
A UML-based Design Framework for Time-triggered Applications

Kathy Dang Nguyen P.S. Thiagarajan Weng-Fai Wong
School of Computing

National University of Singapore
{kathyngu, thiagu, wongwf}@comp.nus.edu.sg

Abstract

Time-triggered architectures (TTAs) are strong candi-
date platforms for safety-critical real-time applications. A
typical time-triggered architecture is constituted by one or
more clusters. Each cluster consists of nodes communicat-
ing with one another via a time-triggered communication
protocol. Designing applications to run on such a platform
is a challenging task. We address this problem by construct-
ing a UML-based design framework which exposes the es-
sential features of the time-triggered platforms at the UML-
level and allows applications to be developed at a more ab-
stract level before full implementation. To support prelim-
inary functional validation, we have constructed a transla-
tor by which SystemC code can be automatically generated
from UML designs. Our framework enables fast prototyping
of time-triggered applications and early design validation.
It also supports key design principles of TTAs, such as tem-
poral firewalls and composability.

1. Introduction

Time-triggered architectures (TTAs) [21] are increas-
ingly being advocated as suitable platforms for implement-
ing dependable distributed real-time systems. The key fea-
ture of TTAs is a time-triggered communication protocol
using which the components of a system communicate with
each other. Under such a protocol, the communication ac-
tions take place at pre-determined time points. The resulting
temporal determinacy provides the basis for building robust
safety critical real time systems. In particular, TTAs are
geared towards automotive, railway and aerospace applica-
tions that are safety-critical.

Applications targeted to run on TTAs must comply with
the timing requirements imposed by the underlying time-
triggered communication protocol. Further, the applications
developer must be aware of architectural support that may
be available to support the time-triggered communication
fabric. Finally, basic design principles such as temporal

firewalls (no control signals shall flow across communica-
tion interfaces) may need to be enforced in the process of
developing applications. Thus one needs a design frame-
work specifically geared towards TTAs. Our main goal here
is to present such a framework.

At the top layer we propose a menu of UML-based no-
tations using which applications can be rigorously specified
and key parameters of the underlying TTA and communi-
cation protocol exposed. UML is now widely accepted in
the software engineering community as a common nota-
tional standard. It supports object-oriented designs which in
turn encourage component reuse. It can be used to provide
multiple views of the system under design. It allows stan-
dard ways of extending the language to meet the demands
of specific application domains. Though it was originally
created to serve the software engineering community, UML
has been steadily evolving to provide a sound notational ba-
sis for developing real time embedded applications [25].

The second major component of our work is a transla-
tor that transforms designs developed at the UML level into
executable SystemC code for initial functional validation.
SystemC allows both applications and platforms to be ex-
pressed at sufficiently high levels of abstraction while at the
same time enabling the linkage to hardware implementation
and verification [17]. Furthermore, SystemC – viewed as a
programming language – is a collection of class libraries
built on top of C++ and hence is naturally compatible with
the object-oriented paradigm that UML is based on. Sys-
temC has the potential to provide a full-fledged description
of an execution platform which can serve as the target of
a co-design methodology. For these reasons, SystemC is a
popular intermediate representation language.

There are a variety of TTAs and associated proto-
cols [30]. Here we have based our ideas on the FlexRay
standard. Due to strong backing from the automotive in-
dustry [15], it is likely to emerge as the industry standard
for a time-triggered in-vehicle communication system. Un-
til recently, work on FlexRay has focused on defining and
validating the standard and developing appropriate commu-
nication hardware. With this the stage close to completion,



one can begin to develop actual applications. In this context,
a UML-based backbone such as the one we advocate here
can provide necessary level of abstraction and standardiza-
tion to support reuse.

We expose the key aspects of the FlexRay at the UML
level by introducing appropriate stereotypes, tagged values
and more importantly, using an activity diagram to spec-
ify the static schedule defined by the protocol. Through
a disciplined use of ports and interfaces we also enforce
the temporal fire wall principle required by time-triggered
protocols [11]. This principle demands that only data val-
ues but no control signals should flow across communic-
tion/component interfaces of TTA architectures. We also
provide preliminary evidence suggesting the composability
quality enjoyed by the TTA approach can be reflected at the
UML-level. We do so by adding a cruise control application
to an initial design that consists of a brake-by-wire applica-
tion.

Finally, we demonstrate a translation to a standard and
popular intermediate representation, namely SystemC [4],
for initial validation. A key advantage of our translator is
that it automatically synthesizes – using information gath-
ered at the UML layer – a simulation driver. This driver
mediates between the kernel simulator of SystemC and the
generated SystemC code in order to achieve fast simula-
tions.

It is worth pointing out that we do no address the issue
of how/whether the generated SystemC code can be used
in the software development process. The worst case sce-
nario is that the SystemC code is used only for prototyping
and initial validation. Even in this case, it can serve as a
valuable design specification for starting the code genera-
tion process.

Though we have carried out our work in the specific
setting of FlexRay, our approach can be adapted to han-
dle other time-triggered protocols. Based on our previous
work [27], we are confident that the framework presented
here could be integrated without too much difficulty with
event-triggered architectures and applications.

