

Compiling to FPGAs via an

EPIC Compiler’s Intermediate Representation

Zhiguo Ge Jirong Liao Weng-Fai Wong
Department of Computer Science
National University of Singapore

3, Science Drive 2
Singapore 117543

Abstract

The increasing density and speed of modern field
programmable gate arrays offer the reconfigurable
systems using them greater capability and flexibility, in
particular for more complex computation. However, there
remains a very important problem of how to design on a
more abstract level to manage the vast hardware resource
and shorten the design time. This paper presents an
approach to compile a system level description to
hardware through a conventional software intermediate
representation (IR) of a state-of-the-art optimizing
compiler for Explicitly Parallel Instruction Computing
(EPIC) processors. The front end compiles C programs
into an intermediate representation for an infinite
resource EPIC processor. The intermediate
representation contains all the information of control flow
graph of basic blocks. It is from this intermediate
representation that we have devised means to generate
synthesizable Register Transfer level (RTL-level) Verilog
description that can be mapped into the reconfigurable
HW device. We will describe the details of the translation
process and the performance on actual FPGA hardware.

1. Introduction

The development of the FPGA has led to the
emergence of reconfigurable computing systems that
mixes the properties of hardware and software. Typically,
the hardware for such systems is typically made up of a
FPGA component coupled tightly with a general-purpose
processor [2,3]. Reconfigurable computing architecture
provides the means for exploiting fine grain parallelism in
computation, achieving significant speed-ups in many
applications [1, 2].

 With the significant increases in density and
complexity of reconfigurable devices, the design
methodology used for realizing solutions on such devices
has become a serious issue. At the core of this issue is
controlling the escalating non-recurrent engineering cost
needed to quickly and correctly prototype a solution. It is
necessary to design the system more abstract high level
specification. Over the last decade, there has been much
research in High Level Synthesis with a lot of
encouraging results [5]. C and C++ have been popular
choices as a basis for development as system level
specification [6,7,8,13].

The inherent attraction of C is that its widespread use.
One is almost certain to find a C implementation of just
about any algorithm. This ready access to a large pool of
tried and tested programs is good for reuse and rapid
prototyping. However, C is inherently a serial
programming language. Most of the constructs introduced
in hardware flavors of C has to do with parallelism.

We took a different approach to the problem. Instead
of having the programmer indicate parallelism and
possibly re-work his algorithm, we used a state-of-the-art
compiler infrastructure that is targeted at instruction level
parallelism as our starting point. The input to the compiler
is a standard C program. It is the compiler’s responsibility
to discover instruction level parallelism. In a previous
paper[12], we reported on how we managed to obtain
Handel-C hardware descriptions from the intermediate
representation of the Trimaran instruction level parallel
compiler called Elcor [10].

In this paper, we will describe how we transformed
the Elcor intermediate representation to synthesizable
RTL Verilog code. Handel-C is easy to learn and design,
however, one has less freedom in direct manipulation of
the cells in the FPGAs available with low-level hardware
description languages such as Verilog and VHDL. Also,
designing by Handel-C often result in lower clock
frequencies. Our intention of changing from Handel-C to
RTL Verilog is to hopefully achieve better performance
by directly exploiting low level features of the FPGAs.

2. Hardware Platform

The reconfigurable computing platform we used in
our development is the Celoxica RC1000-PP board [11],
which connects to a PC host via the PCI bus. The
RC1000-PP is a PCI bus plug-in card designed for

Handel-C. It has one Xilinx Vertex XCV1000-4 FPGA [4]
with four banks of SRAM memory. The XCV1000 FPGA
is a SRAM-based FPGA that has 64×96 control logic
blocks and a total system gate count that exceeds one

RC1000-PP Board

PCI

Memory
4 banks

FPGA

PC
(Host)

Figure 1. Reconfigurable System

million [4]. All four SRAM memory banks of 2MByte
each are accessible by both the FPGA and any device on
PCI bus. The PC host controls and programs the FPGA
via PCI bus.
 There are three possible means of communications
between the host and the FPGA: (a) bulk data transfers
via the memory banks, (b) communicating via two
unidirectional 8-bits ports, and (c) two I/O pins provided
for single-bit communication [11].

