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– Clocking is an essential component of any 
d system design. However, traditional design 
s are either short of clocking support or too 
for users. The Unified Modeling Language (UML) 
proposed as design tool in real time system design, 
locking semantics has not been properly dealt with. 
per, we will present our experience of using UML to 
locked system. In particular, UML is used to model 
al down converter, an essential component of 
radios. Our tool chain automatically generates the 
n as well as synthesizes the final implementation. 

I. INTRODUCTION 

he increasing complexities of embedded systems, 
 have been searching for new methodologies that 
age the complexity as well as yielding high 
ity.[2] The Unified Modeling Language (UML) 
en modeling and specification language that has 
d widely in development of complex software 

ons [13].  
er, UML lacks natural support for timing 

s. Previous works have tried to use extra notations 
y the clock settings. Most of these notations are 
hangeable and non-reusable.     
 paper, we address this problem by showing how 
se existing UML notations to specify a real time 
with clock settings. This design is then 

cally translated into detailed implementations that 
imulators as well as synthesized hardware. In our 
rk, UML’s class and component diagrams, as well 
harts are translated into an intermediate form in 
. Clock settings are used during the SystemC code 
n. At the end of this top-down design flow, 
able SystemC models are generated. Therefore, 

gh level specifications can be lowered to 
ntations that are very close to hardware [11].  

 
ur Design Flow of the Clocked Chips 

 1 shows our design flow. We start` with formal 
models, specifying different aspects and 
ents of the system using different UML diagrams. 
 diagrams are used as input to the translator. The 
 automatically generates the system level 

SystemC implementations from the model.  
  

 
II. RELATED WORKS AND SCOPE OF OUR 

WORK 
 

Lack of support for clocks is a challenge for the several 
efforts similar to ours that use UML as the design vehicle. 
In YAML[10], the system structure is modeled using UML 
notions with extensions. Some results have been reported 
using both class diagram and statechart to generate SoC 
designs without clock specifications [3,4,12]. In another 
approach, extended task graphs were used to capture the 
system’s behavior as well as the clock specification [5].   

 Our approach differs from others in that rather than 
formulating another system description language, we used 
standard UML for the task. In particular, we use I-logix’s 
Rhapsody to build UML models and specify clock setting 
in the component diagrams. The following features are 
unique in our approach: 

1. To ensure the correctness and reusability, we use the 
existing UML notations available in Rhapsody 4.2 
with customization to build executable UML models. 

2. Clock settings of components are specified using 
component diagram. They are used in the code 
generation phase.  

3. XMI, an interchangeable UML representation, is used 
as the input of our translator which then generates 
SystemC code directly.  

4. The generated SystemC models can be simulated 
using the SystemC simulator, and the implementation 
can then be easily tested and verified.  

 

 
Figure 2 UML to SoC design flow 

Figure 2 shows the proposed code generation flow. 
Starting with the system’s specification, UML models are 
built. Verification and refinement can be done at several 
levels to test whether the requirements are completely and 
correctly captured. The system is first translated into 
transaction level modeling (TLM) level model. This can be 
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done fairly rapidly. When there is sufficient confidence 
obtained from simulation, the behavioral and RTL level 
models can be generated. These can be further compiled 
into gate level models.  

In this top-down flow, testing and verification can be 
done at all the stages. The controlled lowering of the 
model with extensive testing at every stage is essential for 
the successful design and deployment of complex 
embedded solutions. 

 
III: IMPLEMENTATION OF DESIGN FLOW 

 
Our design flow is based on UML notations and 

SystemC. In the design flow, designers only need to work 
at the UML level and the rest are automated, thereby 
boosting productivity. In rest of this section, we will 
introduce the details of how we capture the system 
specification and SystemC code generation.  

  
Class Diagram Semantics and Translation: Class 
diagrams are used to model the structural information of a 
design.[7] Classes are used to model the system 
components and communication interfaces.  A class has 
attributes and operations. Each attribute has a type, 
publicity and static status. Functions have return types, 
arguments types and names, as well as the publicity and 
static status.  

Each class will be translated into a SystemC sc_module. 
To model different module elements, we make use of the 
stereotype of class. There is a mapping from SystemC 
elements to the UML stereotypes. To model the details of 
the SystemC design elements, we introduced three 
extensions using UML stereotypes mechanism. Table 1 
shows the mapping between SystemC elements and UML 
stereotypes. 

