
Sensitivity Analysis of a Superscalar Processor Model

Y. Zhu W. F. Wong

Department of Computer Science
School of Computing

National University of Singapore
3, Science Drive 2
Singapore 117543

Email: wongwf@comp.nus.edu.sg

Abstract

Superscalar processors obtain their performance by exploiting

instruction level parallelism in programs. Their performance is

therefore limited by characteristics of programs and the design

of the processor. Due to the complexity involved, estimating

the performance of any superscalar processor design is a diffi-

cult task. Quick prediction of performance improvement aris-

ing from architecture modifications is even more difficult. In

this paper, a model of superscalar processors using a network of

Multiple Class and Multiple Resource Queues is described and

studied. In this model, we are able to model and study instruc-

tion classes, instruction dependencies, the cache, the branch

unit, the decoder unit, the central instruction buffer, the func-

tional units, the retirement buffer, the retirement unit and in-

struction issue policy in an integrated manner. This model has

been verified against measured performance and has shown an

average error of 5%. From this starting point, we applied sen-

sitivity analysis on the model and studied qualitatively three

important classes of improvements one can make to a super-

scalar processor’s design. The insights we derived show how a

good model can be used to accurate pinpoint bottlenecks and

assign relative importance to them. This will in turn guide

development efforts.

Keywords: Superscalar processors, queuing theory

1 Introduction

Superscalar processing is the de-facto standard ar-
chitecture for commerical off-the-shelf microproces-
sor. It is by nature a complex scheme involving
dynamic instruction issue performed by hardware.
Modeling such processors is therefore also a com-
plex task. However the advantages of having a
good model for such processors is numerous. Such
a model can be used to design future processors as
well as a means to gain insight into applications and
their behavior under superscalar processing. Previ-
ous work on modeling this class of machines includes
those of Austin and Sohi [Austin and Sohi, 1992],
Copyright c©2002, Australian Computer Society, Inc. This paper
appeared at the Seventh Asia-Pacific Computer Systems Archi-
tecture Conference (ACSAC’2002), Melbourne, Australia. Con-
ferences in Research and Practice in Information Technology, Vol.
6. Feipei Lai and John Morris, Eds. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

Lam and Wilson [Lam and Wilson, 1992], and Dubey
et al [Dubey et al,. 1994] which are based on
probability theory. These studies are gener-
ally experimental studies which attempt to ob-
tain performance by simulation. Noonberg and
Shen [Noonberg and Shen, 1994] proposed the use of
probability vectors as a modeling tool. However, none
of the above use queuing theory in their modeling.
In our earlier work[Zhu and Wong, 1997], a queuing
model was proposed for modeling superscalar proces-
sors based on a network of multiple class and mul-
tiple resource (MCMR) queues. In this theoretical
model, a trace from a benchmark is analyzed only
once to compute its instruction dependencies, classi-
fications and distributions of instruction. These fea-
tures essentially form an abstraction for the char-
acteristics of the trace. Each processor specifica-
tion is then analyzed by modeling the fetch unit,
branch unit, central window, functional units and re-
tirement unit as the resource set. In another work
of ours[Zhu and Wong, 1998], instruction dependency
and saturation states, i.e. situations where certain re-
quests for resources have to be blocked, were consid-
ered. The accuracy of the model was verified against a
cycle-by-cycle simulator. In this paper, we extend our
previous works by studying three classes architecture
modifications through sensitivity analysis. This cur-
rent paper provides the detailed analysis of the results
given in a shorter paper [Zhu and Wong, 2000]. This
allows us to gain qualitative insight into the sensitiv-
ity of performance improvement with respect to these
architecture changes thereby assessing the merits of
these changes. Further, we believe a detailed exposi-
tion of the techniques we used allows for application
of these same technique to other classes of architec-
tures, such as EPIC [Schlansker and Rau, 1999].

Section 2 describes a general superscalar processor
architecture that is modeled. Section 3 describes the
architectural improvements that we studied. Section
4 states our MCMR model and shows its correspon-
dence with the general superscalar architecture. Sec-
tion 5 gives some analytical results of our model in
particular with considerations on instruction depen-
dency and saturation states. The verification of our
model is described in Section 6. Section 7 gives sensi-
tivity analysis and our main results. This is followed
by a conclusion.

Central Window

Fetch Unit &
Inst. cache

Decoder Unit
Branch

pred ctrl

Load
Store

X Int.
ALUs

X FP.
Units

Branch
Unit

Data
Cache

Retirement
Unit

Result Bus

Figure 1: A Generic Superscalar Processor

2 Generic Superscalar Architecture and
Common Modification

Early RISC processors relied on their compilers to
order instructions so as to avoid pipeline conflicts.
Superscalar processors use hardware to dynamically
perform instruction reordering and instruction level
parallelism are exploited further by executing instruc-
tions out of program order.

Fig. 1 shows the generic superscalar processor
modeled in this paper. In many ways, it is similar to
most of the current generation of superscalar proces-
sors such as the HP PA-8000, the Sun UltraSPARC,
the MIPS R10000 and the DEC Alpha21164. The
elements of the model are as follows.

The fetch unit working with the instruction cache
feeds the processor with instructions. The decode unit
consists of an instruction decoder, a branch prediction
unit and reorder buffer with a register file. The re-
order buffer is maintained as a first-in-first-out queue.
Each entry in the reorder buffer is made up of a tag,
the destination register number, the result and a valid
bit. The reorder buffer preserves the program or-
der as well as supports register renaming. As their
names imply, the branch prediction unit is used to
perform branch prediction while the decoder decodes
instructions. In the central instruction window, in-
structions are queued up for issue. An instruction
is ready for issue if (a) its inputs are available, (b)
its destination register is available, and (c) a func-
tional unit is available to execute it. The functional
units of a superscalar processor are similar to those
of earlier generation RISC processors. These are the
branch unit, the load/store unit, the data cache and a
number of computational units. These units execute
instructions of the corresponding classes. The retire-
ment unit updates the architectural registers with the
computed results from the rename registers and re-
moves entries associated with executed instructions
from the reorder buffer in program order.

