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Abstract— On current superscalar processors, performance and
power issues cannot be decoupled for designers. Extensive simu-
lations are usually required to meet both power and performance
constraints. This paper describes an integrated performance and
power analytical model. The model’s performance and power
results are in good agreement with detailed simulations, previous
models and physically measured results. For designers, the model
enables quick and flexible explorations into a subset of even entire
huge parameter space of more than 15 workload and architectural
parameters plus leakage power, feature sizes, clock and voltage.

I. I NTRODUCTION

Following a recent vigorous growth of hand-held and portable
devices, power efficient processors have stepped into the center
of the stage of the EDA industry and research. The performance
of embedded processors is constrained by stringent power
budgets in terms of maximum power consumption and battery
life. Therefore, tradeoffs between power and performance have
received plenty of attention. Among these efforts, extensive
simulations [4], [14] are the most common approach.

To fasten the design process, some unified analytical mod-
elling approaches were proposed to address both the perfor-
mance and power issues. Brooks et. al. [3] introduced a mea-
sured metric calledpower-performance efficiencyto quantify
the effectiveness of a processor servicing a task within a limit on
its power consumption. Conte et. al. [6] separated architectural
and technology components of dynamic power, and used a
near-optimal search to tailor a processor design to different
benchmarks. While models of Conte and Srinivasan et. al. [9]
covered high level statistics and optimization of pipeline stages,
many details of processor components were skipped.

The above unified methods did not address another important
power issue,static power dissipation, assuming the static power
is less than the dynamic power by one or more order of
magnitude. With the downward scaling of technology nodes,
the static power has grown to the same order of magnitude
as the dynamic power [7], and it must be considered in current
designs. The major part of the static power isleakage power[1].

II. OUR CONTRIBUTIONS AND RELATED WORK

To arrive at a more realistic system-wide view of the power-
performance trade-off, we start with a good performance model
of superscalar processors [15]. That performance model was
validated against actual performances on in-order-issue SPARC
processors and showed an average error of 5.1%. In that model,
nearly all major processor components were modelled.

In this paper, we extend that performance model [15] by
considering out-of-order issue processors. For the out-of-order-
issue SimpleScalar simulated processor [2], an average error of
5.9% between the predicted performance and the simulated one
was achieved over the SPEC2000 benchmarks.

To study the dynamic power, we link the performance metrics
to the dynamic capacitance of each processor components,
thereby deriving the power consumption for each component
and finally the whole processor. The validation using Sim-
Wattch [4] is on average within 10.9% accuracy. Our model’s
average result agrees with the measured one reported by Syn-
opsys Power Compiler with a power library from Virginia
Tech [10]. Our average result also agrees with that of the Berke-
ley Advanced Chip Performance Calculator (BACPAC) [12].

We also consider the static power in our integrated model.
Khouri and Jha [7] summarized the ratios of the static power
over the total power. We use these ratios to accounts for the
static power. Our model’s projected maximum total power of
UltraSPARC-III processor [11] agrees with the published one.

Our model enables distinct views of factors involved in co-
optimization of power and performance. It allows us to quantify
the impact by any individual factor. In terms of efficiency, it
takes us just two hours to explore a design space containing
487 million design points. With a slight change in the prob-
lem formulation, it is also possible to use the design space
exploration to yield the configuration with the lowest energy
consumption needed to complete a computation task within a
certain performance constraint.

We present our performance model in Section III, our power
model in Section IV, validation results in Section V. We handle
the concrete co-optimization tradeoffs in Section VI. This is
followed by a conclusion.



III. PERFORMANCEMODEL

To model a generic superscalar processor, we used anetwork
of multiple-class multiple-resource(MCMR) systems. Each
stage of the pipelines contributes to the final results of the
processor. The lowest throughput of all the pipeline stages is the
bottleneck of the entire processor and determines the maximum
possible throughput of the processor. We shall now recall the
main results of the performance model [15], then describe our
extensions by considering out-of-order issue processors.

The throughput of the processorΘ is the minimum of the
service rates ofdecoder unit(µdec), central window(µwin),
and retirement unit(µret):

Θ = min{µdec, µret, µwin} . (1)

µdec denotes the average decoding rate without overflow in
the central window. LetWdec denote the decoding width;Ibr

be the average number of (non-branch) instructions between
two branch instructions;Tbr be the misprediction penalty time;
pins,miss be the instruction cache miss ratio;tins,pen be the
instruction cache miss penalty time; andpbr,prtd be the proba-
bility of a correct branch prediction. IfIbr < Wdec,

µdec = C1
C2+C3×tins,pen×pins,miss

, (2)

whereC1, C2, andC3 are linear functions ofIbr, Tbr, Wdec,
andpbr,prdt. The rest cases can be looked up in [15].