 

SystemC elements UML stereotypes 
Modules Normal class 
Interfaces <interface> 
Primitive channel <pri_channel> 
Hierarchical channel <channel> 

Table 1 Mapping from SystemC elements to UML stereotypes 

Aggregation is used to model the ‘contains’ information 
of components. If A has aggregation relation with B, then 
B will be modeled as component of A.  

Associations among the classes are used to model the 
communication relationships between the components. 
These relations include association and aggregations.  If 
two components have message or signal exchange, an 
association will be placed in between. The direction of the 
association indicates the direction of the communication.  

 
Statechart and Component behaviors: The statechart 
formalism was introduced by Harel [1]. A statechart design 
essentially consists of states and transitions like a finite 
automaton. Statechart diagrams in UML allow for guards 
on transitions, propagated transitions, actions on 
transitions, actions on state entry, activities that last as long 
as a states, and actions on exit. Figure 3 shows an example 
of a statechart consisting of a simple state and an initial 
state.  

Dynamic behavior of a UML class is expressed in terms 
of state transition diagrams of simple states which in turn 
is translated as a process. SystemC provide three different 
types of processes: sc_thread, sc_cthread, and sc_method, 
which we use in different levels of abstraction[8].  A 
local variable called a state is used to hold the current state 
identifier, and it is assigned to the value of initial state 
identifier during the initialization stage. Processes keep 
transiting between states until a final state is reached. 
When the process enters a new state, it first performs the 
actions_on_entry. Then the reaction is performed. For 
most of time, processes stay in one state, waiting for some 
events. Upon receiving an event, a process will perform 
the guard action and change the value of state accordingly. 
When it exits the state, the action_on_exit will be 
performed. 

State transitions are translated into variable assignments 
to states in main loop. Each transition corresponds to 
assigning a new state identifier to the state variable.  The 
assignment will be done after the action_on_exit actions 
are performed. 

 

 
Figure 3. A Statechart Example 

if (true)//there is no final state 
{ 
   switch(state) 
  { 
       case state waitdata: 
          wait for event indata 
          if (N<48){ 
             processData(); 
          N++; 
             state=waitdata; 
             break; 
       } 
    else{ 
          processData(); 
             N=0; 
             State=writeout; 
             Break; 
         } 
     case init: 
     if(true) initialization(); 
        default: 
            state=init; 
    } 
} 
The above code is the template used to create the state 

machine based on the statechart in Figure 3. Using this 
template, the generated code will perform the behaviors 
defined in the statechart diagram.  
 
Clocking and Component Diagram: Clock setting is an 
essential component in embedded system design. In the 
most general case, different hardware components may be 
clocked differently. Clock rates will affect the overall 
speed of the final hardware, how the component 
communicate, cost, power, and other important issues. 

working 

datain/ 
if(N<48){ 
   processData(); 
   N++;} 
Else{ 
   processData(); 
   
SendDataToGfilter(
); 
   N=0; 

/initialize() 



Furthermore, in synthesized code, processes are sensitive 
to clocks. The clock rate will therefore directly determine 
their behavior.  
 

 
Figure 4 Example of Component Diagram  

It is quite natural to describe clock settings as a property 
of components. Therefore, we chose to use the component 
diagram to model clock settings. Here again, we make use 
of stereotypes. In the Figure 4, components are the module 
instances and the stereotypes of the components are set as 
CLOCKx, where x is the period of the clock. In Figure 4, 
we have the clock settings of two components. There are 
one instance of Component_A and one instance of 
Component_B. The clock period of Component_A is set to 
be 1ns, while Component_B is 2ns. For components 
without explicit clock setting, a default clock with the 
period of 1ns is used.  The following is the SystemC code 
for creating clocks with clock period equals to 1ns, 2ns, 
and 10ns.  

sc_clock base_CLK; //default clock 
sc_clock CLOCK2(“CLOCk2”, 2, 0.5, 0, false);  
sc_clock CLOCK10(“CLOCk10”, 10, 0.5, 0, false); 

The clock will be connected to the component when they 
are defined in the driver class. So far, the clock type is not 
included here, however, in similar way as the clock period, 
the processor should be able to process the clock type and 
translate accordingly. 
 

