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ABSTRACT
The sparse matrix-vector (SpMV) multiplication routine is
an important building block used in many iterative algo-
rithms for solving scientific and engineering problems. One
of the main challenges of SpMV is its memory-boundedness.
Although compression has been proposed previously to im-
prove SpMV performance on CPUs, its use has not been
demonstrated on the GPU because of the serial nature of
many compression and decompression schemes. In this pa-
per, we introduce a family of bit-representation-optimized
(BRO) compression schemes for representing sparse matrices
on GPUs. The proposed schemes, BRO-ELL, BRO-COO,
and BRO-HYB, perform compression on index data and help
to speed up SpMV on GPUs through reduction of memory
traffic. Furthermore, we formulate a BRO-aware matrix re-
ordering scheme as a data clustering problem and use it to
increase compression ratios. With the proposed schemes, ex-
periments show that average speedups of 1.5× compared to
ELLPACK and HYB can be achieved for SpMV on GPUs.

Categories and Subject Descriptors
E.4 [Data Storage Representations]: Data compression;
D.1.3 [Programming Techniques]: Parallel programming;
C.1.2 [Processor Architectures]: Graphics Processing
Units (GPU)

General Terms
Algorithms, Compression, Experimentation, Performance

Keywords
Sparse matrix format, data compression, matrix-vector mul-
tiplication, GPU, parallelism, memory bandwidth.
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1. INTRODUCTION
Sparse systems arise naturally in many engineering prob-

lems, such as image processing, circuit analysis and struc-
tural mechanics. These systems are normally represented
by sparse matrices with efficient storage schemes that store
only the non-zero elements of the matrices, and are usu-
ally solved using iterative algorithms such as the Conjugate
Gradient (CG) and Generalized Minimum Residual (GM-
RES) methods [21]. An important component, and also the
main bottleneck of these iterative algorithms is the sparse
matrix-vector (SpMV) multiplication kernel, which is used
repeatedly until the iterative process reaches convergence.

Different optimization strategies and data formats such
as Compressed Sparse Row (CSR) and ELLPACK-ITPACK
(ELLPACK) have been proposed by researchers which are
suitable for different kinds of matrix structure and different
hardware architectures [27, 15, 8]. For instance, the ELL-
PACK format is suitable for computing the SpMV prod-
uct on vector processors [15]. Because SpMV is inherently
a memory bound operation, lossless compression methods
have recently been proposed to reduce the memory band-
width usage of SpMV computations on the CPU. Willcock
and Lumsdaine [26] developed compression schemes based
on hybrid delta and run-length encoding for the Compressed
Sparse Row (CSR) format, and reported performance im-
provements of 30%. Likewise, Kourtis et al. [16] employed
index and value compression to reduce memory traffic and
achieved speedups of close to 1.2×.

With the emergence of GPUs as a popular platform for
scientific computing over the past few years, the SpMV op-
eration can now be offloaded to GPUs to exploit the massive
parallelism offered by their many-core architecture. As such,
much work has gone into optimizing the SpMV operation for
the GPU. Baskaran and Bordawekar [2] investigated efficient
thread mapping and data access strategies for SpMV kernels
on GPUs. Bell and Garland [4] explored several efficient
implementation techniques for SpMV multiplication using
the Compute Unified Device Architecture (CUDA) [19] pro-
gramming model. They designed an efficient hybrid stor-
age format that combines the benefits of the coordinate and
ELLPACK formats with good performance over a large col-
lection of sparse matrices. More recently, newer strategies
such as Sliced-ELLPACK [18] and ELLPACK-R [23] have
been proposed to improve the performance of SpMV com-
putation on GPUs.

However, all of these formats do not employ any lossless
compression schemes to reduce memory traffic. Unlike in the



case of the CPU, compression schemes such as run-length
encoding are difficult to implement on the GPU due to its
warp-based execution model. In addition, many entropy
compression schemes are serial in nature and are difficult
to implement efficiently on GPUs because each data element
depends on the preceding data. This dependency makes par-
allelization on the single instruction multiple thread (SIMT)
architecture of the GPU hard. Nevertheless, in this paper,
we will demonstrate that improved SpMV performance can
be achieved with compression schemes that are specially tai-
lored for the GPU. Our proposed bit-representation-
optimized (BRO) compression schemes, which include BRO-
ELL, BRO-COO and BRO-HYB, reduce storage size by re-
ducing the number of bits required to represent a sparse
matrix.

Our contributions in this paper are: (i) we designed effec-
tive and GPU-optimized schemes to further compress exist-
ing sparse matrices formats; these schemes can also be used
to improve the performance of SpMV on GPUs,
(ii) we developed a matrix reordering method that can be
used to increase the compression ratio, and finally, (iii) we
evaluated the effectiveness of our approach using a large set
of sparse matrices and showed that performance speedups
of between 1.2× and 2.1× relative to ELLPACK and HYB
can be achieved.

The remainder of the paper is structured as follows. In
Section 2, we present background material on commonly
used storage formats for computing the SpMV product on
GPUs. Section 3 presents our proposed BRO schemes for
computing the SpMV product. Experiment results are pre-
sented in Section 4, followed by a discussion of our results.
Section 5 discusses prior research which is related to ours,
and Section 6 concludes the paper.

2. BACKGROUND
Sparse matrix-vector multiplication on GPUs requires im-

plementations that are carefully optimized for the underly-
ing graphics hardware, of which the architecture is massively
threaded and significantly different from general CPU archi-
tectures. For example, for the Nvidia Fermi GPU architec-
ture, each executable GPU kernel is launched with a fixed
number of threads organized into a grid of thread blocks.
The threads in each thread block are executed synchronously
in units known as warps, with each warp containing a group
of 32 threads. The warps of each thread block are scheduled
and executed on streaming processors on the GPU device.