µret denotes the retirement rate under an in-order retirement
policy. Its parameters are as follows.Wret is the the maximum
number of instructions that can be retired per cycle.D is the
average dependence distance (inclusive of one of the instruction
in the dependence) between two instructions that have a data
dependence relation. ForD < Wret, µret is given below, the
rest cases can be referred in [15]:

µret = (2×D)/(1 + Tdep) , (3)

whereTdep, the average time for an antecedent instruction to
pass through the functional units, is:

Tdep = [
type∑

i

(ti × Si)]× (1 + P dep) , (4)

where type ∈ {ieu, fpu, lsu, br} is the set of types of func-
tional units, namely the integer execution unit, the floating
point unit, the load store unit and the branch unit.Si ∈ [0, 1]
is the fraction of the total number of instructions that is
executed on functional uniti, and ti is the average service
time of each functional unit of typei. Typically, tieu ∈ {1, 2},
tfpu ∈ {3, ..., 6}, tlsu = pd,prtd + tdat,pen × (1− pd,prtd) and
tbr = pi,prtd + tins,pen × (1− pi,prtd). The parameterspd,prtd,
pi,prtd ∈ [0, 1] represent the probabilities of the data cache
prediction and the instruction cache prediction, respectively.

For µwin, We extend previous studies to out-of-order is-
sue(not considered in [15]) processors with multiple instruction
types or classes(not considered in [8]).

On out-of-order-issue processors, any independent and ready
instruction in the instruction window may be dispatched to an
available functional unit. Hence,µwin is the total sum of service
rates of functional unitsµt wheret is an instruction type, that
is µwin = µieu+ µfpu+ µlsu+ µbr.

Givenρk,t(Zwin) as the probability thatk instructions of type
t are issued from the window of sizeZwin andFt representing
the number of functional units of typet. then:

µwin =
∑type

t

∑Ft

k=1(ρk,t(Zwin)× k) , (5)

and ρk,t(Zwin) = Pk,t(Zwin) × φpipe,t(k), wherePk,t(Zwin)
is the probability thatk independent instructions are extracted
from Zwin instructions andφpipe,t(k) is the probability that at
leastk pipeline units of typet are available.

So,Pk,t(Zwin) = Pk−1,t(Zwin − 1)×p
(Zwin−1)
t +

+Pk,t(Zwin − 1)×(1− pZwin−1
t ) , (6)

and the initial cases areP1,t(1) = 1 andPi,t(j) = 0, ∀ i >
j. The variablept = p × St represents the probability of an
independent instruction of typet, andp is the overall probability
of instruction independence. In practice,k ∈ {1, ..., 8} and
Zwin ∈ {2, ..., 20}.

φpipe,t(k) =
∑Ft

j=k

(
Ft

j

)
qj
t (1− qt)Ft−j , (7)

whereqt = q× St is the probability that an instruction of type
t will be issued to a functional unit of typet, q is the overall
probability of functional units availability for a instruction ready
to issue. The notation

(
Ft

j

)
stands for Ft!

j!(Ft−j)! , wherej! = 2×
3× ... ×j.

IV. POWER MODEL

The power consumption of a resource consists of a dynamic
and a static component, i.e.,πtot,res = πstatic,res + πdyn,res.
The static portion is given byπstatic,res = Istatic,res × Vdd.
The leakage currentIstatic,res is an exponential function of
threshold voltageVt (in mV) by Sylvester and Keutzer [13]:

Istatic,res = 10× ω × 10−Vt/95 , (8)

whereω is the device width in micro meter.
For any technology node, the static power takes a usually

stable portion of the total power. Khouri and Jha [7] summarized
the ratios of the static power over the total power based on 6
different circuits. We use the averaged ratios in TABLE I.

For the dynamic power component, we model dynamic power
as a traditional function ofdynamic capacitance(Cres), the
supply voltage(Vdd) and theclock frequency(Ω):

πdyn,res = Cres × V 2
dd × Ω . (9)

The accesses to each resource are obtained from the simula-
tors. With total dynamic capacitance and number of accesses of
a resource, we can obtain thedynamic capacitance per access
to the resource(Ca,res) for each benchmark. This enables us to
establish a link between the performance model and the power
model. We also need theaverage number of accesses to the
resource per request (instruction), denoted byNa,req,res. Then
the number of accesses a resource services each cycleNa,res

can be obtained as:Na,res = µres ×Na,req,res.