3 Common Architecture Modifications

In this paper, we studied the following three cate-
gories of common architectural modifications:

1. Mechanisms to reduce dependencies. Several
mechanisms have been implemented to reduce
the effect of instruction dependency on issue and
retirement rates. Register renaming reduces anti
and output instruction dependencies while in-
order issue ensures antidependencies never occur.
Some more aggressive mechanisms such as specu-
lation execution have been proposed. These will
not consider them in our study.

2. Techniques to enhance the effectiveness of the in-
struction and data caches. Highly associativity
caches coupled with branch prediction are used
to lower the instruction cache miss ratio. These
increase the probability of finding the instruc-
tions following (correctly predicted) branches in
the instruction cache. However, the cache miss
penalty is not reduced. For the data cache, data
prefetching schemes decrease the miss ratio by
loading data needed in advance. Again, the cache
miss penalty is not reduced. Current superscalar
processors often work with cache whose small line
size trades off miss ratio for lower hit latency and
miss penalty.

3. Improvements to the functional units. To re-
duce the waiting time for instructions ready to
be issued, one may either increase the number of
functional units or reduce the number of pipeline
stages of functional units.

4 The MCMR Model

A multiple-class multiple-resource (MCMR) system
is a queuing system where there are several classes
of customers, each to be serviced by a particu-
lar set of resources. There have been a number
of studies on MCMR systems. Assuming a sim-
ple distribution for the arrival process, Lazowka et.
al. [Lazowska et al., 1984] described a simple method
to estimate a MCMR system’s performance. Some
steady state solutions were also reported in works by
Matta and Shankar [Matta and Shankar, 1995] and
Jain [Jain, 1991]. To model the superscalar proces-
sor described above, we used a network of MCMR
systems shown in Fig. 2.

In our MCMR model of a superscalar processor,
instructions are modeled as customers which belong
to one of several classes. The various functional com-
ponents of the processors are the resources. Let R
be a set of resources and C a set of customer classes.
Each class in C represents a class of customers that re-
quires a particular set of resources. Specifically, each
class c, c ∈ C, its members require some set, Rc, of
resources, Rc ⊆ R. Furthermore, a class c customer
requires a number of units, denoted by reqc(r), of each
resource, r ∈ Rc. The set of customers who request

Multiple Class Cust.

Multiple Class Cust.
(Inst.s)

Multiple Class Cust.

Multiple Class Cust.

Multiple Class Cust.

M
u

lt
ip

le
 R

es
o

u
rc

e
I

(B
ra

n
ch

 U
n

it
)

Single Resouce
(Fetch Unit)

Single Resouce
(Decode Unit)

M
u

lt
ip

le
 R

es
o

u
rc

e
II

(L
o

ad
/S

to
re

)

M
u

lt
ip

le
 R

es
co

u
rc

e
III

 (
X

 In
t

A
L

U
s)

M
u

lt
ip

le
 R

es
o

u
rc

e
IV

(X

 F
P

 U
n

it
s)

Single

Resource
(Retirement

Unit)

Single Resource (Central
Window) MCMR

Model V

MCMR
Model III

MCMR
Model II

MCMR
Model I

MCMR
Model IV

Figure 2: A Network MCMR Queuing Model of A
Superscalar Processor

resource r is denoted Cr. In our model, each instruc-
tion belongs to exactly one customer class and before
a member of an instruction class can be executed, a
number of functional units have to be acquired. An
arriving class c customer is blocked at a resource r
if and only if reqc(r) exceeds the amount of the re-
source that is currently available. An arriving class c
customer is blocked if and only if it is blocked at any
r.

The stages of a superscalar pipeline are modeled as
separate MCMR queuing models with different num-
bers of resources and classes as well as arrival and
departure rates of customers. The instruction fetch
stage and the branch and decode stage are modeled
as MCMR queues (Model I and II of Fig. 2 respec-
tively) which have multiple customer classes and a
single resource. The customer classes correspond to
the different instruction classes. The single resource
represents the fetch unit and the branch and decode
unit collectively. The process of an instruction leav-
ing the branch and decode unit is modeled by another
MCMR component (Model III). The process of in-
structions leaving the central window for functional
units for execution is modeled by yet another MCMR
component (Model IV). Here, the functional units are
the resources. Every instruction needs only one func-
tional units. At the retirement stage, a MCMR queue
models the retirement unit (Model V) as the single
resource.

Some general analytical measures for the MCMR
model were derived by Jain [Jain, 1991] and La-
zowska [Lazowska et al., 1984]. However, these re-
sults assume sufficient capacity. This may not be true
for the central instruction window or retirement unit.
In the next section, we will give a different set of
equations for throughput and queue length. These
measures are the processing capacity, the utilization,
the residence time, and the queue length. Details of
the derivation are shown in appendix.