The GPU also contains off-chip dynamic global memory
with high bandwidths. However, a high memory throughput
is attainable if the global memory is accessed in a coalesced
manner, i.e. threads in a warp should access contiguous lo-
cations of the memory. Achieving a good performance on
GPU requires latencies due to memory transfers to be prop-
erly hidden by arithmetic computation. Another important
optimization on the GPU is to avoid control flow divergence
arising from branch statements in the kernels. Since threads
in a warp are executed simultaneously, a branch divergence
would cause statements on both branches to be serially ex-
ecuted, resulting in computational inefficiencies.

Optimized and efficient implementations for computing
the SpMV product on GPUs have been developed in prior
works. Such optimized implementations often depend on the
way the sparse matrix data is stored and layout in mem-
ory, and may also include additional information to opti-

mize computation. They include various schemes such as
the ELLPACK, hybrid (HYB), and ELLPACK-R formats.
In the next section, we describe some of these storage for-
mats in greater detail.

2.1 Sparse Matrix Storage Formats

2.1.1 Coordinate format (COO)
The classical COO coordinate format stores both the row

and column indices of the non-zero elements explicitly in two
separate arrays. For a m×n matrix with nnz non-zeros, the
row and column indices take up 2nnz of storage space. For
example, consider the following matrix,

A =


3 0 2 0 0
2 6 5 4 1
0 1 9 0 7
0 0 0 8 3

 ,

the COO format stores the sparse data in three arrays -
row idx stores the row index of each element, col idx stores
the column index of each element and vals stores the non-
zero elements.

row idx = [1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4]

col idx = [1, 3, 1, 2, 3, 4, 5, 2, 3, 5, 4, 5]

vals = [3, 2, 2, 6, 5, 4, 1, 1, 9, 7, 8, 3]

The implementation in [5] divides the data into intervals,
and a single warp will access the corresponding data in the
arrays to compute the matrix-vector product for each inter-
val. A parallel segmented reduction operation is then per-
formed by each of the warps to add up products that reside
on the same rows.

2.1.2 ELLPACK-ITPACK format (ELLPACK)
The ELLPACK format is well suited to SIMD and vector

architectures. It stores the non-zero elements in a dense
2D array by shifting and packing them towards the left as
shown below. A total of 2m × k storage space is required,
where k is the maximum number of non-zeros in a row. In
sparse matrices, storage is conserved because k is usually
much smaller than n.

col idx =


1 3 ∗ ∗ ∗
1 2 3 4 5
2 3 5 ∗ ∗
4 5 ∗ ∗ ∗

 , vals =


3 2 ∗ ∗ ∗
2 6 5 4 1
1 9 7 ∗ ∗
8 3 ∗ ∗ ∗


For the same matrix A as above, two dense 2D arrays are

used in ELLPACK - col idx stores the column index of each
non-zero element, and vals stores the non-zero values. En-
tries in the arrays that do not contain valid data are marked
using ‘*’. The implementation in [5] stores the 2D matrices
using column-major order and maps a thread to each row so
that the column index and values data can be accessed in a
coalesced manner.

2.1.3 Hybrid format (HYB)
Because of the additional padding required to pad each

row to length k, the maximum number of non-zeros in a
row, the ELLPACK format is not efficient when the number
of non-zeros in each row varies substantially from the aver-
age number of non-zeros per row. When this happens, there
is wastage in terms of the total storage required, as well as



computational resources allocated to the padding elements
marked ‘*’. To deal with such matrices, Bell and Garland [4]
introduced the hybrid storage format, HYB, that partitions
a matrix into a ELLPACK component and a COO compo-
nent. For instance, the matrix in the above example may be
partitioned in the following way.

ELLPACK

col idx =


1 3 ∗
1 2 3
2 3 5
4 5 ∗

 , vals =


3 2 ∗
2 6 5
1 9 7
8 3 ∗


COO

 row idx = [2, 2]
col idx = [4, 5]

vals = [4, 1]

In the implementation in [5], a large sparse matrix is par-
titioned using a heuristic, where the dividing column k is
determined such that the number of rows with at least k
non-zeros is less than a third of the total matrix rows.

2.1.4 ELLPACK-R format
The ELLPACK-R format improves upon ELLPACK by

introducing an additional array that stores the number of
non-zeros in each matrix row. For matrix A, apart from the
col idx and vals arrays which are the same as ELLPACK,
ELLPACK-R also records the length of each row of col idx
or vals in the row length array,

row length = [2, 5, 3, 2].

This additional information incurred by ELLPACK-R re-
sults in several benefits over ELLPACK. Since the length
of each row is known, the inner loop which performs the
multiply-add operation does not need to include conditional
branches to check for padded elements. Moreover, useless
iterations and computation on the padded elements can be
reduced by each thread, especially when row length[i] for
each ith row is small compared to k, the largest non-zero
row length. Thus, it is not necessary for every thread to
loop through the full k number of iterations, and the time
required by each thread is only limited by the longest com-
puting thread within the same warp.

3. BIT REPRESENTATION
OPTIMIZATIONS

Sparse matrix-vector multiplication is a memory-bound
operation that has low arithmetic intensity. Consider clas-
sical storage formats such as COO and ELLPACK that are
used to represent sparse matrices. Data structures such as
these typically employ index arrays for indirect access to the
dense input vectors. For every multiply-add operation, ELL-
PACK requires three memory accesses, whereas for COO,
four accesses are needed. Because of the low ratio of floating
point operations to the number of memory accesses, perfor-
mance of the SpMV kernel is usually limited by the memory
bandwidth available on the GPU.

Therefore, we propose using a family of efficient compres-
sion schemes (BRO-ELL, BRO-COO and BRO-HYB) to re-
duce memory traffic within the GPU. The main idea behind
these schemes is to compress the index data, which usually
contains a large amount of redundant information, using an
efficient bit representation format. Reducing the number
of bits required to store the index data may then improve

the performance of SpMV on GPUs by reducing its mem-
ory bandwidth usage. Because of the fact that the sparse
matrix is usually fixed and does not change across iterations
in many of the iterative algorithms, the compression can be
done offline on the host CPU, whereas decompression has to
be performed online on the GPU, before computation of the
matrix-vector product.