Our Contributions

• Exposing the relevant features the underlying archi-
tecture and time-triggered protocol at the UML-level
through a suitable choice UML diagram types and fix-
ing their roles. In particular, the structure diagrams are
used to display the underlying TTA architecture, re-
stricted behavioral state machines to capture the con-
trol flow of application tasks guided by the commu-
nication cycles of FlexRay, an annotated activity dia-
gram to display the main features of the static commu-
nication schedule.

• Enforcing the temporal firewall principle at the design

layer through the restrictions imposed on the usage of
ports with proper interfaces.

• The novel use of a simulation driver at the SystemC
level to significantly improve simulation speeds and its
automatic synthesis by our translator.

• Localizing the changes to be made at the UML-level in
order to incorporate a new application and thus achiev-
ing composability and reuse.

Plan of the paper In the next section we will describe
the design backbone in detail after discussing briefly the
FlexRay protocol. Section 3 deals with the automatic trans-
lation of the UML models into SystemC. Section 4 presents
experimental results based on a case study and in the con-
cluding section we point to possible future research.

1.1. Related work

UML has been proposed to be used in the design process
of automotive software applications in different settings.
For instance, it has been used for system specification [29,
23] but without mechanisms for validation and synthesis.
On the other hand, AnyLogic [13] supports specifications
via UML-RT [32] based modeling, generates Java code and
executes animated models. Our approach differs from this
in that we use standard UML notations with a few exten-
sions. Secondly, we support simulations by automatically
generating SystemC code which provides a standard ex-
ecutable intermediate representation. Next we note that
AML (Automotive Modeling Language) [6, 5] is also a re-
lated UML-based modeling framework that supports mul-
tiple abstraction levels. The key difference is that we have
a path to an executable intermediate representation that al-
lows functional validation. In addition, our code generation
process takes advantages of the special features of TTAs so
as to achieve good simulation speeds.

A number of toolsets are currently available that sup-
port time-triggered protocols. Typical examples are:
TTTech’s [2] toolset for the TTP protocol, TTAutomo-
tive’s [34], Decomsys’ [9] and dSPACE’s [33] toolsets for
FlexRay. In general, these toolsets deal with the design of
TTAs at a more concrete and platform-specific level. An im-
portant future challenge will be to bridge the gap between
this lower level and the UML-level abstraction we propose.

Model-driven development environments based on
SCADE and built on top of TTPPlan and TTPBuild have
been proposed [10, 8]. The idea is to model time-triggered
software tasks using the GUI of the SCADE tool. The
SCADE Code Generator will then generate code that can
be run as time-triggered OS tasks. We feel that UML 2.0
notations are an attractive alternative since they are more



`  

Network Idle Dynamic Symbol Window Static 

2 2 3 1 4 transmission transmissionidle 

(a) 

(b) 

idle 5 

Bus Controller
ECU1 

ECU3 
Bus Controller 

ECU4
Bus Controller

ECU5 
Bus Controller

Bus Controller 

Application,  
OS, 

Memory, 
Processor 

I/O 

ECU2 

Figure 1. FlexRay Basics

generic, offer a variety of diagram types to deal with both
the structural and behavioral aspects of applications. Fur-
ther, UML, unlike SCADE, is not strongly tied to the syn-
chronous programming paradigm.

STEP-X [26] uses UML notations and targets general au-
tomotive applications. It does not cater to the specific needs
of TTA-based applications. A UML profile for TTAs is de-
fined in [24] with a proposed mapping from designs devel-
oped using this profile to the tools TTPPlan and TTPBuild.
We feel however that it is premature to define and impose a
full-blown UML-profile on designers at present. Our work
shows that the standard notations of UML 2.0 – with a mild
dose of stereotypes and tagged values – suffice.

More generally, Giotto [20, 16] offers a software layer
for specifying and composing time-triggered tasks. This
level of abstraction uses logical time rather than physical
time. In contrast, at the UML-level, we use physical time
as dictated by the static schedule of the FlexRay protocol.
Consequently, in our framework, it will be much easier to
relate timing behaviors at the implementation and specifi-
cation layers. Finally, the AUTOSAR [1] consortium has
been working actively on proposing an overall software ar-
chitecture standard for automotive applications. Our model-
ing framework is more specific in that it is targeted towards
time-triggered platforms.

2. UML-level Modeling

In developing distributed applications that have hard
real-time constraints, the time-triggered paradigm advo-
cates a number of design principles [11] to be followed:

• Temporal firewall: This design principle requires
sender tasks to push data onto the time-triggered com-
munication platform and receiver tasks to pull data

from this platform. A sender does not send any con-
trol signal directly to a receiver.

• Global time: All the local clocks in a TTA cluster
must be synchronized sufficiently often to establish the
global time of the cluster. The granularity of the global
time g must be greater than the precision achieved via
the clock synchronization mechanism.

