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Abstract
 
The increasing density and speed of modern field 
programmable gate arrays offer the reconfigurable 
systems using them greater capability and flexibility, in 
particular for more complex computation. However, there 
remains a very important problem of how to design on a 
more abstract level to manage the vast hardware resource 
and shorten the design time. This paper presents an 
approach to compile a system level description to 
hardware through a conventional software intermediate 
representation (IR) of a state-of-the-art optimizing 
compiler for Explicitly Parallel Instruction Computing 
(EPIC) processors. The front end compiles C programs 
into an intermediate representation for an infinite 
resource EPIC processor. The intermediate 
representation contains all the information of control flow 
graph of basic blocks. It is from this intermediate 
representation that we have devised means to generate 
synthesizable Register Transfer level (RTL-level) Verilog 
description that can be mapped into the reconfigurable 
HW device. We will describe the details of the translation 
process and the performance on actual FPGA hardware. 

 
1. Introduction 
 

The development of the FPGA has led to the 
emergence of reconfigurable computing systems that 
mixes the properties of hardware and software. Typically, 
the hardware for such systems is typically made up of a 
FPGA component coupled tightly with a general-purpose 
processor [2,3]. Reconfigurable computing architecture 
provides the means for exploiting fine grain parallelism in 
computation, achieving significant speed-ups in many 
applications [1, 2].  

 With the significant increases in density and 
complexity of reconfigurable devices, the design 
methodology used for realizing solutions on such devices 
has become a serious issue. At the core of this issue is 
controlling the escalating non-recurrent engineering cost 
needed to quickly and correctly prototype a solution. It is 
necessary to design the system more abstract high level 
specification. Over the last decade, there has been much 
research in High Level Synthesis with a lot of 
encouraging results [5].  C and C++ have been popular 
choices as a basis for development as system level 
specification [6,7,8,13].  

The inherent attraction of C is that its widespread use. 
One is almost certain to find a C implementation of just 
about any algorithm. This ready access to a large pool of 
tried and tested programs is good for reuse and rapid 
prototyping. However, C is inherently a serial 
programming language. Most of the constructs introduced 
in hardware flavors of C has to do with parallelism. 

We took a different approach to the problem. Instead 
of having the programmer indicate parallelism and 
possibly re-work his algorithm, we used a state-of-the-art 
compiler infrastructure that is targeted at instruction level 
parallelism as our starting point. The input to the compiler 
is a standard C program. It is the compiler’s responsibility 
to discover instruction level parallelism. In a previous 
paper[12], we reported on how we managed to obtain 
Handel-C hardware descriptions from the intermediate 
representation of the Trimaran instruction level parallel 
compiler called Elcor [10].  

In this paper, we will describe how we transformed 
the Elcor intermediate representation to synthesizable 
RTL Verilog code. Handel-C is easy to learn and design, 
however, one has less freedom in direct manipulation of 
the cells in the FPGAs available with low-level hardware 
description languages such as Verilog and VHDL. Also, 
designing by Handel-C often result in lower clock 
frequencies. Our intention of changing from Handel-C to 
RTL Verilog is to hopefully achieve better performance 
by directly exploiting low level features of the FPGAs. 
 
2. Hardware Platform  
 

The reconfigurable computing platform we used in 
our development is the Celoxica RC1000-PP board [11], 
which connects to a PC host via the PCI bus. The 
RC1000-PP is a PCI bus plug-in card designed for 

Handel-C. It has one Xilinx Vertex XCV1000-4 FPGA [4] 
with four banks of SRAM memory. The XCV1000 FPGA 
is a SRAM-based FPGA that has 64×96 control logic 
blocks and a total system gate count that exceeds one 
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million [4]. All four SRAM memory banks of 2MByte 
each are accessible by both the FPGA and any device on 
PCI bus. The PC host controls and programs the FPGA 
via PCI bus.   
      There are three possible means of communications 
between the host and the FPGA: (a) bulk data transfers 
via the memory banks, (b) communicating via two 
unidirectional 8-bits ports, and (c) two I/O pins provided 
for single-bit communication [11]. 
 
3. Design Flow 

 
We used the Trimaran compiler infrastructure [10]. 

Trimaran is designed for compiler and architectural 
research in instruction level parallelism. The front-end of 

Trimaran compiles C programs into the Elcor 
intermediate representation. Control flow, data and 
control dependences, as well as many other attributes of 
the individual operators are captured in Elcor 
representations. We essentially wrote a new back-end that 
translates the Elcor output of the frontend to synthesizable 
RTL Verilog code. The design flow is shown in Figure 2. 