TABLE I. The Proportions of Leakage Power in Total Power.

Tech. stat. pwr. /tot. pwr. stat. pwr./tot. pwr. Vdd

without leakage opti. with leakage opti.
0.35µm 9.8% 6.6% 3.3
0.18µm 22.6% 11.7% 1.8
0.13µm 43.4% 26.9% 1.5
0.10µm 48.1% 25.5% 1.2
0.07µm 56.2% 25.1% 0.9



The link to power is expressed as thedynamic capacitance
per resource per cycle, Cres,cycle = Na,res × Ca,res. We
assumeCres to be equal toCres,cycle, so Cres = µres ×
Na,req,res × Ca,res. With the total dynamic capacitance per
resource orCres, we can obtain the power consumption in (9).
Note thatµres is obtained in the performance model. The total
power of a processor is the sum of the power consumption
by each resource/component. There are two new service rates
of instruction cache and data cache,µicache (the amount of
decoder unit’s output plus L1 instruction cache miss ratio) and
µdcache (the load/store unit’s output plus L1 data cache miss
ratio). More precisely,µicache = (1 + pins,miss) × µdec and
µdcache = (1 + pdat,miss) × µlsu. The analysis ofµdec and
µlsu is found in Section II. The dynamic power costs of all
resources form the total dynamic power:

πdyn,tot = πwin + πret + πdec + πieu + πfpu + πlsu + πbr+
+πicache + πdcache . (10)

V. VALIDATION OF THE MODEL

The performance model’s parameters are obtained from sim-
ulation traces of benchmarks. These parameters characterize the
benchmark. Except for the two miss ratios for the instruction
and data caches that can be looked up in [5], all the rest ones
are independent of the architectural features of the processor
being modelled and so can be obtained in a single run. The
inputs to the performance model are given in TABLE II.

This extended performance model for out-of-order issue
processors is validated with SimpleScalar out-of-order issue
processor. We use five benchmarks from the SPEC2000 suite,
namely256.bzip2 , 183.equake , 181.mcf , 177.mesa
and 175.vpr . Although we have only taken the level one
cache into consideration in validating the current performance
model, a small average error of 5.9% was still obtained.

To validate our power model, we use a Sim-Wattch simulator
customized with parameters from SimplePower. The simulator
configuration is based on the 0.25µm process technology for
a processor running at 2.5 volt with a clock frequency of
600MHz. For each component of the processor, the capacitance
is obtained by either using the same empirical formulas used by
Sim-Wattch or by means of summing up the bit stream changes
in SimplePower. The relevant primitives are listed in TABLE
III.

Our architectural analysis yields values ofNa,req,res for
different resources:Na,req,win = 6, Na,req,regfile = 2 and

TABLE II. Benchmark Characts. for the Performance Model.
Bench. bzip2 equake mcf mesa vpr
Sieu 45.7% 26.3 % 39.4 % 42.2 % 43.6 %
Sfpu 0.0% 15.3% 0.0 % 7.0 % 5.6 %
Sbr 15.9% 6.1% 2.7 % 1.0 % 1.0 %
Slsu 28.5% 41.5% 48.2% 53.4 % 53.4 %
D 1.996 1.955 2.016 1.873 1.911
Ibr 7.26 6.69 3.65 4.18 4.74

P dep 0.562 0.504 0.620 0.425 0.589
Tdep 1.972 2.403 2.085 2.248 2.187

p 0.438 0.4962 0.3802 0.5755 0.5178
q 0.991 0.975 0.995 0.95 0.983

pins,miss 0.0110 0.0343 0.0038 0.0296 0.0067
pdat,miss 0.0227 0.0552 0.1589 0.0221 0.0820

TABLE III. Capacitance (in10−10 farad) Primitives.
Bench. bzip2 equake mcf mesa vpr
Ca,win 0.631 0.898 1.004 0.762 0.769

Ca,regfile 2.665 3.806 4.527 3.330 3.590
Ca,dec 0.421 0.603 0.614 0.485 0.501
Ca,ieu 16.32 24.09 26.18 19.56 20.33
Ca,fpu 16.32 24.09 26.18 19.56 20.33
Ca,lsu 2.527 3.981 4.087 3.912 3.035
Ca,br 38.90 53.14 37.39 28.84 43.83

Ca,icache 2.751 3.911 3.846 3.152 3.194
Ca,dcache 17.09 27.02 27.72 27.35 24.33

Na,req,dec = Na,req,ieu =Na,req,fpu =Na,req,lsu =Na,req,br =
Na,req,icache =Na,req,dcache =1. We assume the service rate of
register file equals retirement unit, i.e.µret = µregfile.