In the design of the BRO storage schemes, we took into
consideration two important aspects. The first is that the
decompressor residing on the GPU must be relatively
lightweight in comparison to the multiply-add operations of
SpMV so that many of the precious GPU cycles are allo-
cated for useful work, and not used up solely to decompress
the index data. Second, unlike on the CPU which contains
complex hardware for branch prediction, the compressed for-
mats should be relatively easy to decompress on the GPU
without incurring costly warp divergence penalties. As such,
prior schemes that were used for CPUs [26, 16] cannot be
directly applied on GPUs. Likewise, schemes such as run-
length coding are unable to meet our objective of lightweight
decoding without branch divergence.

3.1 The BRO-ELL Scheme
The schematic diagram in Fig. 1 provides a summary of

the operations performed in the BRO-ELL scheme, as well
as the steps required to obtain a compressed stream for use
later during SpMV computation. Figure 1 further illustrates
each step that is applied using the example matrix A in
Section 2.

As shown in Fig. 1, the main idea behind the scheme is to
compress the 2D column index array (col idx) using bit pack-
ing. Let [ci,j ] represent elements of the n-by-k array col idx.
There are several stages to the compression scheme. First,
the column index values are preprocessed into another array,
del idx = [δi,j ], using the following delta encoding scheme,
δi,j ← ci,j − ci,j−1, with the ci,−1 values initialized to zero.
Delta coding is a preprocessing stage that is commonly used
in many signal compression schemes. In our case, it also
serves to reduce redundant information present in the index
data and makes it more compressible in later stages. Note
that the delta values will be positive since the column index
values are monotonically increasing. The zero value is used
to denote invalid data.

Next, del idx is partitioned into slices with equal height,
h, and each slice is compressed independently of other slices.
Each of the slices can be assigned to a thread block, in which
case h represents the number of threads in a thread block.
In our current implementation, we used a thread block size
of 256. For every slice, since the number of columns con-
taining valid data may be different, an array num col is
introduced to record the actual length of each slice, i.e.
num col = [l1, l2, ..., ls], where s is the total number of slices.
By using this array, extraneous computations can be reduced
especially when the length of different slices vary substan-
tially from the full column length k.

Subsequently, data in each slice is then packed according
to the number of bits required for each index. As illus-
trated in the diagram, in order to match the synchronous
SIMT execution model of the GPU and ensure that data
access is coalesced, a fixed number of bits is allocated for
each column in a slice to store all the delta values of that
column. This requires finding the maximum number of bits
required to represent the values in each column. For in-
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Figure 1: Compression scheme for BRO-ELL.

stance, column j uses bj bits to pack each element in that
column. Therefore, an additional array for each ith slice,
bit alloci = [b1, b2, ..., bli , bp], is introduced to store the bit
allocation information for each column, where li is the num-
ber of columns in the slice. Note that for each slice, the
data stream in each row (row stream) will contain the same
number of bits. bp are additional bits used for padding such

that sym len divides
∑li

j=1 bj .
In the final step, the row streams are multiplexed together

with a symbol length of sym len, usually 32 or 64 bits, which
is the granularity of data access by each thread during the
decompression phase. Multiplexing, depicted with colored
boxes in the diagram, ensures that each GPU thread can be
mapped to a row stream and that threads can access the
data streams in a coalesced manner. All the above steps are
performed offline on the host CPU. Figure 1 demonstrates
how matrix A is compressed and packed, assuming h = 2
and sym len = 4. In this example, the final size of the
compressed stream is 32 bits. Compare this with the original
col idx array which required 80 bytes of storage.

On the GPU, the decompressor has to decode the bits
prior to performing the multiply-add operation. Algorithm 1
shows the pseudocode for decompressing the compressed
data stream on-the-fly and computing the SpMV on the
GPU. In the current implementation, each slice is mapped
to a thread block and scheduled on a streaming multiproces-
sor. A single thread is mapped to each row in the slice. As
with other formats [2, 4, 10, 18], the texture cache is used
to cache access to input vector x.

To understand the decompression process conceptually,
threads in each of the slices can be viewed as synchronously
performing a load-and-decode-symbol cycle, followed by com-
puting a multiply-add operation with the decoded index.
The main loop will iterate as many times as there are columns
in a slice. In each iteration, the number of bits required to

decode the next symbol is read into b. If b is less than the
number of remaining bits in the symbol buffer (rb), then
there is no need to read in the next symbol. Otherwise, the
next symbol has to be loaded from the compressed stream.
Recovering the column index is a simple matter of extracting
b bits from the symbol buffer and accumulating the decoded
index. In the current implementation, the bit allocation ar-
rays can be allocated in the constant memory since every
thread within a block will access the same data during each
iteration.

Unlike CPU methods which require multi-way branching
to decode the compressed symbols [26, 16], the advantage
of this scheme lies in the elimination of costly divergent
branches that become serialized during warp execution, and
instead replacing them with an efficient load-decode-and-
compute process. In each iteration, all the threads in a
warp will either take the first branch or the second branch of
the conditional statement, thereby ensuring identical control
flow and avoiding warp divergence. Reduction in memory
traffic is also achieved since a large number of iterations take
the first branch. The second branch where data is loaded
from global memory is only taken when the symbol buffer is
depleted. Furthermore, coalesced access of the compressed
data is achieved through multiplexing of the compressed bit
streams in each row.