3. Design Flow

We used the Trimaran compiler infrastructure [10].

Trimaran is designed for compiler and architectural
research in instruction level parallelism. The front-end of

Trimaran compiles C programs into the Elcor
intermediate representation. Control flow, data and
control dependences, as well as many other attributes of
the individual operators are captured in Elcor
representations. We essentially wrote a new back-end that
translates the Elcor output of the frontend to synthesizable
RTL Verilog code. The design flow is shown in Figure 2.

Trimaran is designed for compiling and simulating a
parametric Explicitly Parallel Instruction Computing
(EPIC) processor. The compiler performs a large suite of
traditional high level compiler optimizations and VLIW-
style instruction scheduling, register allocation as well as
software pipelining. For our purpose, we used a Trimaran
configuration for an infinite resource EPIC machine.

In the next section, we will describe the details of
how we translate Elcor intermediate representations into
synthesizable RTL Verilog.

4. Hardware Compilation via HFSM

4.1 Modeling the Elcor IR with Hierarchical
Finite State Machines

There is a significant semantic gap when a software

oriented programming language is used to describe
hardware. For example, while jump instructions are very
common in software, there are no jumps in hardware.
Also while the processor fetches and executes the
instructions sequentially (at least in semantically) from
the instruction stream, execution in hardware is inherently
parallel and spatial in nature. There is no instruction fetch

and execution in hardware and the circuit implements all
computations. Temporal scheduling must be done with
great care for computation performed in hardware.

To overcome the gap, we need to model the
software intermediate representation with the appropriate
representation suitable for hardware. Hierarchical Finite
State Machine (HFSM) is an ideal tool to model the Elcor
intermediate representation. We use a two-level HFSM,
shown in Figure 3, to model the program unit of Elcor IR.
Note that this is method of translation is different from
that used by Page and Luk in translating Occam and
Handel-C to hardware [9]. They made use of the high-
level structure of the code that is absent at the Elcor level.

The entire control flow graph consisting of basic
blocks is mapped into the HFSM. Each node of the

control flow graph, i.e. each basic block, is mapped into a
unique second level FSM in the HFSM, as shown in
Figure 3. Each basic block is a sequence of instructions
and these instructions in the basic blocks are mapped into
different states of second level FSM.

4.2 Instructions Scheduling:

Example 1 illustrates how instructions in a basic block of
an Elcor intermediate code, listed in Figure 4, can be
mapped into a second level FSM. In Figure 4, the
important quantity to note is s_time(). s_time()is
the scheduled time for a particular operation. This is
computed by the Trimaran compiler for every instruction.
Instructions that have same s_time() are to be
executed in parallel. To convert the schedule into a FSM,
we group those instructions that have the same
s_time() into the same state of second level FSM. As a

Hierarchy FSM

Elcor IR

FSM1

FSM2 FSM3

FSM4

BB3

BB4

BB1

BB2

Figure 3. Modeling Elcor IR with HFSM

Figure 2. Design Flow

 Trimaran

ELCOR

Bit-Stream

RTL Verilog
generator

EDA Tool: synthesis,
place and route

(Xilinx ISE)

C
Program

IMPACT

Machine
description

 Reconfigurable System

Reconfigurable
Hardware

Host
C/C++

RTL-Verilog
description

result, the scheduling of instructions in Figure 4 is as
follows:

ADD_W.0, ADD_W.1 : state 0
L_W_C1_C1.0 : state 1
S_W_C1.1 : state 2
CMPP_W_LEQ_UN_UN.0 : state 3
BRCT.0 : state 4

