re-
quired OEM functions to be implemented in order
to successfully develop an OAL layer, kernel doc-
umentation is scarce, and it led to some difficulties
in the beginning. However, Windows CE turned out
to be very easily portable, owing to its well defined
and easy to implement OAL layer. Microsoft also
provides a Kernel Independent Transport Layer [14]
(KITL), by which the operating system kernel run-
ning on the Excalibur board can connect to the Plat-
form Builder software, running on an x86 based host
PC. Platform Builder delivers all the tools develop-
ers need in order to build Windows CE based sys-
tems quickly. The integrated development environ-
ment (IDE) enables users to configure, build and de-
bug the OS running on the target. It also includes
Microsoft embedded Visual Tools, which offers Mi-
crosoft Visual Basic and Visual C++ optimized for
embedded development. The KITL layer allows the
target to be connected to the PC over any available
transport channel. Platform Builder’s integrated de-
velopment environment and KITL’s connectivity pro-
vide a rich environment by which the user can interact
with the kernel. It is possible to dynamically recon-
figure the PLD by means of this facility.

Device driver development completes the develop-
ment of a customboard support package(BSP). The
device driver architecture of Windows CE is unique.
Windows dynamic link libraries (DLL) are used for
the dynamic loading of device drivers upon installa-
tion and identification of a device. All Windows CE
drivers run in user mode. Although this approach in-



curs extra over head, it has many advantages. The
most obvious advantage is that a driver crash will not
affect the stability of the kernel. Another important
advantage is that drivers may access all the resources
available to application developers. From our expe-
rience device driver development in Windows CE is
fairly simple and straight-forward. We have imple-
mented drivers for PLD configuration, accessing pe-
ripherals like stripe bridges, dual port RAM and flash
memory. All of these implementations use the stream
interface model.

5 Performance Evaluation

We tested the performance of our port of Windows
CE on the Excalibur platform, using the OSBENCH
tool [9]. This benchmark suite is implemented by Mi-
crosoft, with OEMs required to add necessary support
functions. This tool measures the performance of the
kernel by conducting performance tests on the sched-
uler. These tests include timing basic kernel opera-
tions such as synchronization. Windows CE supports
the entire set of Win32 synchronization objects.

The OSBENCH test consists of 7 basic groups,
namely, (a) critical section operations, (b) events, (c)
semaphore, (d) mutex, (e) voluntary yield, (f)pro-
tected server library(PSL) API call overhead, and (g)
interlocked operations APIs (decrement, increment,
test-exchange, and exchange). Protected server li-
braries (PSL) are kernel libraries that borrow the re-
sources of a calling thread to minimize the amount of
stack space needed as well as to increase efficiency
when used in conjunction with critical sections. The
calculations are based on the elapsed clock ticks for
each operation. When the time taken for an operation
is much smaller than the overhead incurred in call-
ing the performance routines itself, the operation is
looped for a fixed number ofiterations per sample
(IPS). An IPS of 1 means the elapsed clock ticks is
taken for only one instance of the operation. For tests
which completes very fast, an IPS of 1000 is cho-
sen and individual run times are averaged out. For
tests of IPS = 1, run time is calculated with both a
cache flush on each sample and without a cache flush
on each sample. For tests of IPS = 1000, this is not
possible as the cache cannot be flushed between each
iteration of the operation.

Table 1 shows the performance results we ob-
tained on the Excalibur EPXA10 platform running
ARM922T processor (200MHz) for Windows CE
.NET 4.1. Tests are conducted for 100 samples and
results are averaged out. Wherever possible, we took
timing for thread-to-thread performance within a pro-
cess as well as across processes. We should em-
phasize that these results were obtained without tun-
ing the kernel much and we expect that better results
will be achievable in the future. Nonetheless, the re-
sults we obtained are comparable to those obtained

for Pentium processors of similar clock speeds [10].
Our results show that there is not much perfor-

mance difference between the inter-process and intra-
process tests. This may be explained by the nature
of processes and threads supported by Windows CE.
A process in Windows CE consumes no resources
except the memory footprint it occupies. However
threads use more system resources than a process. It
uses the processor registers and requires a stack. It
is threads that the Windows CE scheduler schedules.
Scheduling is based on a priority scheme and is inde-
pendent of the process to which the thread belongs.
Also the effect of cache is significant as the results
show. However it should be noted that this is very
much dependent on the system state and number of
threads running on the system.
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Figure 3. Excalibur Bridge Architecture