3.2 The BRO-COO Scheme
Our proposed BRO-COO scheme employs a similar com-

pression method as BRO-ELL. In the COO storage format,
there are two index arrays, one for the row indices and the
other for the column indices. BRO-COO seeks to reduce in-
formation redundancy only in the row index array row idx.
Unlike BRO-ELL, BRO-COO uses the notion of intervals
and not slices because the data for COO is organized using
1D arrays and not 2D arrays. As illustrated in Fig. 2, the



Algorithm 1 - BRO-ELL decompression and SpMV mul-
tiplication routine for calculating y = A · x.

Input: num col = [l1, l2, ..., ls] contains the number of
columns in each slice, bit alloci = [b1, b2, ..., bli , bp] stores
the bit allocation information and comp stri contains the
compressed stream for slice i, vals contains the matrix val-
ues, and x is the dense input vector.
Output: Dense vector y containing the result of A · x.
Definition: Let sym denote a bit buffer with a size of
sym len and sym[p : p+ q] refer to q bits from p to p+ q− 1
in the buffer. If q is zero or negative, then zero is returned.
Let comp stri[m] refer to the mth symbol in the compressed
stream.
Method:

1: tid = thread ID, h = block size, i = block ID
2: row idx = i× h+ tid
3: col idx = rb = sym = decoded = sum = 0
4: for c = 0 to li − 1 do
5: b = bit alloci[c]
6: if b < rb then
7: decoded = sym[0 : b]
8: rb = rb− b
9: else

10: decoded = sym[0 : rb]
11: b = b− rb
12: sym = comp stri[c× h+ tid]
13: decoded = decoded� b+ sym[0 : b]
14: rb = sym len− b
15: end if
16: sym = sym� b
17: if decoded 6= invalid then
18: col idx = col idx + decoded
19: sum = sum + vals[row idx, col idx]× x[col idx]
20: end if
21: end for
22: y[row idx] = sum

row index data is first divided into intervals. Each interval
is then organized into a 2D array such that the row index
increases monotonically in the vertical direction. Each inter-
val will be processed and computed by a warp later on. As
in BRO-ELL, the 2D row index array [ri,j ] is preprocessed
using delta encoding, followed by bit packing. The same
number of bits is used to pack all values within the interval
and the bit count is stored in the bit alloc array. In the fi-
nal step, the compressed row streams are then multiplexed
together as in BRO-ELL. In BRO-COO, the decompression
scheme is similar to that of BRO-ELL, except that each in-
terval is processed by a warp, whereas for BRO-ELL, each
slice is mapped to a thread block.

3.3 The BRO-HYB Scheme
When the number of non-zeros per row of a sparse matrix

varies substantially, the matrix can be partitioned into a
BRO-ELL component and a BRO-COO component. Similar
to the hybrid ELLPACK-COO (HYB) format, BRO-HYB
combines the BRO-ELL and BRO-COO formats by dividing
a sparse matrix into BRO-ELL and BRO-COO partitions
with the same algorithm as in [4, 5]. This allows evaluation
and comparison of the classical and BRO formats later on
in the next section.

ri,j δi,jδ�,� = ��,� − ��,��	

…

ith interval

…

…

sym_len

row_idx

Figure 2: Compression scheme for BRO-COO.

3.4 Matrix Reordering
Several matrix reordering methods have been proposed in

the past to improve the performance of sparse matrix-vector
multiplication, such as those by Pinar [20] and Choi [6],
while other methods such as the Reverse Cuthill-Mckee
(RCM) [9] and approximate minimum degree (AMD) [1]
algorithms have been developed to reduce the number of
fill-ins during matrix factorization. However, these methods
do not take into consideration the amount of space savings
that can be achieved through reordering. In this section, we
propose a BRO-aware reordering method (BAR) such that
the resulting index array can be better compressed using our
bit-representation-optimized format. We will then evaluate
and compare the proposed method with existing techniques
in the next section.

For the BRO-ELL format, the overall compression that is
achievable depends on the bit allocation arrays, bit alloci,
which in turn depends on the range of the delta values in
each column of a slice. Therefore, reordering of the rows
can be employed to bring those which have similar bit allo-
cation patterns together in order to reduce the overall stor-
age size, and consequently reduce the number of memory
transactions. Given a matrix A and the matrix-vector prod-
uct y = A · x, we define a row permutation matrix P and
transform the product to y′ = A′ · x, where y′ = P · y and
A′ = P ·A.

The determination of P can be formulated as a data clus-
tering problem as follows. Without loss of generality, let us
assume that h|m, i.e. h divides m, and v = m/h. Also, let w
be the warp size and let w divide h. Let R = {r1, r2, ..., rm}
be the rows of the delta-encoded matrix del idx, and r1,...,
rm ∈ Rk. The clustering problem involves finding v dis-
joint equi-partitions {St}vt=1 of the set R which minimizes
following objective function,

Φ({St}vt=1) =

v∑
i=1

h/w ×

(
d
∑k

j=1 d(Si, j)
α

e+

k∑
j=1

c(Si, j)

)
.

(1)

Overall, Eqn. (1) seeks to find a partitioning that minimizes
the number of memory transactions required for the SpMV
operation. The first term within the parentheses in Eqn. (1)
denotes the number of memory transactions required to ac-



Algorithm 2 - Matrix reordering routine.

Input: Sparse matrix A, in terms of associated arrays
col idx and vals.
Preprocessing: Obtain del idx from col idx.
Output: A set of partitions {St}vt=1. Each cluster St con-
tains a sequence of rows in the order of insertion.
Method:

1: initialize St ← ∅ for t = 1 to v
2: D ← sort rows in del idx according to row length and

let {ri} be the sequence of rows in D
3: for t = 1 to v do
4: St ← St ∪ r(t−1)×h+1

5: D ← D − r(t−1)×h+1

6: end for
7: for ri ∈ D do
8: for m = 1 to v do
9: evaluate Φm ← Φ({St}vt=1,t6=m ∪ (Sm ∪ ri))

10: end for
11: find partition p with the least cost in {Φm}vm=1 and

satisfying |Sp| < h
12: Sp ← Sp ∪ ri
13: end for

cess the delta indices in the del idx array given a symbol
length of α, while the second term denotes the number of
memory transactions required for accessing the x vector.