Example 1: Mapping Elcor IR into FSM

bb 5 (
 weight(1)
 entry_ops(89) exit_ops(27)
 entry_edges(ctrl ^32 ctrl ^33) exit_edges(ctrl ^58 ctrl ^41)
 flags(sched)
 attr(lc ^112)
 subregions(
 op 89 (C_MERGE [] [] s_time(0) s_opcode(C_MERGE.0) …)
 op 75 (ADD_W [br<52:i gpr 2>] [l:g_abs<_i> i<0>] p<t> s_time(0) …)
 op 74 (ADD_W [br<51:i gpr 3>] [l:g_abs<_j> i<0>] p<t> s_time(0) …)
 op 76 (PBRR [br<53:b btr 2>] [b<7> i<0>] p<t> s_time(0) …)
 op 26 (L_W_C1_C1 [br<15:i gpr 4>] [br<52:i gpr 2>] p<t> s_time(1) …)
 op 25 (S_W_C1 [] [br<51:i gpr 3> i<0>] p<t> s_time(1) …)
 op 77 (CMPP_W_LEQ_UN_UN [br<54:p pr 2> u<>] [br<15:i gpr 4>

i<10>] p<t> s_time(3) …)
 op 27 (BRCT [] [br<53:b btr 2> br<54:p pr 2>] p<t> s_time(4) …)
)
)

 Figure 4 Elcor Intermediate Code for Example 1

Note that we have ignored pseudo instructions (such as
the MERGE instruction) that are used by Elcor to make
certain notes in the code.

4.3 Accessing external SRAM and other board
resources

The RC1000-PP we used was designed for Handel-C.

Using the board’s resources, such as the external SRAM,
the clock and reset signals, outside the context of Handel-
C was not well documented. Direct communication with
the FPGA was also not documented. To overcome these
problems, we created a Handel-C module to take care of
interfacing between the Verilog module and the host. This
Handel-C intermediary is compiled into EDIF, which can
then be connected with our Verilog module. The Handel-
C module provided the necessary services for Verilog
module by acting as its proxy. The interface between the
Handel-C module with host and Verilog module is shown
in Figure 5.

There are three groups of signals in the interface
between the Handel-C and the Verilog modules. The first
group provides the indispensable reset and clock signals
to the Verilog module. The Handel-C module starts the
computation circuit in FPGA using reset port. The second
group consists of the output signals from the Verilog
module. “Signal Over” indicates whether the Verilog
module has completed its computation while the “Output”
port is a 8-bits vector through which Verilog output a byte
of data to the host by Handel-C module. The third group
serves as the proxy for the external SRAM banks, making
them directly accessible to the Verilog module.
 Both the Handel-C and Verilog code are compiled to
EDIF files so that the vendor EDA tool can generate the
configuration bit-stream file.

4.4 Message chart between Host, Handel-C and
Verilog:

Figure 6 shows how everything is put together for

execution on the FPGA board.
 First, the host loads the bit configuration file into the
FPGA and starts the computation. The Handel-C proxy
then starts the Verilog module, handling any memory
access requests that the Verilog module may make. At the
end of the computation, the Verilog module signals the
Handel-C proxy module which then returns the result it
receives back to the host.

5. Benchmarks

We used four benchmarks to compare the
effectiveness of translating Elcor intermediate
representation to RTL Verilog and Handel-C. These are:
Finite impulse response (FIR), Matrix Multiplication
(MM), Livermore Loop 1 (Lm1) and Histogram (Histo).

We use two parameters reported by the vendor’s
(Xilinx) EDA tool to evaluate the performance of the two

Handel-C
Module

reset
clock

from
Verilog
module Data_in

Data_out

WE
Enable

BANK_Sel

ADRESS External
SRAM
interface

Output
Over

Host

To Verilog
module

Figure 5: Interface with Handel-C

Wait for Host

Request Memory

Start Verilog Module
&Serve as memory

Wait for Verilog-module
return & serve as memory

Start computing

Computation
over & return
one byte value

Pass the return value to
Host & Release the
Memory

Load bit-stream
to FPGA

Start configurable
hardware

Wait for return

Get Value needed
From Hardware

Host Process Handel-C Process Verilog Process

Figure 6: Message Chart for communication
between the modules

schemes. The first parameter is the number of FPGA
slices consumed by a design. This essentially shows the
FPGA resource consumption of the code. The other
parameter is the effective clock frequency at which the
FPGA can run. The numbers of clock cycles taken in both
cases are mainly dependent on the Elcor schedule of the
code with some differences caused by the translation
scheme. In any case, we measured the execution time
using the host PC’s timer. The results, measured in
milliseconds, are shown in Table 1.