5 Analysis of Instruction Dependencies and
Saturation States

We shall now analyze the effect of instruction depen-
dencies on the central window, the retirement unit
and the decoder. Let P be a benchmark program and
P(I) be the execution trace obtained by executing P
with input I. Let u, v ∈ P(I) be two instructions
of P that are found in the execution trace of P on
input I. We use u D−→ v, read as ‘v depends on u
with a distance of D instructions’, to represent the
relationship between u and v satisfying the following
conditions:

1. v is either flow, anti or output dependent on u;

2. there are exactly D instructions in P(I) (exclu-
sive) between u and v, and

3. if u D−→ v, then there is no w ∈ P(I) such that

w
D′−→ v and D′ < D.

v is the current instruction (or simply the instruc-
tion), while u is called its antecedent. To further indi-
cate the exact type of dependency involved, we shall
use u

D−→f v, u D−→a v and u
D−→o v to represent

flow, anti and output dependencies, respectively. On
the other hand, we write u −→/ v to mean that v does
not depend on u. D in Table 1 is the average depen-
dency interval, i.e. the average of all D’s in all of the
dependencies of P(I).

For all u, v ∈ P(I), u D−→ v, P dep designates

the possibility that ∃w ∈ P(I), w D−→ u. For in-
order processors, only flow and output dependencies
are considered. For out-of-order issue, P dep is com-
puted using all the flow dependencies, plus some1 out-
put and anti dependencies. Let Tdep be the average
time for an antecedent instruction to pass through the
functional units and forward its results to the reorder
buffer and central window and is given by

Tdep = (1 + Pdep)×
∑

i∈Units

(ti × Si + 1) (1)

where ti is the average time for an antecedent in-
struction to pass through a functional unit i, i.e. the
functional unit’s latency, and therefore is the num-
ber of pipeline stages of a functional unit, except for
load/store unit. For the latter’s ti, the data cache
miss penalty and hit rate (typically 90%) needs to
be considered. Si is the fraction of all instructions
executed by functional unit i. Competition between
instructions arriving at the same functional unit can
also increase ti.

5.1 Analysis of the Central Window

In our model, the central window works as the in-
struction buffer. Instructions stay in the central win-
dow after they are decoded until they are issued.

1Since we know nothing about how much output dependencies

are actually eliminated by register renaming, we used an arbitrary

value of 50% to characterize imperfect register renaming.

Benchmark go compress m88ksim applu fpppp
IEU1 42.7% 46.3 % 42.7 % 20.7 % 21.7 %
IEU2 12.8% 5.1% 12.9 % 3.8 % 1.0 %
FPU1 0.0% 0.3% 0.0 % 3.9 % 0.1 %
FPU2 0.1% 0.6 % 0.0 % 20.2% 20.0 %
FPU3 0.0% 0.0 % 0.0 % 4.0 % 2.8 %
BRU 15.9% 6.1% 19.6 % 2.7 % 1.0 %
LSU 28.5% 41.5% 23.8 % 48.2% 53.4 %
PDU 100.0% 100.0% 100.0% 100.0% 100%
D 1.9 1.9 1.8 2.1 2.0
Ibr 5.3 15.4 5.4 36.0 99.0
P dep 0.4 0.4 0.4 0.2 0.4
Tdep 3.0 2.7 3.2 3.4 3.8
p 0.21 0.19 0.19 0.22 0.24
q 0.63 0.72 0.72 0.66 0.75

Tot. Inst. 17,959,093,034 7,518,280 595,293,999 19,744,107,711 2,705,422,029

Table 1: Parameters of the benchmarks used in our analysis.

Some instructions are discarded because of incor-
rect branch prediction. In addition to instruction
cache misses, the decoding rate also suffers from these
mispredictions. We derive our set of formulas from
Pyun’s [Pyun et al., 1998] work.

For in-order issue policy, Inp, the issue rate of the
central window with perfect branch prediction is as
follows.

Inp =
N∑
k=1

ρk(I0, I1, ..., IW−1)× k

where ρk denotes the probability that k instructions
are issued from the window of size W . N is the num-
ber of functional units.

Inp can also be expressed as

Inp =

N∑
k=1

pk(k−1)/2 ×
N∑
j=k

(
N
j

)
qj(1− q)N−j × k

where p represents the probability that the first in-
struction I0 and i-th instruction Ii in the window are
independent. q is the probability that an instruction
in the window to be issued to an functional unit. Both
p and q are assumed to be constant. Our formulas are
simplifications of those found in Pyun et al.’s paper
and the interested reader should refer to the original
paper for insights into these formulas. The average
issue rate is none other than q for a instruction win-
dow size of 1. The average value of issue rates at each
position of the window is p.

We found that p and q varies significantly across
the SPEC95 benchmarks running on SPARC proces-
sors though the two parameters can be measured eas-
ily. For our MCMR model, we have a separate p and
q, represented by pi and qi for each instruction class
i. Similarly, we define Ni as the number of functional
units or resources that an instruction of class i can be
issued to. Hence, Inp is re-defined as follows:

Inp =
∑
i

N∑
k=1

pi
k(k−1)/2×

Ni∑
j=k

(
Ni
j

)
qji (1−q)Ni−j×k (2)

After taking into consideration branching, we get
the following expression for the average issue rate at
the central window:

µwin = [1− (Br. prob.×Mispred.× Br. Penalty)]× Inp (3)

For a out-of-order processor, the instruction issue
process can keep on searching for instructions after
encountering an instruction involved in dependencies.
By assuming that the pairs of instructions involved in
dependencies are independent of one another, we have

ρk(I0, I1, ..., IW−1) = Pk(I0, I1, ..., IW−1)× Ppipe(k)

where

Pk(I0, I1, ..., IW−1) = Pk−1(I0, I1, ...IW−2)

×P (IW−1) + Pk(I0, I1, ..., IW−2)

×(1− P (IW−1)) (4)

and

Ppipe(k) =
N∑
j=k

(
N
j

)
qj(1− q)N−j

where P (Ik) denotes the probability that instruction
Ik is independent of its preceding instructions. This
then allows us to compute Inp and µwin.