The function d(Si, j) returns the maximum number of
bits required to represent the jth element of all the row
vectors in the partition Si. That is, denoting a row ra =
[ra1, ra2, ..., ran] in partition Si, and letting Γ(u) be a func-
tion that returns the number of bits require to pack an un-
signed integer u, then

d(Si, j) = max{Γ(raj), ra ∈ Si}. (2)

The function c(Si, j) returns the number of unique cache-
lines used for accessing the x vector by the jth element of
all rows in partition Si. Thus, if Ω denotes a mapping from
raj to the corresponding cacheline for addressing x, then

c(Si, j) = | ∩ Ω(raj), ra ∈ Si}|. (3)

A limitation of the above function is that it takes into ac-
count spatial locality but not temporal locality.

In general, finding the global optimum solution for data
clustering is known to be NP-hard [14]. In Algorithm 2, we
employ a greedy heuristic to partition the rows of a matrix
according to Eqn. 1. The purpose of the sorting step (line
2) is to seed each cluster with an entry that is sufficiently
separated in terms of row length. Each partition is then
populated with an entry that is spaced equally apart from
adjacent partitions. For each of the remaining rows in set
D, the cost of placing that row in each of the partitions is
determined. The row is then placed in the partition with
the least cost (viz. Eqn. 1) subject to the equi-partition
constraint. If a cluster is full, then the row is placed in the
next available cluster with the lowest cost.

4. EVALUATION
To evaluate the efficiency and performance of the pro-

posed compressed formats, we implemented the sparse ma-
trix multiplication kernels using the CUDA 5.0 SDK [19]
from Nvidia, and measured their run time on different data

Table 1: Specifications of the Nvidia GPUs used in
evaluation study.

Specifications Tesla C2070 GTX680 Tesla K20

Compute capability 2.0 3.0 3.5
Cores 448 1536 2496

Mem. BW (GB/s) 144 192.3 208
DP perf. (GFlop/s) 515 129 1170

sets. In our experiments, we are only concerned with the
execution time of the kernels and did not take into account
the time taken to transfer the data between host memory
and the GPU device memory. For our implementation, the
parameter h is mapped to the thread block size in a kernel
and is currently set to 256, which is also the default size
used in [5]. Access to the x input vector is enabled with the
help of texture cache.

4.1 Experimental Setup
The SpMV kernels are tested on two GPUs from Nvidia

as listed in Table 1. These GPUs were chosen for their dif-
ferent bandwidths and double precision (DP) performance.
The first GPU, Tesla C2070, is based on the Fermi ar-
chitecture, whereas the GeForce GTX680 and Tesla K20
GPUs are based on the newer Kepler architecture. The rel-
evant specifications such as the compute capability1 and the
number of cores of each GPU are also listed in the table.
Tesla C2070 contains 448 cores which are organized into 14
Streaming Multiprocessors (SM) of 32 cores each. On the
other hand, the cores in GeForce GTX680 and Tesla K20 are
organized into Next-generation Streaming Multiprocessors
(SMX), with each containing 192 cores. The peak memory
bandwidth of GeForce GTX680 at 192 GB/s is greater than
that of the Tesla C2070 at 144 GB/s. However, the peak
double precision performance of the Tesla C2070 is about 4
times that of the GTX680. Of the three GPUs, Tesla K20
has the highest double precision performance, which is about
2 times that of Tesla C2070, as well as the highest peak
memory bandwidth. The measured bandwidths achievable
on Tesla C2070, GeForce GTX680, and Tesla K20 are ∼114
GB/s, ∼149 GB/s and 159 GB/s, respectively.

4.2 Experiment Results

4.2.1 SpMV kernel performance analysis
First, we evaluated the performance of the BRO-ELL

SpMV kernel to analyze its scalability. In general, the ac-
tual SpMV performance depends not only on the amount of
memory traffic, but also on the data access patterns of the
input vector x. A highly random access to x has low spatial
and temporal locality and will cause frequent texture cache
misses. To properly evaluate the performance of our ker-
nel as the amount of compression changes, a dense matrix
was used in this experiment in order to avoid variations in
performance due to cache effects when reading the x vector.
To simulate different compression ratios, the number of bits
allocated to each index value of a non-zero entry was varied.

Figure 3 shows the performance of the kernel in terms of

1This term is used by Nvidia to designate version numbers
for different hardware architectures. See Appendix F of the
CUDA programming guide [19] for a comparison table of the
features of different compute capabilities.
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Figure 3: Performance of the BRO-ELL SpMV ker-
nel when the amount of space savings is varied.

billions of floating point operations per second (GFlop/s).
The horizontal axis denotes the space savings (η) of the in-
dex data due to compression. We define space savings as
1−C/O, where C is the compressed size of the index array
and O is its original size. Higher space savings results in
greater reduction in memory traffic. Compression ratio (κ)
is related to space savings by the expression, κ = 1/(1− η).
A higher compression ratio leads to greater space savings.

The graphs in Fig. 3 show that in practice, the perfor-
mance of the kernel scales linearly with the amount of space
savings achieved. A higher performance can be achieved
with a larger amount of space savings (i.e. when compres-
sion ratio is high). A higher compression ratio means that
on average, the number of bits allocated to each index is
small, and thus the frequency of memory requests is de-
creased proportionately. Consequently, the total amount of
bytes transferred from global memory is reduced, thereby
leading to improved performance. In addition, we can see
that the performance from the Tesla K20 GPU is consis-
tently above that of both GeForce GTX680 and Tesla C2070.
This is to be expected since sparse matrix-vector multipli-
cation is essentially a memory bandwidth-limited operation,
and the pin bandwidth of Tesla K20 is the highest among
all the three GPUs.