6 Using the PLD

The Excalibur has 3 interfaces to access the
PLD device: the Stripe-PLD Bridge, the PLD-Stripe
Bridge, and the dual port SRAM (DPSRAM) inter-
face. The PLD-Stripe and Stripe-PLD bridges [3]
follow the standard AHB interface specified in the
AMBA specification [5] with slight modifications.
The interface is shown in Fig. 3. The Stripe-PLD
Bridge facilitates the bus masters in the Stripe to ac-
cess slaves in the PLD. It appears as a AHB master
to the PLD slave. Similarly, the PLD-Stripe Bridge
allows PLD-masters to access resources in the em-
bedded stripe such as the SDRAM, the expansion bus
interface etc. Fig. 4 shows how the processor accesses
a PLD slave. The processor resides in the AHB1
bus and gain access to the Stripe-PLD Bridge via the
AHB1-2 Bridge. Both bridges include synchroniza-
tion logic, allowing the master and slave interfaces to
reside in a different clock domains. Although this in-
terface is slower than the conventional DPSRAM in-
terface described below, the PLD-Stripe Bridge gives
PLD devices access to around 128 MBytes of mem-
ory in SDRAM, making it possible to implement
memory intensive hardware in the PLD.

The dual port SRAM interface (DPSRAM) [4]
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Figure 4. Bridge Transaction Paths

is a conventional interface mode with port A ac-
cessible to PLD and port B accessible to AHB1 or
AHB2 buses. An arbiter determines whether AHB1
or AHB2 should be granted access. DPSRAM is a
faster interface than embedded stripe bridges. The
Excalibur EPXA10 board contains 128 KByte of dual
port SRAM with several configuration modes.

Device drivers are implemented for both the
bridges and DPSRAM device. The application pro-
grams running on top of the operating system, access
these devices over user mode device driver interface.
In the PLD the appropriate AHB slave/master inter-
faces should be implemented. A future research effort
is to explore the possibility of extending the Windows
CE support to make PLD programming more effort-
less and portable.
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Figure 5. CORDIC Implementation

7 Evaluating a PLD-based Solution

The existence of a tightly coupled reconfigurable
hardware device along with an embedded processor
allows for the off-loading of functionalities in hard-
ware.

A simple application written in Altera provided C
libraries will run faster than an application running

on top of an operating system like Windows CE. So
the ease of programming and an operating system en-
vironment will induce some performance overhead
which has to be taken into account when designing
a performance sensitive PLD application.

In order to quantify the performance of a PLD ap-
plication running on top of operating system, we eval-
uated the performance of the CORDIC algorithm im-
plemented using pure software as well as in hardware
(see Fig. 5). For the latter, the CORDIC core is im-
plemented in the PLD, while the software controlling
the application runs on top of the operating system.
The hardware CORDIC core [7] is modified to in-
terface with an AHB slave designed in Verilog. The
AHB slave talks to the master port of the Stripe-PLD
Bridge. The application code runs on top of the oper-
ating system layer, and interacts with the Stripe-PLD
Bridge using the device driver interface. The pure
software model also runs on top of Windows CE.

We also implemented the same benchmark using
Altera’s development tools running without any oper-
ating system. Our implementation has three clock do-
mains: the AHB1 clock domain runs at 200 MHz, the
AHB2 clock domain is clocked at 100 MHz, while
the PLD runs at 48 MHz.

The results are shown in Table 2. The listed results
are for a single instance calculation, or the overhead
can be treated more or less the worst case analysis.
Again for our experiments we have used the embed-
ded stripe bridge as the Stripe-PLD interface.