5.2 Analysis of the Retirement Unit

Let Wret denote retire width, i.e. the maximum num-
ber of instructions that can be retired in one cycle.
The decoding rate decreases with increasing cache
misses and branch mispredictions as instruction de-
pendencies limit the retirement rate. Let’s take the
example of Wret = 4, and let the top four instructions
at the retirement unit be u1, u2, u3, u4 say. These are
grouped together for retirement provided there is no
dependency between them. In general, if D < Wret,
dependencies will degrade the retire rate significantly.

For example, suppose u1
D−→ u4 where u1 is a float-

ing point instruction that finishes in 3 cycles and no

other dependencies exist among u1, ..., u3. The to-
tal time for retiring u1, ..., u4 is 4 cycles. However,
there is a possibility of retiring more than 4 instruc-
tions during the 4 cycles since u5, ..., u7 can be retired
together with u1, ..., u4 as long as they are not depen-
dent on each other. The maximum retirement rate
for u1, ..., u7 is therefore 7/4 instructions per cycle.

The above example illustrates how we can approx-
imate the retirement rate by using mean value anal-
ysis. With D and Tdep, the time to retire 2 × D in-
structions is 1 + Tdep cycle when D < Wret. There-
fore, for D < Wret, the average retirement rate of
the retirement unit, where an in-order retire policy is
implemented, is

µret = (2×D)/(1 + Tdep) (5)

For D ≥ Wret, the average retirement rate degra-

dation is not significant. For example, for u1
D−→ u6,

where u1 is a floating point instruction requiring three
cycles and Wret = 4, u1, ..., u4 are retired in cycle one,
and u5 is retired in cycle two. u6 has to remain in the
retirement unit until the fourth cycle when instruc-
tions u6, ..., u9 are retired together. Thus, 4 cycles are
spent to retire 9 instructions. In fact, instead of u6

which is dependent on u1, the situation would be the
same for any of u5, ..., u7, i.e. for D ranging from 4
to 7. In summary, for Wret ≤ D < Tdep ×Wret and
an in-order retire policy,

µret = (2 +D)/(1 + Tdep) (6)

If D ≥Wret and D ≥ Tdep×Wret, v does not need
to wait for u which would have finished before v can
be retired even if the policy is in-order retire policy.
Therefore, the retirement rate is just the maximum
retirement rate of Wret instructions per cycle. Note
that µwin is usually greater than Wret when a out-of-
order issue policy is adopted.

5.3 Analysis of Decoder Unit

In the decoder unit, branch misprediction plays a role
similar to that of instruction dependencies in instruc-
tion issue. Let Wdec denote the decode width, i.e.
the maximum number of instructions that can be de-
coded in one cycle. Let Ibr be the average number
of (non-branch) instructions between two branch in-
structions (inclusive of one of them), Tbr be the mis-
prediction penalty time (the time taken to fetch and
decode the correct instructions), Pins,miss be the in-
struction cache hit ratio, and Tins,p be the instruction
cache miss penalty. Again, let us start with an exam-
ple. Suppose u1 is a branch instruction and uIbr+1 is
the immediately following branch instruction. If u1 is
mispredicted, the instructions following u1 have to be
re-fetched and re-decoded. Let Tbr be the total time
required for the instruction cache to reload as well as
for the fetch and decode units to fill their pipelines
again. If Pprtd is the probability of a correct branch
prediction, then the average time to decode a branch

and its following instructions is

1× Pprtd + (1 + Tbr)× (1− Pprtd) (7)

When instruction cache misses are also taken into
consideration, the above equation is changed to

Pprtd +(1+Tbr)× (1−Pprtd)+Ndec×Tins,p× (1−Pins,miss)
(8)

where Ndec, the number of instructions decoded dur-
ing the above time, is a function of Ibr. If Ibr < Wdec

and the second branch instruction uIbr+1 is mispre-
dicted, then only Ibr instructions are decoded during
the period. Otherwise, if uIbr+1 is predicted correctly,
Wdec instructions can be decoded. Therefore, the av-
erage decoding rate without overflow of the central
window, µdec,n, is

µdec,n =
C1

C2 + C3 × Tins,p × Pins,miss
(9)

where C1 denotes Ibr × (1 − Pprtd) + Wdec × Pprtd,
C2 denotes 1×Pprtd + (1 + Tbr)× (1−Pprtd) and C3

denotes [Ibr×(1−Pprtd)+Wdec×Pprtd]. Further anal-
ysis of the decoder, including different expressions for
µdec,n under different circumstances, can be found in
appendix.

Using bottleneck analysis, we approximate the
overall throughput, measured in instructions per cy-
cle, by

min{µdec,n, µwin, µret} (10)

5.4 Out-of-order Issue with Large Reserva-
tion Stations

Out-of-order issue may increase the overall perfor-
mance substantially in some circumstances. The con-
ditions are as follows:

1. Once the queues at the reservation stations are
of enough length, the dependencies among the
instructions in the queues could be resolved be-
fore the instructions are issued to the functional
units. This is possible when there is sufficient
capacity at the reservation stations.

2. To sustain a high issue rate, out-of-order issue
should be used.

3. An issue width greater than 4 requires a high
issue rate and also puts pressure on the caches.
Therefore matching performance is expected of
the caches.