In the figure, the performance achieved by the ELLPACK
format on each of the GPUs is also annotated on each of
the lines. Because of the overheads associated with the de-
compression phase, the figure shows that space savings of at
least 17%, 9% and 23% (corresponding to compression ratios
of 1.2×, 1.1× and 1.3×) are required to achieve performance
gains over ELLPACK.

4.2.2 Benchmarking matrices
A total of thirty real-world matrices listed in Table 2 are

used for the subsequent experiments. Many of these matri-
ces were also used in [4, 16, 26] and can be obtained from the
University of Florida collection [7]. Note that there was no
attempt to select matrices with a particular structure. For
each matrix, its dimension, the total number of non-zeros
(nnz), the average non-zeros per row (µ) and its standard
deviation (σ) are given in the table. The matrices are di-
vided into two sets. The first set contains sixteen matrices
which can be represented in the BRO-ELL format. The sec-
ond set contains the remaining matrices which cannot be
represented using a BRO-ELL-only format because of large

Table 2: Overview of the sparse matrices used in
the evaluation study. Total number of non-zeros
(nnz), average (µ) and standard deviation (σ) of row
lengths are shown.

Matrix Dimensions nnz µ σ

Test Set 1

cage12 130k × 130k 2032536 15.6 4.7
cant 62k × 62k 4007383 64.2 14.1
consph 83k × 83k 6010480 72.1 19.1
e40r5000 17k × 17k 553956 32.1 15.5
epb3 85k × 85k 463625 5.5 0.5
lhr71 70k × 70k 1528092 21.7 26.3
mc2depi 526k × 526k 2100225 4.0 0.1
pdb1HYS 36k × 36k 4344765 119.3 31.9
qcd5 4 49k × 49k 1916928 39.0 0.0
rim 23k × 23k 1014951 45.0 26.6
rma10 47k × 47k 2374001 50.7 27.8
shipsec1 141k × 141k 7813404 55.5 11.1
stomach 213k × 213k 3021648 14.2 5.9
torso3 259k × 259k 4429042 17.1 4.4
venkat01 62k × 62k 1717792 27.5 2.3
xenon2 157k × 157k 3866688 24.6 4.1

Test Set 2

bcsstk32 45k × 45k 2014701 45.2 15.5
cop20k A 121k × 121k 2624331 21.7 13.8
ct20stif 52k × 52k 2698463 51.6 17.0
gupta2 62k × 62k 4248286 68.5 356
hvdc2 190k × 190k 1347273 7.1 3.8
mac econ( fwd500) 207k × 207k 1273389 6.2 4.4
ohne2 181k × 181k 11063545 61.0 21.1
pwtk 218k × 218k 11634424 53.4 4.7
rail4284 4.3k × 109k 11279748 2633 4209
rajat30 644k × 644k 6175377 9.6 785
scircuit 171k × 171k 958936 5.6 4.4
sme3Da 13k × 13k 874887 70.0 34.9
twotone 121k × 121k 1224224 10.1 15.0
webbase-1M 1M × 1M 3105536 3.1 25.3

Table 3: Space savings (η) achieved in compressing
the index data in BRO-ELL matrices.

Matrix η (%) Matrix η (%)

cage12 78.0% qcd5 4 87.7%
cant 85.9% rim 92.7%
consph 85.3% rma10 90.8%
e40r5000 92.5% shipsec1 92.9%
epb3 83.2% stomach 70.7%
lhr71 92.1% torso3 75.9%
mc2depi 50.7% venkat01 90.2%
pdb1hys 89.2% xenon2 74.0%

variations in row lengths, but instead can be represented
using the BRO-HYB format.

4.2.3 Performance benchmarks
The performance of BRO-ELL SpMV was measured using

a variety of real-world matrices from Test Set 1. Note that
this set of matrices can be entirely represented using the
BRO-ELL-only format. Table 3 shows the amount of space
savings (in percentage) that is achieved by the index data of
each matrix after compression. Figure 4 shows the results
of the experiment comparing the performance of BRO-ELL
to ELLPACK for all GPUs. For the sake of comparison, we
also included the state-of-the-art ELLPACK-R format.
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Figure 4: Performance comparison of BRO-ELL to
ELLPACK and ELLPACK-R.

In general, we obtained 1.2× to 2.1× speedup over ELL-
PACK for the collection of sparse matrices tested. On aver-
age, a speedup of 1.5× relative to the ELLPACK format was
achieved on Tesla C2070, with 1.6× and 1.4× on GTX680
and Tesla K20, respectively. As exemplified in the previ-
ous experiment in Section 4.2.1, we can see that in gen-
eral, real-world matrices whose index data is more compress-
ible result in better performance gains over ELLPACK. For
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Figure 5: A comparison of the effective arithmetic
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Figure 6: Memory bandwidth utilization by BRO-
ELL across different GPUs for the first six matrices.

instance, consph and stomach have similar uncompressed
performance on Tesla C2070. After compression, consph
achieved a speedup of about 1.7× compared to 1.2× for
stomach. The former matrix has a higher compression ratio,
and therefore greater space savings than the latter matrix.
Because the BRO-ELL format is a compressed extension of
ELLPACK, we also observed that matrices such as shipsec1
and venkat01 which have lower variances in their row lengths
generally perform better than those with larger variances
such as lhr71. Note that overall performance does not only
depend on the amount of storage savings alone. For real-
world matrices, other factors such as the distribution of the
non-zeros in the matrix also play a part by affecting the per-
formance of the texture cache during reading of the x vector.
Figure 4 also compares BRO-ELL against the state-of-the-
art ELLPACK-R format. On average, BRO-ELL performed
13% faster than ELLPACK-R, and on some matrices such as
consph, qcd5 4 and shipsec1, speedups of about 1.2× relative
to ELLPACK-R were registered.