• Composability: This principle covers several aspects.
First, it requires that nodes can be designed indepen-
dently of each other assuming that the architecture and
service have been specified precisely. Secondly, once
a node has been validated, integration of the node into
a system should not refute the correctness of its ser-
vice in both the time and value domains unless addi-
tional computational resources requirements arise due
to the integration. This is called the stability of prior
services. Finally, the constructive integration principle
requires that the integration of the (n + 1)th node must
not disturb the correct operation of the n nodes already
integrated in the system.

We now describe the main features of our modeling
framework. We focus on our choice of diagrams, their in-
tended role and required usage pattern so that rigorous spec-
ifications that adhere to the above principles can be devel-
oped. We shall also highlight how the key features of the
architecture and the communication protocol are blended
into the specifications. This is done in order to facilitate
the automatic generation of SystemC code that can be effi-
ciently simulated. As mentioned earlier, we will focus here
on a specific embodiment of the TTA principles, namely,
the FlexRay standard [14].



2.1. The FlexRay communication platform

FlexRay [15] is a communication protocol for real-time
distributed systems. It is implemented on time-triggered ar-
chitectures in which several ECUs are connected to one or
two communication channels as shown in Fig. 1(a). Sev-
eral other network topologies are possible [14] but we will
not consider them here. An ECU consists of a processor,
a memory management unit and a communication interface
to which a bus controller is attached. Often, an ECU will
also have sensors and actuators associated with it. The bus
controller mediates between the ECU and the communi-
cation channels and implements the key communication-
related functionalities of the ECU. These functionalities
include the scheduling of message transmission, assem-
bling/deassembling messages, coding/decoding, perform-
ing physical access to the busses and clock synchronization.

The ECUs transmit data to each other mainly in a time-
multiplexed fashion as dictated by the FlexRay protocol.
The protocol executes in recurrent periodic cycles called
communication cycles. The protocol is implemented using
a four level timing hierarchy. Each cycle at the top level
consists of a static segment, an optional dynamic segment,
an optional symbol window and a network idle time (see
Fig. 1(b)).

• Data generated by tasks running on the ECUs are sent
and received in the static segment in a time-triggered
fashion. More precisely, write access to the bus by
the ECUs is scheduled according to a fixed time divi-
sion multiple access (TDMA) scheme during the sta-
tic phase. Consequently, an ECU is granted exclusive
write access to the bus at exactly specified time inter-
vals called the static communication slots. All slots
have the same time duration and exactly one frame is
to be transmitted per slot. Further, the order of alloca-
tion of slots to ECUs in the static phase is identical for
all cycles.

• The dynamic segment is in some sense an event-
triggered phase where, using a priority scheme, the
ECUs can be scheduled to transmit messages of vary-
ing time duration measured in terms of mini slots in a
time-deterministic fashion (see [14]).

• The symbol window is used to transmit special mes-
sages such as “cluster-wake-up”.

• The network idle time phase is used to calculate and
apply clock correction terms in order to achieve clock
synchronization.

At the lower levels of the FlexRay timing hierarchy, sta-
tic and dynamic slots consist of a fixed number of macro
ticks. Each macro tick consists of a fixed number of micro

(Manager1)

(Manager2)

(Throttle)

(CruiseController)(Brake1)(Brake2)

(Brake3)

(Brake4)

Dynamic

Symbol windowNetwork idle time

[500]
[200]

[500]

[500]

[500][500]
[500]

[500]

[500]

[0] [0]

Figure 2. The activity diagram describing the
communication cycle

ticks generated by a local clock. For the purpose of applica-
tion development, macro and micro ticks are not exposed at
the UML level. We also do not consider the symbol window
and network idle time segments since they do not directly
influence the functionalities of the application tasks. In ef-
fect, the applications are modeled with the assumption that
clock synchronization is assured by the underlying commu-
nication platform.

The features of the protocol that we expose at the UML
level include:

• The lengths of each segment.

• The number of slots in the static and dynamic segments
and their lengths.

• The owner of each static slot (which is also the order in
which the ECUs’ messages are scheduled in the static
segment).

• The ECUs that may send or receive in the dynamic
segment.

The above information is captured in a UML activity di-
agram associated with a usecase depicting how the com-
munication platform is used by the software applications.
Such an activity diagram is shown in Fig. 2. In this di-
agram, an activity node represents a node that is occupy-
ing the bus or the phase that the bus is in. A unique token
flowing through the diagram determines the current phase
of the bus. The condition associated with an activity edge
specifies the quantum of time the token must stay in an ac-
tivity node. In Fig. 2, a token starts at the initial activity.
Thus, Manager1 occupies the bus for 500 micro-seconds
before Manager2 is granted access to the bus. Similarly,
Manager2 is given a 500 micro-seconds slot on the bus,
etc. In this example, the dynamic, symbol window and net-
work idle time segments of the FlexRay protocol have been