4. Functional units should be complex yet fast so
that the reservation stations do not overflow of-
ten.

Once these conditions are met, the retirement unit
will no longer be the bottleneck even if out-of-order is-
sue policy is implemented. This is because the depen-
dencies are already resolved before the instructions
are issued to the functional units as these instruc-
tions generally will wait for a substantial amount of

time in the longer queues. The overall performance
is therefore

min{µdec,n, µwin} = µdec,n (11)

The cost is larger capacity at the reservation stations.
This added capacity is not necessarily for in-order is-
sue or out-of-order issue with in-order retirement. In
addition some mechanisms have to be implemented
to handle overflow at the reservation stations.

If any of the above conditions is not satisfied, some
instructions may be issued into functional unit be-
fore anti and output dependencies involving these in-
structions are resolved. Accordingly, they must wait
for the previous instructions to finish at the retire-
ment unit. In this case, the overall performance is
min{µdec,n, µwin, µret}.

6 Model Verifications

Five benchmarks from the SPEC95 suite, namely
099.go, 124.m88ksim, 120.compress, 110.applu
and 145.fpppp were used to verify the model. Pa-
rameters for our model were obtained via a cycle-
by-cycle simulator[Loh, 1997]. This simulator, con-
figured as an UltraSPARC, has been tested with the
SPEC92 suite, and a strong sample coefficient of de-
termination2 of more than 0.91 has been observed be-
tween simulated cycle numbers and the actual execu-
tion time. In addition to processing the traces, the
simulator also collected various parameters needed by
the model. These are shown in Fig. 1.

The processor’s components mentioned in Fig. 1
are two 64 bit integer ALUs (IEU 1 & 2), a floating-
point divider/square root unit (FPU 1), a floating-
point adder (FPU 2), a floating-point multiplier (FPU
3), a branch unit (BRU), a load and store unit (LSU)
and a fetch and decode unit (PDU). Note that on the
SPARC processor, all instructions must pass through
the PDU.

For an in-order issue UltraSPARC, we measured
the actual throughput (in instructions per cycle) for
the SPEC95 benchmarks. The actual throughput for
each benchmark is obtained by running and timing
the benchmarks and then dividng the elapsed time
by the number of instructions executed as reported
by the simulator. The measured performance is then
compared with our model’s predictions and shown in
Table 2. On average, a relative error of about 5.08%
was achieved. This, we believe, demonstrated the ac-
curacy of our model.

7 Sensitivity Analysis and Results

Confident that we have a good model, we now turn to
using the model to produce qualitative insights into
the working of superscalar processors. We achieve
this by performing a sensitivity analysis to determine

2This is the square of the sample correlation coefficient. The

sample correlation coefficient is a number between zero and one

that measures the degree to which two variables are linearly related

with zero signifying “no relationship”.

how performance is affected by the architectural mod-
ifications mentioned in section 3.

7.1 Performance Sensitivity to Dependency
Reduction

The probability of the existence of a dependency3,
Pdep does not affect the decoding rate. However,
it does affect µret. The performance sensitivity to
dependency reduction is accordingly defined as the
derivative of µret with respect to Pdep: ∂µret

∂Pdep
. The fol-

lowing expressions can be obtained from Eq. 1, Eq. 5
and Eq. 9 by noting that ∂Tdep

∂Pdep
= 1, ∂µret

∂Pdep
= ∂µret

∂Tdep
.

∂µret

∂Tdep
=

∂µret

∂Pdep
=

(2 +D)(1 +
∑
i∈Units ti × Si)

(1 + Tdep)2

(12)
when D < Wret and

∂µret

∂Tdep
=

∂µret

∂Pdep
=

(2D)(1 +
∑
i∈Units ti × Si)

(1 + Tdep)2
(13)

when D ≥Wret.
Given a processor, the ti’s are fixed. Therefore

for two programs with similar instruction mix (i.e.
similar Si), performance is determined by Pdep which
affects both Tdep and D.

From another perspective, we can say that per-
formance is very sensitive to dependency reduction.
Perfect register renaming eliminates all anti and out-
put dependencies. Thus, D reduces to Df , average
flow dependency interval. Meanwhile, Pdep decreases
to Pflow, the probability of flow dependency. Due to
these two effects, we conclude that mechanisms to re-
duce dependencies, such as register renaming, is the
most effective means of improving performance.

Though there is no expression for p directly in
terms of Pdep, we may assume that both p and Pdep

are equally sensitive to dependency variation. Then
the sensitivity of µwin to p is comparable with the
sensitivity of µret to Pdep. The sensitivity of µwin to
p can be obtained from ∂µwin

∂p where µwin is obtained
from Eq.3.

There is no general expression for since according
to Eq. 2 ∂µwin

∂p as Ni is different for different instruc-
tion classes. For example, the following we get two
different expressions for the sensitivities of floating
point instructions and integer instructions with re-
spect to pi, assuming in-order-issue.

[1−(Br. prob.×Mispred.×Br. Pen.)]×[6q2
i (1−q)+2q3

i +9p2
i q

3
i]

(14)
where i = FP units, and

[1− (Br. prob.×Mispred.× Br. Pen.)]× 2q2
i (15)

for i = Integer units.
3Pdep encountered earlier is the average value of Pdep.