We define the effective arithmetic intensity (EAI) as
F/B, where F is the number of floating-point operations per
second and B is the kernel memory throughput. In Fig. 5,
we display the EAI for both the ELLPACK and BRO-ELL
formats on Tesla K20. The comparison shows that BRO-
ELL achieved a higher EAI than ELLPACK. This is because
BRO-ELL has lower memory bandwidth requirements than
ELLPACK due to the compression scheme.

In Fig. 6, we plot and compare the DRAM bandwidth
utilization across the different GPUs for the first six matri-
ces. Generally, the BRO-ELL kernel scales with the memory
bandwidth of the underlying GPU architecture. However,
for the e40r5000 matrix denoted by dashed lines in the fig-
ure, a drop in bandwidth utilization on GTX680 was regis-
tered. In addition, the utilization on Tesla K20 was about
the same as on Tesla C2070 in spite of its higher theoretical
peak bandwidth. The reason for this is because e40r5000
does not have enough rows to keep the higher number of
cores on GTX680 and Tesla K20 sufficiently busy. This is
also the reason behind the smaller speedups obtained for
both the e40r5000 and rim matrices. Therefore, in order to
obtain a good performance for BRO-ELL, a matrix should
also have a large number of rows apart from having good
compressibility.

In the next experiment, the performance of BRO-COO is
evaluated and the results are shown in Fig. 7. All the ma-
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Figure 7: Performance comparison of BRO-COO to
COO.

trices in Table 2 were used for this evaluation. Since the
BRO-COO kernel is computationally more intensive than
BRO-ELL owing to the use of the parallel scan primitive,
as well an extra kernel invocation for data reduction, we
do not expect the average speedup in performance due to
compression to be as significant as that achieved by BRO-
ELL. As is expected, the results shown in Fig. 7 confirm our
hypothesis. We can also see from the figure that speedups
obtained on GTX680 and Tesla K20 are considerably less
than those obtained on Tesla C2070. For example, e40r5000,
epb3 and rim did not register any speedup on Tesla K20 un-
like on Tesla C2070. This disparity is attributed to archi-
tectural differences between the GPUs. The Kepler-based
GPUs have higher memory bandwidths as well as different
cache hierarchies with lower latencies compared to the Fermi
GPU. These advantages resulted in a higher COO base-
line performance on the newer architecture, whereas BRO-
COO is burdened by the additional need to decompress data
on-the-fly.

Next, since matrices in Test Set 2 cannot be efficiently
represented using a BRO-ELL-only format, we stored them
using BRO-HYB, which partitions each matrix into a BRO-
ELL and a BRO-COO component. We then compared the
performance of BRO-HYB with the HYB format. Note that
for the sake of fair comparison, the matrices are partitioned
in the same manner for both HYB and BRO-HYB formats.
Table 4 shows the fraction of matrix partitioned into BRO-
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Figure 8: Performance comparison of BRO-HYB to
HYB.

ELL, and the space savings (η) achieved by BRO-HYB.
Evaluation results for BRO-HYB on Tesla K20 are pre-

sented in Fig. 8. The results for Tesla C0270 and GTX680
are similar. Previously, we saw that BRO-ELL performed
better than BRO-COO, and in general, the more compress-
ible the matrix, the higher its SpMV performance. There-
fore, we can see from Fig. 8 that compressible matrices such
as bcsstk32 and pwtk where a large fraction of the matrix is
formatted using BRO-ELL achieved higher speedups than
other matrices such as rail4284 or rajat30 which are less
compressible and have lower BRO-ELL fractions. On av-
erage, a speedup of 1.6× relative to HYB was achieved on
Tesla C2070, with 1.3× and 1.4× on GTX680 and Tesla
K20, respectively.

4.2.4 Effects of BRO-aware reordering
We evaluated the BRO-aware reordering method (BAR)

proposed in Section 3.4 and compared them to reordering
methods that are not BRO-aware. Specifically, we compare
them with the Reverse Cuthill-Mckee (RCM) and approxi-
mate minimum degree (AMD) methods. For this study, the
matrices from Test Set 1 were first processed using Algo-
rithm 2 before being compressed using the BRO-ELL for-

Table 4: Partitioning of BRO-HYB matrices into
BRO-ELL+BRO-COO and the space savings (η)
achieved.

Matrix % BRO-ELL η (%)

bcsstk32 96.6% 60.4%
cop20k A 82.3% 46.7%
ct20stif 90.7% 55.9%
gupta2 50.0% 43.8%
hvdc2 86.9% 45.5%
mac econ 81.1% 51.6%
ohne2 96.5% 49.5%
pwtk 99.4% 78.7%
rail4284 0.85% 45.2%
rajat30 68.1% 34.5%
scircuit 78.2% 36.6%
sme3Da 83.6% 55.6%
twotone 61.8% 48.8%
webbase-1M 64.2% 13.4%
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Figure 9: Comparison of BRO-aware reordering to
non-BRO-aware RCM and AMD methods.

Table 5: Space savings (η) achieved after reordering
with BAR.

Matrix η (%) Matrix η (%)

cage12 81.1% qcd5 4 88.9%
cant 92.7% rim 96.0%
consph 91.7% rma10 94.9%
e40r5000 95.4% shipsec1 94.8%
epb3 83.2% stomach 82.3%
lhr71 95.7% torso3 83.6%
mc2depi 50.7% venkat01 92.3%
pdb1hys 90.8% xenon2 87.3%

mat. Figure 9 displays the reordering results and Table 5
lists the space savings achieved after reordering with the
BAR method. For the purpose of comparison, we also plot
in Fig. 9 the performance achieved by the ELLPACK and
BRO-ELL formats before matrix reordering. From the fig-
ure, we can see that reordering with BAR resulted in better
performance compared to RCM or AMD for majority of the
test matrices. On average, with matrix reordering using
BAR, we observed additional performance gains of 7% on
top of the original BRO-ELL performance. Compare this
with slowdowns of about 4% for RCM and AMD which are
not BRO-aware. In addition, additional space savings of 4%
on average were achieved using BAR compared to 1% reduc-
tion in space savings when using RCM or AMD. However,
the greedy search algorithm (Algorithm 2) may not always
return a good solution. For example in one instance (cant),
the performance of BAR fared worse than RCM and AMD.
This is because a limitation of our model as given in Eqn. (1)
is that it does not take into account temporal cache misses
that occur when accessing the x vector. Improvements to
the current model will be part of our future work. Never-
theless, we find that BRO-aware reordering is important in
the context of the BRO-ELL format, and usually performs
better than non-BRO-aware reordering.