<<Cluster>>
BBWCluster

<<Node>>
ManagerNode

Buses

<<Node>>
Brake1

<<Node>>
Brake2

<<Node>>
Brake3

<<Node>>
Brake4

<<Node>>
Manager1

<<Node>>
Manager2

PedalP1 PedalP1 PedalP1 PedalP1

ManagerTask

<<CommController>>
ManagerCC

pCC

pTask
IFlexRayCHI

Figure 3. Composite structure diagram of a BBW cluster

assigned 200, 0, and 0 micro-seconds, respectively. The
activity node Dynamic has a tagged value for the length
of each mini-slot inside the dynamic segment and another
tagged value which is a boolean expression on ids of nodes,
describing all the nodes that may send or receive during a
dynamic segment. All the above information is required at
the application layer to ensure that the tasks are designed to
communicate on time. (Due to separation of concerns, we
do not consider here how this is achieved). This information
is also used by our translator to automatically configure and
initialize the communication controller of each node at the
SystemC level. We will say more about the communication
controllers later in this section.

2.2. Modeling applications

In order to model the software task(s) at each ECU, the
structure of the entire time-triggered cluster must be made
available. This is because in order to describe tasks and
their relationships to the cluster’s communication schedule,
the application developers need to know on which node a
task is located and which nodes the task communicates with
are located.

We use class diagrams and (composite) structure dia-
grams to capture the architecture of the computing and com-
munication infrastructure of the system. A class is an ab-
straction for those components of a system that have the
same behavior and class diagrams are used in the standard
way to describe the relationship among the classes. In com-
plex systems, an object of a class may contain other objects
of other classes and the relationships between objects may
be intricate. UML 2.0 provides structure diagrams to model
the internal structure of classes more accurately.

Fig. 3 is a structure diagram depicting the layout and
interconnections of a cluster consisting of six ECUs for a
Brake-By-Wire (BBW) application. Each object in a struc-

tured class is instantiated from other classes. These objects
may be connected through association links. The links con-
necting them show the possible ways they may interact with
each other.

An important feature of structured diagrams are the ports
with provided and required interfaces. This allows for a
natural description for the provision and use of services
by the components of a system. In Fig. 3 the socket no-
tation refers to the required interface IFlexRayCHI of
port pCC while the circle notation refers to the provided
interface IFlexRayCHI of port pTask in the link be-
tween object ManagerTask and object ManagerCC. The
IFlexRayCHI interface consists of functions for the task
ManagerTask to call when it wants to send/receive data
from the communication controller ManagerCC. The re-
quired and provided interfaces of two ports connecting to
each other must match. In addition, only data-flow can take
place across these interfaces and the interfaces include func-
tions to push data to the communication controller to send
and pull data from the communication controller to receive.
These basic restrictions are imposed in order to satisfy the
temporal firewall design principle of TTAs.

Structure diagrams allow hierarchical structures to be
captured. For example, one of the classes (instantiated twice
in the left half of Fig. 3), namely the ManagerNode, has
an internal structure shown in the right half of Fig. 3, which
is actually the structure diagram of the ManagerNode.

Behavior modeling In UML 2.0, an object-oriented vari-
ant of statecharts [18] called behavioral state machines are
used to model the behavior of components in a system. In
the present context, application tasks are triggered at spe-
cific time instances. Hence, the transitions of our behavioral
state machines will be time-outs that denote the amount of
time an object has stayed in the source state during which
it would have executed the code associated with that state.



The time here is the global time which is assumed to be
common knowledge to all the nodes. Guided by these con-
siderations, the behavior of a task assigned to a node will
be modeled as a behavioral state machine which at the top
level will consist of a single loop of states and transitions.
The sum of all time-out expressions in this loop must be a
multiple of the FlexRay cycle. The time-out expressions as-
sociated with the transitions can be constants or arithmetic
expressions whose variables must be initiated in the object’s
constructor. Fig. 4(a) shows an example of the top level of
a behavioral state machine. The notations at the top right
hand side of the states indicate that the states have actions
to be performed on entry. This action can be any C++ (or
SystemC) statements which include function calls through
ports to transmit or receive data from the communication
platform. This state machine models the fact that when a
brake actuator object enters the state starting, it will
execute the state’s action on entry. It will stay in this state
for 4,000 micro-seconds after which it will take a transition
and enter the dynamic1 state which corresponds to the
FlexRay’s dynamic segment.

start

dynamic1

actuate1

actuate2

dynamic2

dynamic2

waitingforUrgency

dReceive/applyDynamicBrakeForce();

tm(4000)

tm(400)

tm(500)

tm(3300)

tm(200)

(a) (b)

Figure 4. Behavioral state machine of a brake
actuator

However, time-triggered transitions in behavioral state
machines alone are not enough due to the event-triggered
nature of the behaviors allowed in the dynamic segment. To
cope with this, we allow the top-level states corresponding
to the dynamic segment to have internal states that will cap-
ture the event-triggered reactions restricted to the dynamic
segment. Fig. 4b shows the internal sub-states of state
dynamic2. When the system is in the dynamic segment,
the brake actuator objects wait for events coming from the
communication platform that signal that the car needs to
brake immediately. This event can be sent and received
only in the dynamic segment and that too only if emergency
braking is necessary. If such an event is received, the func-
tion applyDynamicBrakeForce() is called. Strictly
speaking, this is a violation of the temporal firewall design
principle as control signals (events) are passed across com-
munication/component interfaces. However, FlexRay vio-
lates this principle only within the dynamic segment. Fur-

ther, even within this segment, the event-triggered signals
are generated according to a fixed static priority scheme and
users must fix the signals’ lengths. Hence temporal deter-
minacy is largely preserved and temporal non-determinacy
is confined strictly to the dynamic segments.