Benchmark go compress m88ksim applu fpppp
Thr. (measured) 0.74 0.92 0.89 0.88 0.82

Thr. (model) 0.81 0.89 0.93 0.92 0.79
Thr. (rel. err.) 9.46% -3.26% 4.49% 4.54% -3.66%

bottleneck Window Decoder Window Window Retire

Table 2: Measured and Analytical Throughput for an in-order issue UltraSPARC

7.2 Performance Sensitivity to Improve-
ments in the Caches

Since the miss ratio and the miss penalty are the
main metrics of any cache systems, the performance
sensitivity to improvements in the data cache is ex-
pressed as derivatives of µret with respect to Pdat,miss

and Tdat,p. Let us first consider the situation when
µdec ≥ min{µwin, µret}. We have

∂µret

∂Tdat,p
=
∂µret

∂Tdep

∂Tdep

∂Tdat,p
(16)

where ∂µret
∂Tdep

is shown in Eq. 12 and Eq. 13, and

∂Tdep

∂Tdat,p
= SiPdat,miss + SiP depPdat,miss (17)

where i denotes the load/store unit. ∂Tdep
∂Tdat,p

is usu-
ally less than 1 in a typical processor. Therefore,
∂µret
∂Tdat,p

< ∂µret
∂Pdep

in most cases. In other words, per-
formance improvement is less sensitive to data cache
miss penalty reduction than dependency reduction.

Similar for Tdat,p, we have

∂µret

∂Pdat,miss
=
∂µret

∂Tdep

∂Tdep

∂Pdat,miss
(18)

∂Tdep

∂Pdat,miss
= (1 + Pdep)Si(Tdat,p − 1) (19)

When the miss penalty is high, performance improve-
ment will be more sensitive to miss penalty reduction
than dependency reduction as

∂Tdep
∂Pdat,miss

> 1 in this
case.

When µdec ≤ min{µwin, µret}, performance im-
provement is sensitive to the instruction cache miss
ratio, Pins,miss and miss penalty, Tins,p. For different
expressions of Ibr, we obtained different derivatives of
µdec,n with respect to Pins,miss from Eq. 9, Eq. 24 and
Eq. 25 respectively. It should be noted that the over-
all performance is sensitive to Pins,miss in these cir-
cumstances resulting in µdec ≤ min{µwin, µret}. This
occurs when branch instructions account for a large
proportion of the instruction mix. This is also the
case in out-of-order issue with big reservation sta-
tions.

We have

∂µdec,n

∂Pins,miss
= − C1

C2/C3 + Tins,pPins,miss
(20)

from Eq. 9,

∂µdec,n

∂Pins,miss
= − C4

C5/C6 + Tins,pPins,miss
(21)

from Eq. 24, and

∂µdec,n

∂Pins,miss
= − C7

C8/C9 + Tins,pPins,miss
(22)

from Eq. 25.
The derivatives of µdec,n with respect to Tins,p

have the exactly same form as those with respect to
Pins,miss in Eq. 20, Eq. 21 and Eq. 22. Note that in
Eq. 9, 24 and 25, the numerators, C3, C5 and C7

� 1 while the denominators are just around 1.

7.3 Performance Sensitivity to Improve-
ments in the Functional Units

When µdec,n ≥ min{µwin, µret}, performance im-
provement is also sensitive to ti, which is usually due
to better implementation of the functional units. For
the retirement unit, we have the following sensitivity
expression.

∂µret

∂ti
=
∂µret

∂Tdep

∂Tdep

∂ti
(23)

where ∂Tdep
∂ti

= Si × (1 + P dep).
For instance, we showed the sensitivity to

tinteger unit, the integer unit’s latency, in the fourth
row of Table 3 and 4. Since Si is usually less than 0.5,
∂µret
∂ti

is accordingly less than ∂µret
∂Tdep

. Hence, we con-
clude that more emphasis should be put on reducing
dependency than enhancing the functional unit.

Table 3 shows the sensitivity with respect to var-
ious changes for in-order issue and out-of-order issue
policy without big reservation workstations. Tab. 4
gives the similar results for the case of out-of-order
issue with reservation workstations of sufficient ca-
pacity. Insensitivity is labeled as ‘NA’ in Table 3 and
Table 4. The insensitivity entries indicate the absence
of bottlenecks.

To sum up our sensitivity analysis, we argue that
the overall performance improvement is most sensi-
tive to the data cache miss ratio except for programs
where branch instruction are very frequent. Next,
we see that overall performance improvement is also
sensitive to dependency reduction. The overall per-
formance improvement is relatively less sensitive to
improvements to the functional units when compared
with other modifications. In other words, according
to our analysis, the throughput of a superscalar pro-
cessor is affected by the following in decreasing order
of importance:

Benchmark go compress m88ksim applu fpppp Avg.
∂throughput/∂Pdep or p 0.260 NA 0.320 0.177 0.471 0.307
∂throughput/∂Tdat,p 0.021 NA 0.023 0.035 0.035 0.029
∂throughput/∂Pdat,miss 1.041 NA 1.144 1.735 1.761 1.420
∂throughput/∂tinteger unit 0.312 NA 0.229 0.149 0.143 0.208
∂throughput/∂Pins,miss NA 4.794 NA NA NA 4.794

Bottleneck window decoder window window retire NA

Table 3: Performance sensitivities for an in-order-issue UltraSPARC-like machine

Benchmark go compress m88ksim applu fpppp Avg.
∂throughput/∂Tdep 0.808 NA 0.974 0.781 0.471 0.759
∂throughput/∂Tdat,p 0.032 NA 0.032 0.045 0.035 0.036
∂throughput/∂Pdat,miss 1.612 NA 2.264 2.258 1.761 1.973
∂throughput/∂tinteger unit 0.312 NA 0.229 0.149 0.143 0.241
∂throughput/∂Pins,miss NA 4.794 NA NA NA 4.794

Bottleneck retire decoder retire retire retire NA

Table 4: Performance sensitivities for an out-of-order issue UltraSPARC-like machine

1. the data cache miss ratio,

2. instruction dependency,

3. the instruction cache miss ratio,

4. improvements of the functional units, and

5. the cache miss penalty.