8 Conclusion

This paper gives a brief overview of our porting
experience of Windows CE 4.1 .NET onto the Excal-
ibur EPXA10 DDR development board from Altera.
We have also presented various benchmark results,
and performance analysis for a PLD application im-
plementing the standard CORDIC core. The operat-
ing system environment increases the ease of use and
feature set of the Excalibur board to a large extent.
This reduces the development time to a large extent.
Looking forward, we intend to further our efforts and
explore the possibility of extending operating system
support to make PLD programming more effortless.
We would also like to work on applications that can
effectively use the PLD. At the time of writing of this
paper, we have also just completed a port to Windows
CE 4.2 .NET. We are currently testing the port with
the hope releasing it shortly.
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Benchmark Description Average Time (µs)
1. Critical Section Tests

Time from a lower priority thread callingLeaveCS to a higher priority thread unblocking
from theEnterCS call (IPS = 1)

50.451
87.767 (CFlush)

Time from a lower priority thread callingLeaveCS to a higher priority thread unblocking
from theEnterCS call (IPS = 1)

53.866
93.448 (CFlush)

Time required to execute anEnterCS where there is no contention (IPS = 1000) 0.319
Time required to execute aLeaveCS where there is no contention (IPS = 1000) 0.375

2. Event Handling
Time from a thread to set an event which will wake up another thread in the same process
waiting for that event (IPS = 1)

31.634
90.619 (CFlush)

Time from a thread to set an event which will wake up another thread in a different process
waiting for that event (IPS = 1)

30.961
92.049 (CFlush)

3. Semaphore Signaling
Time from a lower priority thread releasing the semaphore to a higher priority thread in the
same process unblocking from a wait (IPS = 1)

35.814
89.173 (CFlush)

Time from a lower priority thread releasing the semaphore to a higher priority thread in
another process unblocking from a wait (IPS = 1)

36.414
80.808 (CFlush)

4. Mutex
Time from a lower priority thread releasing the mutex to a higher priority thread in the
same process unblocking from a wait (IPS = 1)

48.770
111.4 (CFlush)

Time from a lower priority thread releasing the mutex to a higher priority thread in another
process unblocking from a wait (IPS = 1)

58.923
101.948 (CFlush)

5. Yield to thread
Time taken for a thread to start running after another thread of the same priority and of the
same process voluntarily yields by callingSleep(0) (IPS = 1)

17.369
31.662 (CFlush)

Time taken for a thread to start running after another thread of the same priority but of
another process voluntarily yields by callingSleep(0) (IPS = 1)

17.076
32.130 (CFlush)

6. Interlocked variable access
Time required to callInterlockedIncrement() API function (IPS = 1000) 0.193
Time required to callInterlockedDecrement() API function (IPS = 1000) 0.193
Time required to perform an interlocked exchange operation (IPS = 1000) 0.148
Time required to perform an interlocked test operation (IPS = 1000) 0.153

7. Protected Server Library API call
Time required to call a PSL routine with no parameters and returns immediately (IPS =
1000)

3.731

Time required to call a PSL routine with 7 DWORD parameters and returns immediately
(IPS = 1000)

3.767

Time required to call a PSL routine with 7 PVOID parameters and returns immediately
(IPS = 1000)

4.252

Time required to call a PSL routine that is in a different process with no parameters and
returns immediately (IPS = 1000)

3.691

Time required to call a PSL routine that is in a different process with 7 DWORD parameters
and returns immediately (IPS = 1000)

3.769

Time required to call a PSL routine that is in a different process with 7 PVOID parameters
and returns immediately (IPS = 1000)

4.222

Time required to call a PSL routine that is in a different process function inNK.exe
(kernel) which returns immediately (IPS = 1000)

3.848

Table 1. Performance on OSBENCH.

Pure SW version SW/HW version Pure SW version SW/HW version
running on WinCE running on WinCE using Altera lib. using Altera lib.

2130 348 153 30 to 35

Table 2. Performance of various versions of CORDIC Benchmark (in µs).