Table 1: Performance comparison between
translating to RTL-Verilog and to Handel-C

However, we have to point out some differences

between the two output methods.

a) In the Verilog version, only one memory bank was
used to accommodate variables. Different variables
have different offsets in the same memory bank. In
the Handel-C version, four memory banks are used.

b) The Handel-C version of the framework is able to

translate Elcor hyperblocks [10] with predicated
operations into Handel-C while the current Verilog
version can only handle basic blocks. In Table 1,
the MM benchmark uses hyperblocks while the
others use basic blocks. Hyperblocks in EPIC
machines expose more instruction level parallelism
opportunites.

From Table 1, we can see an improvement of

performance when Elcor intermediate representation is
compiled into Verilog rather than Handel-C. On the
average, the execution time of the Verilog version is
about 70% that of the Handel-C version.

6. Conclusion

In this paper, we presented an approach of compiling

the system level description into hardware via the
intermediate representation of a compiler for an infinite
resource EPIC machine. Through this design flow, a high
level executable specification written in C that one can
test and debug can be implemented quickly in
reconfigurable hardware. We also showed that compiling
Elcor IR to RTL-Verilog can achieve better performance
in frequency and resource consumed than compiling Elcor
IR into Handel-C HDL.

Using the framework we have constructed, we hope
to conduct research in the following areas in the near
future:

a) We wish to investigate various optimizations
specific to reconfigurable computing systems.

b) By changing machine configurations to find a

suitable balance between resource consumption
and available instruction level parallelism, we
believe it is possible to use the compiler as the
vehicle to perform hardware-software
partitioning.

7. Acknowlegement
This project is funded by A*STAR research project 012-
106-0046.

References

[1] André DeHon. “The Density Advantage of

Configurable Computing.” IEEE Computer, vol.33,
pp.41-49, 2000.

[2] André DeHon, John Wawrzynek. “Reconfigurable
Computing: What, Why, and Implications for
Design Automation.” Design Automation
Conference (DAC), pp. 610 – 615, 1999.

[3] John R.Hauser, John Wawrzynek. “Garp: A MIPS
Processor with a Reconfigurable Coprocessor.” Proc.
Symposium on Field-Programmable Custom
Computing Machines (FCCM), April 16-18, 1997.

[4] Xilinx Corporation (http://www.xilinx.com),
California.

[5] Raul Camposano, Wayne Wolf. High-Level VLSI
Synthesis. Kluwer Academic Publishers, 1992.

[6] Giovanni De Micheli. “Hardware Synthesis from
C/C++ Models.” Proc. of DATA’99, p. 382.

[7] Donald Soderman. Implementing C Designs in
Hardware. www.asicdsn.com/c2hw.pdf .

[8] David C. Ku, Giovanni De Micheli. High Level
Synthesis of ASICs Under Timing and
Synchronization Constrains. Kluwer Academic
Publishers, 1992.

[9] Ian Page, and Wayne Luk. “Compiling Occam into
Field-Programmable Gate Arrays.” W. Moore and
W. Luk (editors), Abingdon EE&CS Books, 1991,
pp. 271-283

[10] Trimaran ILP Research Infrastructure, 1998.
http://trimaran.org.

[11] Celoxica Company. http://www.celoxica.com/
[12] Jirong Liao, Weng-Fai Wong, and Tulika Mitra. “A

Model for Hardware Realization of Kernel Loops.”
Proc. of 13th International Conference on Field-
Programmable Logic and Application (FPL 2003),
pp. 334-344.

[13] Celoxica. Handel-C Language Reference Manual
Version 3.1. 2002.

Slice Exec. Time in msec
(Frequency in MHz)

Verilog Handel-C Verilog Handel-C

MM 706 1016 486.3
(32.482)

743.4
(10.355)

FIR 585 914 0.765
(33.992)

1.45
(10.056)

Lm1 829 1098 0.588
(34.470)

0.886
(10.845)

Histo 264 332 0.329
(35.0)

0.312
(17.525)