In the light of Tables 3 and 4 where our ana-
lytical predictions were quantified, we propose that
more efforts should be made to decrease data cache
miss ratio and dependencies by using data prefetching
or register renaming. Meanwhile, the results suggest
that good branch prediction can significantly improve
the overall performance of some applications in which
branch instructions are very frequent. As the density
of the processor chip goes up, we also propose increas-
ing the capacities of reservation stations so that ag-
gressive out-of-order issue policy can be implemented
which in turn will increase overall performance sub-
stantially. After this is achieved , then enhancing the
instruction cache is the next important issue.

8 Conclusion

In this paper, we described a realistic queuing model
for superscalar processors based on a network of
MCMR queues. In our model, instruction traces only
needs to be analyzed once to obtain a few key pa-
rameters which characterize the traces. Using these
parameters, we computed the performance of any
number of superscalar processor configurations. In
contrast, to obtain the results we reported via trace
driven simulation would mean doing tens, if not hun-
dreds, of simulation runs over billions of instructions.

As far as we know, sensitivity analysis has sel-
dom been carried out. Using sensitivity analysis of
the model, we explored the relative efficacy of perfor-
mance improvement due to three categories of archi-
tecture modifications. Our results show that, the per-
formance of a superscalar processor is limited by the

instruction decode, issue rates and retirement rate.
In terms of sensitivity, we conclude that, for in-order
issue policy and out-out-order issue policy without
large capacity reservation stations, the reduction of
data cache miss ratio and instruction dependency is
the most promising way to improve overall perfor-
mance. Instruction cache improvements are helpful in
some applications where branching is frequent. Spec-
ulative mechanism such as out-of-order issue gives
much better overall performance only if some con-
ditions are met, the most important of which is that
reservation stations must be of sufficient capacity.

References

[Austin and Sohi, 1992] Austin, T. M., and Sohi, G.
S. (1992). ‘Dynamic Dependency Analysis of Ordi-
nary Programs’, Proc. 19th Int’l Symp. on Comp.
Arch., pp. 342-351.

[Dubey et al,. 1994] Dubey, P. K., Adams, G. B., and
Flynn, M. J. (1994). ‘Instruction Window Size
Trade-Offs and Characterization of Program Par-
allelism’, IEEE Trans. on Comp., 43(4), pp. 431-
442.

[Heinrich, 1996] Heinrich, J. (1996). MIPS R10000
User’s Manual. Version 1.1. MIPS Technologies,
Inc. CA, USA.

[Jain, 1991] Jain, R. (1991). The Art of Computer
Systems Performance Analysis, pp. 535-536, John
Wiley & Sons, Inc. New York USA.

[Kleinrock, 1975] Kleinrock, L. (1975-1976). Queue-
ing Systems (vols. 1 & 2), John Wiley & Sons,
Inc. New York USA.

[Lam and Wilson, 1992] Lam, M. S., and Wilson, R.
P. (1992). ‘Limits of Control Flow on Parallelism’,
Proc. of 19th Int’l Symp. on Comp. Arch, pp. 46-
57.

[Lazowska et al., 1984] Lazowska, E. D., Zahorjan,
J., Graham, G. S., and Sevolk, K. C. (1984).
Quantitative System Performance, pp. 135-136,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
USA.

[Loh, 1997] Loh, K. S. (1997). ‘Superscaler Processor
Simulator’, Honour Year Project Report, Dept. of
Information Systems and Computer Science, Na-
tional University of Singapore.

[MacDougall, 1987] MacDougall, M. H. (1987). Sim-
ulating Computer Systems Techniques and Tools,
MIT Press.

[Matta and Shankar, 1995] Matta, I., and Shankar,
A. U. (1995). ‘Z-Iteration: A Simple Method
for Throughput Estimation in Time-Dependent
Multi-Class Systems’, Proc. of SIGMETRICS ’95,
pp. 126-135. Ottowa, Canada.

[Noonberg and Shen, 1994] Noonburg, D. B., and
Shen, J. P. (1994). ‘Theoretical Modeling of Su-
perscalar Processor Performance’, Proc. of MI-
CRO 27, pp. 53-62, San Jose, USA.

[Pyun et al., 1998] Pyun, Y.H., Park, C.S., and Choi,
S.B. (1998). ‘The effect of instruction window on
the performance of superscalar processors’, IE-
ICE Transactions on Fundamentals of Electronics
Communications and Computer Sciences, E81A:
(6) 1036-1044, Jun 1998.

[Schlansker and Rau, 1999] Schlansker, M., and
Rau, B.R. (1999). ‘EPIC: An Architecture for
Instruction-Level Parallel Processors’, HP Labs
Technical Report HPL-1999-111. 1999.

[Zhu and Wong, 1997] Zhu, Y., and Wong, W. F.
(1997). ‘Performance Analysis of Superscalar
Processor Using a Queueing Model’, Proc. of
Computer Architecture ‘97: The Second Aus-
tralasian Conference, pp. 147-158, Sydney, Aus-
tralia, Springer-Verlag.

[Zhu and Wong, 1998] Zhu, Y., and Wong, W. F.
(1998). ‘The Effect of Instruction Dependency on
Superscalar Processor Performance’, Australian
Computer Science Communications, pp. 215-226,
Volume 20, Number 4, Springer-Verlag.

[Zhu and Wong, 2000] Zhu, Y., and Wong, W. F.
(2000). ‘Modeling Archietctural Improvements in
Superscalar Processors’, Proc. of HPC-Asia 2000,
pp. 28-30. Beijing, P.R.C.

Appendix

Let |C| be the cardinality of the set, C. Each
class, c ∈ C, is an open class with arrival rate,
λc. We denote the vector of arrival rates by ~λ ≡
(λ1, λ2, ..., λ|C|).