5. RELATED WORK
Sparse Matrix Computation. A large body of work
has been published on SpMV computation on modern pro-
cessors [12, 17, 20, 24, 27]. However, many of the opti-
mization techniques developed for the CPU cannot be di-
rectly applied to the GPU due to differences in their ar-

chitectures. In particular, implementations for GPUs have
to take into account memory coalescing effects and avoid
warp divergence to achieve good performances. As such,
Baskaran et al. [2] implemented and optimized SpMV for
GPUs based on the Compressed Sparse Row (CSR) for-
mat. Their targeted platforms were GeForce 8800GTX and
GTX280. Bell and Garland [4] developed efficient implemen-
tations of SpMV computation for the COO, CSR and ELL-
PACK formats. They also designed a hybrid ELLPACK-
COO format known as HYB that gave the best performance
on the GeForce GTX285 for most of the unstructured ma-
trices benchmarked.

Vázquez et al. [23] introduced the ELLPACK-R format
which is a variant based on ELLPACK. It tries to improve
performance by reducing redundant computation and data
access through the use of an additional array that stores
the number of non-zeroes in each row of a matrix. The
Sliced-ELLPACK format by Monakov et al. [18] reduces re-
dundant computation and storage overhead by reordering
rows and partitioning the sparse matrix into slices contain-
ing rows of similar lengths. The length of each slice is stored
in another array. Their implementation also supports slices
with variable heights. Choi et al. [6] experimented with a
blocked ELLPACK format and performed model-based tun-
ing to achieve higher performance than ELLPACK. Su and
Keutzer [22] developed the clSpMV framework that tunes
and generates the best Cocktail representation, a format that
partitions a matrix into submatrices and uses the best rep-
resentation for each submatrix. Grewe and Lokhmotov [11]
developed a code generator that autotunes and generates
optimized SpMV kernels for several of the formats discussed
above.

Unlike previous works such as ELLPACK-R and Sliced-
ELLPACK which mainly focused on reducing redundant
computations, our approach differs in that effective
bit-representation-optimized compression schemes were de-
signed that result in performance improvement through the
reduction of memory traffic.

Compressed Formats. In relation to our work on sparse
matrix compression, a few papers have described compressed
representations that are designed to be efficient on modern
CPUs. Although blocked formats such as [13, 20, 25, 6,
10] can be considered to be compressed in the general sense
because only the block index needs to be kept for each dense
sub-block of the matrix, they still do not fully exploit the
redundancy in the index data, unlike the methods proposed
in [3, 16, 26].

In the work by Willcock and Lumsdaine [26], two lossless
compression methods for the CSR format were developed
to reduce the memory bandwidth required by large sparse
matrices. The first method is a hybrid delta and run-length
coding scheme that employs a set of six command codes to
encode the index data. The second method is an adaptive
approach that requires more compression time but performs
better. It is based on abstracting and merging groups of
interval lists of delta values from the index data. Speedups
of up to 30% were achieved using the adaptive method. In
another work, Kourtis et al. [16] similarly employed index
data compression, but at a coarser-grained level in order to
reduce branch mispredictions. Furthermore, they proposed
compressing the values data in addition to the index data.
Belgin et al. [3] presented a different approach based on iden-



tifying repeating block patterns in a matrix and replacing
them with indices to the corresponding bitmask pattern, and
achieved average speedups of 40%. These methods target
the CPU but are not suitable for the warp-execution model
on the GPU due to excessive branching, unlike our proposed
compressed formats.

Matrix reordering methods such as the Reverse Cuthill-
McKee [9] algorithm have been used to reduce the matrix
bandwidth and decrease the number of fill-ins when apply-
ing LU or Cholesky factorization. In Pinar and Heath [20],
matrix reordering was formulated as a traveling salesman
problem to reorder columns to increase the sizes of dense
blocks in a row. Monakov et al. [18] used a simple heuristic
to order a matrix such that rows with the same number of
non-zeros are close to one another. The blocked ELLPACK
format by Choi et al. [6] also employs a form of ordering in
order to reduce the amount padding required by that for-
mat. In contrast with these previous works, in this paper
a compression-aware matrix reordering is proposed and for-
mulated as a constrained data clustering problem.

6. CONCLUSION
We have investigated using compression to improve the

performance of sparse matrix-vector multiplication on mod-
ern GPUs. Although compression has been proposed to im-
prove SpMV performance on the CPU, its use on GPUs has
not been demonstrated previously. This is because many
of the compression and decompression schemes are serial
in nature, and require many branching conditions which
are not suitable for GPU architectures. In this work, we
have developed effcient bit-representation-optimized (BRO)
compression schemes which are suitable for computing the
SpMV on GPUs. Experiment results demonstrate that aver-
age speedups of 1.5× relative to ELLPACK and HYB can be
achieved with our proposed schemes. To further improve the
compression ratio, a BRO-aware matrix reordering scheme
was formulated as a data clustering problem and a heuris-
tic algorithm was proposed. Results show that on aver-
age, BRO-aware reordering performs better than non-BRO-
aware schemes. In future, other sources of performance im-
provement such as assigning multiple threads per row as well
as value data compression will be investigated.
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