In order to eliminate any additional violations of the
temporal firewall principle, non-urgent requests or condi-
tions from the environment are not modeled as events in
our framework. Instead, they are sent from an object’s envi-
ronment to the object through ports and they are handled in
a time-triggered manner, i.e., they take effect only at times
specified by the users. Whether these requests or condi-
tions are buffered or overwritten is defined by users in the
functions implementing the interfaces of the corresponding
ports.

The Design Framework Fig. 5 summarizes our proposed
design flow of a time-triggered application using UML 2.0
notations.

For convenience, we add some simple notational exten-
sions – as is allowed by the UML 2.0 standard – through
stereotypes and tagged values. The stereotypes of clus-
ters, nodes, and communication controllers are applied to
classes as well as to instances of these classes. In addition,
tagged values in the activity diagram capture timing details
of the physical communication platform. These extensions
not only aid the modeling effort, they also contribute to the
process of generating SystemC code. They can also be ex-
ploited during the implementation stage.

The communication schedule is determined before each
task on the nodes are modeled, so the nodes can be de-
veloped independently. Our design framework supports
composability in the sense that a new application can be
smoothly added to an existing model. When a designer
wants to extend a cluster with a new application, the follow-
ing steps must be performed. First we remark that if the new
application is to be run on an existing node, then this will
basically boil down to a fresh local schedule for that node
followed by suitable modifications to the (hierarchical) be-
havioral state machine describing the execution of tasks on
this node. Hence below, we outline the steps needed to add
a new node on which the new application will run.

• modify the structure diagram of the cluster class to in-
clude a new ECU;

• modify the activity diagram which describes the bus
communication schedule;

• model the new node as well as the tasks running on this
node for the new application using structure diagrams
and a behavioral state machine;

• if necessary, modify the behavioral state machines of
the tasks of the existing applications if their schedules



 

Structure diagram  Usecase and activity 
diagrams with 
tagged values 

Structure diagram

Tasks/ 
Sensors/ 
Actuators

Behavioral state machines 

Node  
structure 

Communication 
controller 

Communication 
schedule 

Physical layout 

Figure 5. UML-based design flow for TTAs

are affected by the new changes. This modification
is restricted only to the time parameter of the time-
out transitions. However, timing constraints must be
checked to make sure that there is enough time for a
task to complete the actions that it is suppose to exe-
cuted when in a particular state.

The above modifications are well localized and users can
easily identify the places in the model which have to be
changed.

Finally, a SystemC model of the communication con-
trollers is needed to simulate the system model translated
from the UML layer. Users can choose to supply this Sys-
temC model and compose it with the generated SystemC
code. Alternatively, they can model the communication
controllers at UML level using structure diagrams and be-
havioral state machines and then use our tool to generate
SystemC code for the communication controller automati-
cally. The later approach is faster and easier. In fact we
have taken this approach to derive an abstract model of
the FlexRay communication controllers at the UML level.
These models can be used as a library for application devel-
opers who want to develop various applications running un-
der FlexRay. Due to limited space we don’t show the UML
diagrams of the FlexRay communication controller in this
paper. Readers can refer to [3] for these diagrams.

3. Translation to SystemC

We have constructed a translator that automatically con-
verts the UML model of a system into executable SystemC
code. We refer the reader to [4] for background information
on SystemC. The translation process is not routine and we
outline here the main steps as well as the implementation
choices we have made in order to obtain fast simulation.

A UML class is translated into a SystemC module. The
objects inside a structure diagram of a class will become
sub-modules. Initialization codes that create modules and
connect them together are generated automatically from the
structure diagrams of the structured classes. The initializa-
tion codes are then inserted into the respective structured

 

Channels 

      Manager1         Brake1 

 Simulation Driver 
  PedalP1 

  PedalF1 

Figure 6. Block diagram for the SystemC gen-
erated code

classes’ constructors.
Communication through ports defined by interfaces in

the UML model is supported naturally in SystemC by the
concepts of sc_port for ports with required interfaces,
and sc_export for ports with provided interfaces.

The number of nodes per cluster in a TTA can be large.
Our translator automatically configures the SystemC com-
munication controllers by extracting the relevant informa-
tion from the activity diagram we highlighted in the pre-
vious section (see Fig. 2). This process utilizes our UML
stereotypes to identify and pass arguments to the nodes, and
subsequently to the communication controllers.