Trimaran is designed for compiling and simulating a 
parametric Explicitly Parallel Instruction Computing 
(EPIC) processor. The compiler performs a large suite of 
traditional high level compiler optimizations and VLIW-
style instruction scheduling, register allocation as well as 
software pipelining. For our purpose, we used a Trimaran 
configuration for an infinite resource EPIC machine. 

In the next section, we will describe the details of 
how we translate Elcor intermediate representations into 
synthesizable RTL Verilog.  
 
4.    Hardware Compilation via HFSM 
 
4.1 Modeling the Elcor IR with Hierarchical 
Finite State Machines 

 
There is a significant semantic gap when a software 

oriented programming language is used to describe 
hardware. For example, while jump instructions are very 
common in software, there are no jumps in hardware. 
Also while the processor fetches and executes the 
instructions sequentially (at least in semantically) from 
the instruction stream, execution in hardware is inherently 
parallel and spatial in nature.  There is no instruction fetch 

and execution in hardware and the circuit implements all 
computations. Temporal scheduling must be done with 
great care for computation performed in hardware.   

To overcome the gap, we need to model the 
software intermediate representation with the appropriate 
representation suitable for hardware.  Hierarchical Finite 
State Machine (HFSM) is an ideal tool to model the Elcor 
intermediate representation.  We use a two-level HFSM, 
shown in Figure 3, to model the program unit of Elcor IR. 
Note that this is method of translation is different from 
that used by Page and Luk in translating Occam and 
Handel-C to hardware [9]. They made use of the high-
level structure of the code that is absent at the Elcor level. 

The entire control flow graph consisting of basic 
blocks is mapped into the HFSM. Each node of the 

control flow graph, i.e. each basic block, is mapped into a 
unique second level FSM in the HFSM, as shown in 
Figure 3. Each basic block is a sequence of instructions 
and these instructions in the basic blocks are mapped into 
different states of second level FSM. 

 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Instructions Scheduling: 
 

Example 1 illustrates how instructions in a basic block of 
an Elcor intermediate code, listed in Figure 4, can be 
mapped into a second level FSM. In Figure 4, the 
important quantity to note is s_time(). s_time()is 
the scheduled time for a particular operation. This is 
computed by the Trimaran compiler for every instruction. 
Instructions that have same s_time() are to be 
executed in parallel. To convert the schedule into a FSM, 
we group those instructions that have the same 
s_time() into the same state of second level FSM. As a 
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result,  the scheduling of instructions in Figure 4 is as 
follows:   

ADD_W.0, ADD_W.1   : state 0 
L_W_C1_C1.0        : state 1 
S_W_C1.1              : state 2 
CMPP_W_LEQ_UN_UN.0   : state 3 
BRCT.0                   : state 4 
 
Example 1: Mapping Elcor IR into FSM 
 

bb 5 ( 
 weight(1) 
 entry_ops(89) exit_ops(27) 
 entry_edges(ctrl ^32 ctrl ^33) exit_edges(ctrl ^58 ctrl ^41) 
 flags(sched) 
 attr(lc ^112) 
 subregions( 
  op 89 (C_MERGE [] [] s_time(0) s_opcode(C_MERGE.0) … ) 
  op 75 (ADD_W [br<52:i gpr 2>] [l:g_abs<_i> i<0>] p<t> s_time(0)  …) 
  op 74 (ADD_W [br<51:i gpr 3>] [l:g_abs<_j> i<0>] p<t> s_time(0) …) 
  op 76 (PBRR [br<53:b btr 2>] [b<7> i<0>] p<t> s_time(0) …) 
  op 26 (L_W_C1_C1 [br<15:i gpr 4>] [br<52:i gpr 2>] p<t> s_time(1) …) 
  op 25 (S_W_C1 [] [br<51:i gpr 3> i<0>] p<t> s_time(1) …) 
  op 77 (CMPP_W_LEQ_UN_UN [br<54:p pr 2> u<>] [br<15:i gpr 4> 

i<10>] p<t> s_time(3) …) 
  op 27 (BRCT [] [br<53:b btr 2> br<54:p pr 2>] p<t> s_time(4) …) 
      ) 
    ) 

   Figure 4  Elcor Intermediate Code for Example 1 
 
Note that we have ignored pseudo instructions (such as 
the MERGE instruction) that are used by Elcor to make 
certain notes in the code. 
 
4.3  Accessing external SRAM and other board 
resources 

 
The RC1000-PP we used was designed for Handel-C. 