IV: CASE STUDY 
 

Software Radio: A software radio is a radio whose 
channel modulation waveforms are defined in software [9]. 
Software radios employ a combination of techniques that 
include multi-band antennas and RF conversion; wideband 
ADC and digital to analog conversion (DAC); and the 
implementation of IF, baseband and bitstream processing 
functions in general purpose programmable processors. 
The resulting software-defined radio in part extends the 
evolution of programmable hardware, increasing 
flexibility via increased programmability. It also represents 
an ideal that may never be fully implemented but that 
nevertheless simplifies and illuminates tradeoffs in radio 
architectures that seek to balance standards compatibility, 
technology insertion and the compelling economics of 
today's highly competitive marketplace. 
 
Digital Down Converter: We implemented a digital down 
converter (DDC) for the global system for mobile 
communications (GSM) - a wireless communication 
protocol. Digital radio receivers often have fast analog to 
digital converters delivering vast amounts of data. 
However, in many cases, the signal of interest represents a 
small proportion of that bandwidth. A DDC is a filter that 
extracts the signal of interest from the incoming data 
stream. Our implementation closely follows the MATLAB 
example in Xilinx’s system generator (see Figure 5). 

 
Figure 5 Block Diagram of Digital Down Converter 

DDC Structural model and translation: From Figure 5, 
we can see that the Digital Down Converter consists of a 
mixer, a cascade integrator-comb and two decimators.  
The desired channel is translated to baseband using the 
digital mixer comprised of multipliers and a direct digital 
synthesizer (DDS). The sample rate of the signal is then 
adjusted by a multi-stage, multi-rate filter consisting of a 
cascade integrator-comb (CIC) filter and two polyphase 
finite impulse response (FIR) filters with a decimation 
factor of 2. The functions performed in the system are 
complex multiplication, and multi-rate filtering. The 
overall down sampling rate of the converter is 192:1. 

Each of the components is modeled as a class, and they 
communicate through event sending (see Figure 8). The 
model has been translated into both TLM, behavioral and 
RTL levels. We could not find the source code for a similar 
DDC in UML or SystemC for comparison. Hence we have 
compared just the FIR module of our design with an FIR 
example provided by Synopsys. The only modification we 
did to the Synopsys code was to ensure that the 
coefficients and the bit-widths of the ports are the same as 
those of our FIR model. The codes were compiled into 
gate-level net-list using Synopsys tc6a_cbacore library, 
which targets cell-based array architectures [11]. The same 
timing constraints were used on the synthesis runs of both. 
By comparisons of the final synthesized hardware, we 
found that our generated code uses about 33.25% more 
resources than the hand-coded version. We believe that this 
is an acceptable overhead given the fact we input the 
model using the Rhapsody tool with UML notations.  

 

 
Figure 6 Component Diagram of Digital Down Converter 

 

Figure 7 N-stage CIC Structure for Analysis Purposes [9] 

DDC component model and clock settings: We assign 
different clock rate of different DDC components. Figure 6 
shows the clocking setting of the DDC components. The 
first several components form a stream pipeline. Every 



cycle, each of them will process one data and send a data 
to its following components. The components will have 
rate decimation by factor of 48 after CIC. Therefore, every 
48 cycles, CIC only gives 1 output and gfilter has the 
clock period of 48ns. The two decimators are running on 
low clock rate. Each of them decimates the sample rate by 
half. They help to further reduce the sampling rate.  The 
Digital Down Converter can bring the incoming signal rate 
down from 1MHz to 5.21KHz.  

Cascade Integrator-comb filter (CIC) can be used to 

reduce the sample rate by a large factor. In our example, a 
4-stages CIC with 48:1 rate changing is modeled. Error! 
Reference source not found. shows a general structure of 
CIC. In our example, R=48, N=4 and M=1. We can see 
that there is a rate conversion module in the CIC 
component. The rate change is modeled as clock rate 
change. The sampling rate will be decrease to 1/48, and the 
component following the CIC is deployed on clock with 
48 slower clock rate. Figure 7 shows a general analytical 
structure of CIC.   

 

 
Figure 8 Class Diagram of Digital Down Converter 

V: CONCLUSION 
 

In this paper, we outlined a design flow to develop clocked 
hardware circuits using UML-notations. We use Class, 
statechart and Component diagrams to model system 
specifications. Our experience with the extensive case 
study of the design of digital down converter show that 
this approach works well in practice. As future work, we 
would like to explore further how our approach can be tied 
in with real-time software so as to have an integrated 
hardware-software specification and modeling tool chain. 
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