The key to fast simulation is how the code for execution
of behavioral state machines is executed. The OSCI Sys-
temC simulation kernel is a generic discrete event simulator.
It does not take advantage of the crucial property of TTAs,
namely, the communication schedule is pre-defined. Thus,
if we generate SystemC in the usual way by mapping the
behavioral state machine of each class to a SystemC thread,
we will get poor simulation speeds. Instead, our translator
consolidates a schedule table for a whole cluster. A mod-
ule called simulation driver will execute the model accord-
ing to this schedule table. In effect, we will have just one
SystemC thread residing in the simulation driver to execute
all time-triggered actions. To repeat, the simulation driver



is generated automatically by our translator. Fig. 6 shows
the block diagram of the generated SystemC code from the
model in Fig. 3 in which we have eliminated Manager2
and the three Brakes to improve the clarity of the figure.
The simulation driver is connected to each node (and the
task on each node) to drive the simulation. The driver is
not connected to the two pedal sensors since they are pas-
sive modules (there are no state machines associated with
them); They just provide functions that the Manager can
call.

However, additional SystemC threads are unavoidable
due to the states corresponding to dynamic segments. Inter-
estingly, we can switch off these threads for the ECUs that
don’t send or receive during dynamic segment. This infor-
mation is available via the tagged values of the Dynamic
activity in the activity diagram.

Our translator can insert codes to print out traces, includ-
ing state transitions, event notifications and their occurring
time.

Implementation We use the Rhapsody tool [28] as front-
end for developing our designs. The translation process
starts with the Rhapsody internal representation of the UML
model from which an XML file followed by an abstract tree
of the model is built. After some pre-processing to facilitate
the automatic configuration of communication controllers
and the generation of the simulation driver, our SystemC
templates and the Velocity [35] template engine are used to
generate SystemC code corresponding to the UML model.

Although the current front-end of our tool is Rhapsody,
our method can be easily adapted to other UML frontends.
Any tool that provides a suitable GUI for creating UML di-
agrams can be used, provided there is a mechanism to gen-
erate an XML (or XMI) representation from the graphical
interface. This is generally the case for most of the UML
tools we are aware of.

XMI is a good intermediate representation for our trans-
lator because it is easy to create and extract information
from XMI documents. However, XMI itself is not a con-
venient specification language for system-level designs. In
particular it is textual, tedious and error-prone to be used for
complex designs. In contrast, UML offers convenient and
standard graphical notations for designers to systematically
model and document their design.

4. Experimentation

We have experimented with our approach with a number
of metrics in mind. The most important one of course is
simulation speeds as a function of the number of FlexRay
cycles. We also compare our simulation speeds with the
simpler thread-based approach in which the simulation
driver is not synthesized and instead one SystemC thread

Table 1. Simulation speed (in ms) of the
brake-by-wire application (SD stands for Sim-
ulation Driver)

FlexRay cycles Thread approach SD approach
100 47 8.2
200 99 16.5
500 256 42

1000 497 87
5000 2528 441

per behavioral state machine is created. We also observe
the number of lines of code generated by our translator as
a (very) rough estimate of the effort saved to create an exe-
cutable SystemC model.

A Brake-by-Wire (BBW) application We have created
at the UML level an automotive brake-by-wire (BBW) ap-
plication. The communication components were modeled
in accordance with the FlexRay standard. The BBW appli-
cation was developed based on the material in [19] and [7].

Fig. 3 shows the structure diagram for a cluster. There
are six nodes in the system, one for each wheel (brake node)
and two manager nodes. Each brake node controls a brake.
The manager nodes obtain the force and position applied to
the brake pedal from sensors, calculate the brake force that
each brake node should apply and send it via the bus to the
brake nodes. In turn, the brake nodes send their current sta-
tus to the managers also via the bus. All these communica-
tions are done in the static segment. The dynamic segment
is not used here. The FlexRay communication subsystem at
each node places data on the bus at the scheduled slots and
reads data from the bus when the application needs to.

1,333 lines of SystemC code were generated. At the
UML level, we could not gain access to the code corre-
sponding to the algorithms for computing the brake force
etc. Instead, we inserted our own simplified code to mimic
the functionalities. (This is the also the case for the adaptive
cruise controller to be described later.) We simulated the
generated SystemC code for varying numbers of FlexRay
communication cycles on a PC with a 3 GHz Pentium 4
CPU and 1 Gbytes of RAM. The simulation times, in terms
of milliseconds, are shown in Table 1. The simulation times
appear to scale well as the number of communication cycles
increase. The table also shows the simulation times for the
code generated using the threads-based approach. As can be
seen and expected, there is a significant gain in simulation
speeds when we synthesize a simulation driver which can
leverage on the time-triggered nature of the static segments.

We also determined that simulation times obtained via
the simulation driver approach are almost the same as the



Table 2. Simulation speed (in ms) of brake-
by-wire and adaptive cruise controller appli-
cations (SD stands for Simulation Driver)

FlexRay cycles Thread approach SD approach
100 77 18
200 146 40
500 389 104
1000 764 196
5000 3214 908

times obtained by hand-creating a SystemC model for the
application. Since this is an ad hoc approach, we have not
shown this comparison here.

Adaptive cruise control (ACC) To check the extent to
which composability is supported, we added an adaptive
cruise control application to the BBW cluster.