Using the board’s resources, such as the external SRAM, 
the clock and reset signals, outside the context of Handel-
C was not well documented. Direct communication with 
the FPGA was also not documented. To overcome these 
problems, we created a Handel-C module to take care of 
interfacing between the Verilog module and the host. This 
Handel-C intermediary is compiled into EDIF, which can 
then be connected with our Verilog module. The Handel-
C module provided the necessary services for Verilog 
module by acting as its proxy. The interface between the 
Handel-C module with host and Verilog module is shown 
in Figure 5.     

There are three groups of signals in the interface 
between the Handel-C and the Verilog modules. The first 
group provides the indispensable reset and clock signals 
to the Verilog module. The Handel-C module starts the 
computation circuit in FPGA using reset port.  The second 
group consists of the output signals from the Verilog 
module. “Signal Over” indicates whether the Verilog 
module has completed its computation while the “Output” 
port is a 8-bits vector through which Verilog output a byte 
of data to the host by Handel-C module. The third group 
serves as the proxy for the external SRAM banks, making 
them directly accessible to the Verilog module. 
       Both the Handel-C and Verilog code are compiled to 
EDIF files so that the vendor EDA tool can generate the 
configuration bit-stream file.    

 
4.4 Message chart between Host, Handel-C and 
Verilog: 

 
Figure 6 shows how everything is put together for 

execution on the FPGA board. 
       First, the host loads the bit configuration file into the 
FPGA and starts the computation. The Handel-C proxy 
then starts the Verilog module, handling any memory 
access requests that the Verilog module may make. At the 
end of the computation, the Verilog module signals the 
Handel-C proxy module which then returns the result it 
receives back to the host. 

 

5. Benchmarks 
 

We used four benchmarks to compare the 
effectiveness of translating Elcor intermediate 
representation to RTL Verilog and Handel-C. These are: 
Finite impulse response (FIR), Matrix Multiplication 
(MM), Livermore Loop 1 (Lm1) and Histogram (Histo).  

We use two parameters reported by the vendor’s 
(Xilinx) EDA tool to evaluate the performance of the two 
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schemes. The first parameter is the number of FPGA 
slices consumed by a design. This essentially shows the 
FPGA resource consumption of the code. The other 
parameter is the effective clock frequency at which the 
FPGA can run. The numbers of clock cycles taken in both 
cases are mainly dependent on the Elcor schedule of the 
code with some differences caused by the translation 
scheme. In any case, we measured the execution time 
using the host PC’s timer. The results, measured in 
milliseconds, are shown in Table 1.   

 

Table 1: Performance comparison between 
translating to RTL-Verilog and to Handel-C 
 
However, we have to point out some differences 

between the two output methods.  
 

a) In the Verilog version, only one memory bank was 
used to accommodate variables. Different variables 
have different offsets in the same memory bank. In 
the Handel-C version, four memory banks are used. 

   
b) The Handel-C version of the framework is able to 

translate Elcor hyperblocks [10] with predicated 
operations into Handel-C while the current Verilog 
version can only handle basic blocks. In Table 1, 
the MM benchmark uses hyperblocks while the 
others use basic blocks. Hyperblocks in EPIC 
machines expose more instruction level parallelism 
opportunites. 

     
From Table 1, we can see an improvement of 

performance when Elcor intermediate representation is 
compiled into Verilog rather than Handel-C. On the 
average, the execution time of the Verilog version is 
about 70% that of the Handel-C version.  
 
6. Conclusion 

 
In this paper, we presented an approach of compiling 

the system level description into hardware via the 
intermediate representation of a compiler for an infinite 
resource EPIC machine. Through this design flow, a high 
level executable specification written in C that one can 
test and debug can be implemented quickly in 
reconfigurable hardware. We also showed that compiling 
Elcor IR to RTL-Verilog can achieve better performance 
in frequency and resource consumed than compiling Elcor 
IR into Handel-C HDL.  

Using the framework we have constructed, we hope 
to conduct research in the following areas in the near 
future: 

a) We wish to investigate various optimizations 
specific to reconfigurable computing systems.  

 
b) By changing machine configurations to find a 

suitable balance between resource consumption 
and available instruction level parallelism, we 
believe it is possible to use the compiler as the 
vehicle to perform hardware-software 
partitioning. 
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Slice Exec. Time in msec 
(Frequency in MHz) 

 

Verilog Handel-C Verilog Handel-C 

MM 706 1016 486.3 
(32.482) 

743.4 
(10.355) 

FIR 585 914 0.765 
(33.992) 

1.45 
(10.056) 

Lm1 829 1098 0.588 
(34.470) 

0.886 
(10.845) 

Histo 264 332 0.329 
(35.0) 

0.312 
(17.525) 