1. Processing Capacity A system is said to have
sufficient capacity to process a given offered

load ~λ if it is capable of doing so when sub-
jected to the workload over a long period of
time. For multiple class models, sufficient capac-
ity exists if the following inequality is satisfied:
maxr{

∑
c∈Cr λ

r
cd
r
c} < 1 where drc is the service

time demanded by a class c customer on resource
r.

2. Utilization According to the Utilization
Law [Kleinrock, 1975], utilization is expressed
in terms of arriving rate vector, λrc , c ∈ Cr

and the service demand of the customer, drc :
Urc (~λ) = xrc(~λ)µrc = λrcd

r
c

3. Residence Time In La-
zowska [Lazowska et al., 1984], the residence
time for queuing servers under the FCFS is
given by Resrc(~λ) = drc

1−
∑|C|

j=1
Ur
j

(~λ)
. In relation to

our model, the residence time is the time which
class c instructions have to spend before they
can be served by a functional component, r, of
the processor.

4. Queue Length Assuming a FCFS discipline and
applying Little’s Law to the residence time equa-
tion above, the queue length of class c at server
k, qrc (~λ), is given by: qrc (~λ) = λcRes

r
c(~λ) =

(Urc (~λ))/(1−
∑|C|
j=1 U

r
j (~λ)).

Other measures like throughput, system response
time, average number of instructions in the sys-
tem and blocking probability can also be calcu-
lated [Zhu and Wong, 1997].

We shall now analyze the decoder. If Ibr ≥ Wdec

and Ibr/Wdec < Tbr, then uIbr+1 is predicted before
u1 is resolved. If u1 is predicted wrongly, uIbr+1 and
the instructions fetched due to its prediction will have
to be discarded. Therefore, both the branch penalty
arising from u1 and the possible penalty caused by
uIbr+1 will affect the decoding rate. Otherwise, only
uIbr+1 needs to be considered in the computation of

the decoding rate. Consequently, to decode Ibr + 2
instructions without overflow at the central window,
the average time needed is Tdec,n = C5+(C6)×Tins,p×
(Pins,miss), where C5 stands for [(Ibr+2)/Wdec+Tbr×
(1 − Pprtd)] × Pprtd + [(Ibr + 2)/Wdec + Tbr + Tbr ×
(1−Pprtd)]× (1−Pprtd), C6 stands for (Ibr + 2). The
average decoding rate without overflow at the central
window and reorder buffer is given by

µdec,n = (C4)/(Tdec,n) (24)

where C4 denotes (Ibr + 2).
If Ibr > Wdec and Ibr/Wdec ≥ Tbr, then uIbr+1 is

predicted only after u1 is resolved. Therefore, we only
need to consider uIbr+1 in calculating the decoding
rate. This is shown in the following equation

µdec,n = C7/[C8 + C9 × Tins,p × (Pins,miss)] (25)

where C7 stands for (Ibr+2), C8 stands for Ibr/Wdec+
Tbr × (1− Pprtd) and C9 stands for (Ibr + 2).

When µdec,n exceeds µwin or µret, the decode unit
will not be working at a stable speed µdec,n since the
unit stalls when the central window or reorder buffer
overflows, and continues to work only when enough
room (µdec,n in our model) is available in the central
window or the reorder buffer. The decode unit, ac-
cordingly, works in alternating stalling and decoding
phases. Having considered this, the average decoding
rate with overflow in the central window is as follows

µdec,f = (µ2
dec,n/(µdec,n − µwin))

(
µdec,n

µdec,n−µwin
+ µdec,n/µwin)

(26)

However, using the fact that central window becomes
a bottleneck when µwin is low, we can simplify the
equation to

µdec,f = µdec,n (27)

The Eq. 27 shows that the effective service rate of the
decode unit is determined by µdec,n when the central
window is filled up from time to time. In other words,
the decoder, which decodes faster than the central
window issues instructions, does not make effective
contributions to the overall throughput. The result is
also true with µwin in Eq. 26 changed into µret when
the reorder buffer overflow is considered. In the case
where µdec,n is greater than µwin, the average queue
length at the central window is given by

(
µdec,n
µwin

Zw +
µdec,n

µdec,n−µwin
(Zw − µdec,n))

(
µdec,n
µwin

+
µdec,n

µdec,n−µwin
)

(28)

where Zw is the size of the central window. When
µdec,n is greater than µret, µret should be substituted
for µwin in Eq. 28.

For certain very small applications, we have ob-
served values of µwin exceeding µdec,n. From Section
4, the average queue at the central window is given
by

(µdec,n/µwin)/(1− µdec,n/µwin) (29)

Glossary of Terms

1. MC,MR: the multiple instruction classes, and
processor components

2. P(I): the execution trace obtained by executing
P with input I

3. D: average dependency interval (inclusive of one
of the instruction in the dependency)

4. Ibr: the average number of (non-branch) instruc-
tions between two branch instructions (inclusive
of one of them).

5. P dep: designates the possibility that ∃w ∈
P(I), w D−→ u, where D ≤ D. item Tdep: av-
erage time for an antecedent instruction to pass
through the functional units

6. Zw: the size of the central window

7. µdec,n, µdec,f : the average decode rate without or
with overflow at the central window

8. µwin: the average issue rate of the central window

9. Wdec,Wiss: the decode and issue width

10. Tins,p, Tdat,p: the instruction, data cache miss
penalty time

11. Pprtd: the probability of a correct branch predic-
tion

12. u D−→o v, u
f−→f v, u D−→a v: instruction u is

output, flow or anti -dependent on v with the
dependency interval D