In this application, once a driver presses the Set button,
the cruise controller will maintain the car’s speed at a set-
ting provided by the driver. It will also maintain a safe dis-
tance from the vehicle ahead by adjusting the throttle using
the car’s current position, speed and its distance from the
vehicle ahead. The cruise control will be disengaged when-
ever the driver steps on the brake pedal or presses the Off
button. In addition, there is a Resume button that allows
the car to resume cruise control if it has been disengaged.
The Set, Off and Resume buttons (i.e. the corresponding
sensors) reside on the same node as the cruise controller.

In our experiment, to implement this new application,
two more nodes were added to the BBW cluster; one for the
cruise controller and the other for the throttle. This resulted
in two more static slots in the static segment of the commu-
nication round. One slot is used by the throttle to send the
current position of the throttle and the second slot is used by
the cruise controller to send a new position that the throttle
is instructed to attain. The ACC uses the dynamic segment
to handle the emergency situation when there is a vehicle in
front of the car at an unsafe distance.

It took the first author around three hours to have the
cruise controller application added to the existing BBW
cluster, generate the SystemC code for the extended model
and debug the new model to get the new application to work
properly. The new application could be added quickly be-
cause our modeling method, as detailed in the previous sec-
tion, makes it easy to identify the places where changes
have to be made. Further, the SystemC configuration of
communication controller is generated automatically. This
saves a significant amount of time especially in a system
with many nodes. The generated SystemC code is 4,314
lines in total.

Table 2 shows the simulation speeds of the combined ap-
plication in milliseconds for varying numbers of commu-
nication cycles. The dynamic segment is used in this ap-
plication. Hence the OR states corresponding to dynamic
segment are mapped onto SystemC threads. So not only
are we simulating more nodes compared to the BBW clus-
ter running alone, there are 13 additional SystemC threads
due to the use of the dynamic segment. Thus there is a no-
ticeable increase in the simulation times. Admittedly, the
new threads are not computationally intensive but as is of-
ten the case with SystemC simulations, the speed penalty
incurred is due to the context switching that is required in
the presence of multiple threads. There are also some slight
differences between the simulation speeds of our simulation
driver approach and the hand-written code. The simulation
driver approach however still gains over the thread-based
approach.

5. Conclusions

We have presented a design framework based on UML
2.0 diagrams for applications intended to run on TTAs. We
have assumed the underlying time-triggered protocol to be
the FlexRay standard. Essential features of the underlying
architecture and protocol are captured using the different
diagram types and notations of UML 2.0. Our framework
complies with TTA design principles such as temporal fire-
walls and composability. We have built a translator which
automatically generates SystemC code for functional verifi-
cation. Due to the XML-based intermediate representation,
the current framework can be easily connected to other tools
for additional verification and alternative synthesis.

We have experimented with two different configurations
(static segment only, and static followed by dynamic seg-
ment)using two standard applications. Our initial experi-
ence with this design framework is encouraging. Simulation
speed has been optimized by automatically synthesizing a
SystemC Simulation Driver which uses a single thread to
drive the simulation. We believe this technique will be ap-
plicable in other settings as well; in particular, when there
is a system-level static schedule involved.

Here, we have focused on systems consisting of a sin-
gle cluster. However it will not be difficult to extend our
framework to handle multiple clusters connected through
gateways. It will be important to investigate issues such as
(i) developing local schedules in case more than one task is
allocated to an ECU, (ii) explicitly modeling bus guardians
which prevent violation of the static schedule, (iii) the op-
erating system layer implementing the fault-tolerant clock
synchronization mechanisms (iv) the initialization services
for waking up a cluster etc.

In our future work, we also wish to explore other time-
triggered protocol such as TTP [22] and TT-CAN [12] and



include their models in the library of communication plat-
forms for application developers. We also plan to focus
on the challenging task of developing a membership ser-
vice [31] as a core application in order to explore fault tol-
erance requirements at the UML-level.

In a larger context, one needs backward association
mechanisms through which faulty runs (including applica-
tion’s communication’s error) obtained at the SystemC level
can be traced back to the ill-behaved parts of the UML-level
model. The construction of such a mechanism will enable
the creation of test benches at the UML level and their ver-
ification in SystemC.

References

[1] Automotive open system architecture - AUTOSAR.
http://www.autosar.org, 2007.

[2] TTTech Computertechnik AG. http://www.tttech.com,
2007.

[3] UML-based design framework for TTAs.
http://www.comp.nus.edu.sg/ kathyngu/UMLSystemC,
2007.

[4] D. Black and J. Donovan. SystemC: From the Ground Up.
Springer Verlag, 2005.

[5] P. Braun, M. von der Beeck, U. Freund, and M. Rappl. Ar-
chitecture centric modeling of automotive control software.
World Congress of Automotive Engineers, SAE Transac-
tions Paper, 2003.

[6] P. Braun, M. von der Beeck, M. Rappl, and C. Schrder. Au-
tomotive software development: A model-based approach.
Congress of Automotive Engineers, SAE Transactions Pa-
per, 2002.

[7] M. Bruce. Distributed brake-by-wire based on TTP/C. Mas-
ter’s thesis, Department of Automatic Control, Lund Insti-
tute of Technology, June 2002.

[8] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and
P. Niebert. From simulink to scade/lustre to tta: a layered
approach for distributed embedded applications. In ACM-
SIGPLAN Languages, Compilers, and Tools for Embedded
Systems (LCTES’03), 2003.

[9] Decomsys website. http://www.decomsys.com/, 2007.
[10] B. Dion, T. Le Sergent, B. Martin, and H. Griebel. Model-

based development for time-triggered architectures. In Dig-
ital Avionics Systems Conference (DASC), 2004.

[11] W. Elmenreich, G. Bauer, and H. Kopetz. The time-triggered
paradigm. In Proceedings of the Workshop on Time-
Triggered and Real-Time Communication, Manno, Switzer-
land, Dec. 2003.

[12] T. Fhrer, B. Mller, W. Dieterle, F. Hartwich, R. Hugel,
M. Walther, and R. B. GmbH. Time triggered communica-
tion on CAN. In 7th International CAN Conference, 2000.

[13] A. Filippov and A. Borshchev. Daimler-Chrysler model-
ing contest: Modeling S-class car seat control with Any-
Logic. Object-Oriented Modeling of Embedded Real-Time
Systems OMER-2 workshop, 2001.

[14] FlexRay Consortium. FlexRay communications system,
protocol specification, version 2.1, revision A. 2005.

[15] FlexRay home page. http://www.flexray.com, 2006.
[16] A. Ghosal, T. Henzinger, D. Iercan, C. Kirsch, and

A. Sangiovanni-Vincentelli. A hierarchical coordination lan-
guage for interacting real-time tasks. In Sixth Annual Con-
ference on Embedded Software (EMSOFT), 2006.

[17] T. Grotker. System Design with SystemC. Kluwer Academic
Publishers, Norwell, MA, USA, 2002.

[18] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231–274, June
1987.

[19] B. Hedenetz and R. Belschner. Brake-by-wire without me-
chanical backup by using a TTP-communication network.
SAE TRANSACTIONS, 107(6), 1999.

[20] T. A. Henzinger, C. M. Kirsch, M. A. Sanvido, and W. Pree.
From control models to real-time code using Giotto. IEEE
Control Systems Magazine 23(1), 2003.

[21] H. Kopetz and G. Bauer. The time-triggered architecture. In
IEEE Special Issue on Modeling and Design of Embedded
Software, volume 91, pages 112–126, January 2003.

[22] H. Kopetz and T. Thurner. TTP - a new approach to solv-
ing the interoperability problem of independently developed
ECUs. SAE International Congress andExposition, Detroit,
MI, USA. SAE Technical Paper 981107, Feb. 1998.

[23] I. Majzik, G. Pintér, and P. T. Kovács. Uml based design of
time triggered systems. In ISORC, pages 60–63, 2004.

[24] I. Majzik, G. Pintér, and P. T. Kovács. UML based Visual
Design of Embedded Systems. In Proc. The 7th IEEE Inter-
national Workshop on Design and Diagnostics of Electronic
Circuits and Systems (DDECS-2004), pages 115–120, Stará
Lesná, Slovakia, Apr. 18–21 2004.

[25] G. L. Martin and W. Muller. UML for SoC Design.
Kluwer/Springer, 2005.

[26] M. Mutz, M. Huhn, and C. Krompke. Model based sys-
tem development in automotive. SAE technical paper series
2003-01-1017, 2003.

[27] K. Nguyen, Z. Sun, P. Thiagarajan, and W. Wong. UML for
SoC Design, chapter Model-Driven SoC Design: The UML-
SystemC Bridge. Kluwer/Springer, 2005.

[28] Rhapsody home page. http://modeling.telelogic.com/, 2007.
[29] M. Rhodin, L. Ljungberg, and U. Eklund. A method for

model based automotive software development. In 12th Eu-
romicro Conference on Real-Time Systems, 2002.

[30] J. Rushby. Bus architectures for safety-critical embedded
systems. In T. Henzinger and C. Kirsch, editors, the First
Workshop on Embedded Software, EMSOFT, volume 2211
of Lecture Notes in Computer Science, pages 306–323, Lake
Tahoe, CA, October 2001. Springer-Verlag.

[31] R. Schlatterbeck. Membership service: What it is and why
you need one for a safety critical system. Embedded Intelli-
gence, 2001.

[32] B. Selic. Using UML for modeling complex real-time sys-
tems. In LCTES ’98: Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for Embed-
ded Systems, pages 250–260, London, UK, 1998. Springer-
Verlag.

[33] J. Stroop, R. Stolpe, and R. Otterbach. Designing and testing
FlexRay systems. Automotive Electronics II, 2004.

[34] TTAutomotive Software GmbH. Time-triggered architec-
ture and FlexRay. 2005.

[35] Velocity website. http://velocity.apache.org/, 2007.