The capacitance primitives in TABLE III and service rates are
used in(9) and (10) to obtain the individual power for each
resource and summed up to the total power. TABLE IV lists
the analytical and simulated results of power consumption. On
average, there is a relative error of 10.9% between simulated
results and analytical ones. The analytical results are usually
under-estimated as our power model does not include all the
resources in the simulator e.g. the result bus and the L2 cache.

We further validate with other power models. The BAC-
PAC [12] calculator shows that the typical power consumption
is 24.03 watts for a 5-million-transistor processor running at
600MHz andVdd of 2.5V. The power consumption is close to
the averaged analytical power of27.38 watts in TABLE IV.
Using the sameVdd, Ω and a 0.25µm technology based power
library [10], the Synopsys Power Compiler also reports a total
power of32.1 watts for a RISC processor design in the scale.
Validation via Maximum Total Power: The UltraSPARC-III
processor [11] is a 4-way superscalar processor manufactured
with a 0.13µm process and aVdd of 1.5 volts. The published
maximum total power for the 1.2 Ghz version is 50 watts.

In TABLE IV, the maximum dynamic powerπdyn reported
by our model is 31.10 watts for the benchmarkequake with
Ω of 600Mhz and Vdd of 2.5 volts. With the Ω and Vdd of
UltraSPARC-III, theπdyn,tot is adjusted as 31.10

600×106×2.52×1.2×
109×1.52 = 22.392 watts. According to TABLE I, the leakage
power for the 0.13µm process is 43.4% of the total power, the
maximum total power computed by our model is22.392/(1−
0.434) ≈ 40 watts. This is a further evidence of the accuracy
of our model.

VI. A PPLICATIONS OF THEMODEL

We now show by examples how the model can be used to
explore the design space for the co-optimized solution. We will
also discuss the impacts of individual factors.
Impact of Leakage Power: As the feature size decreases as
technology scales, the leakage power takes a significant portion
of the total power budget. Using our model, we study the impact
of leakage power on the maximum clock frequencies and

TABLE IV. Simulated & Analytical Average Power (in
watts) and Relative Error (absolute values).

Power bzip2 equake mcf mesa vpr Avg.
πdyn(Sim.) 23.36 32.85 30.17 31.95 33.79 30.42

πdyn(Model) 21.05 31.10 31.08 26.36 27.30 27.38
Rel. Err.(%) 9.51 5.34 3.00 17.5 19.2 10.91



TABLE V. Maximum Clock Frequency & Power Under a
Constraint of 25 Watts.

Max. Clk. & Power without Leakage Optimization
Tech. Clk.(Ghz) Dyn.Power(watts) Leak.(watts)

0.35µm 0.4 19.03065611 2.45
0.18µm 1.3 18.40154351 5.65
0.13µm 1.4 13.76183809 10.85
0.10µm 2.0 12.58225197 12.025
0.07µm 3.0 10.6162751 14.05

Max. Clk. & Power with Leakage Optimization
Tech. Clk.(Mhz) Dyn.Power(watts) Leak.(watts)

0.35µm 0.4 19.03065611 1.65
0.18µm 1.5 21.2325502 2.925
0.13µm 1.8 17.69379183 6.725
0.10µm 2.9 18.24426536 6.325
0.07µm 5.2 18.40154351 6.275

dynamic power consumptions in TABLE V. We obtain these
metrics by varyingΩ and fixing the rest parameters.

TABLE V shows that the leakage power without optimization
grows consistently along with the technology downsizing. For
the technology node of 0.07µm, the leakage power overtakes the
dynamic power as the dominant power factor. This trend hinders
the increase of clock frequencies which ranges from 400 Mhz
for 0.35µm technology to 3 Ghz for 0.07µm technology.
A Co-optimization Case - Impact of L1 Instruction Cache:
To obtain the configuration with the least energy for a task
whose number of instructions isni, we look for the minimal
total energy to finish the task. Letπu,x be the upper power limit
for thex-th optimization case, the constraintπdyn,tot ≤ πu,x ≤
πU should hold when seeking for the maximum performance
Θ × Ω. If such a casex exists, then the time to execute the
application isni/(Θ×Ω). Consequently, this yields the minimal
total energy, at thex-th case where the power isπdyn,tot:

Ex = ni × πdyn,tot/(Θ× Ω). (11)

As an example, the benchmark183.equake has1.3691 ×
109 instructions with the test input. We set dynamic power
limits πu,x to be in{1, . . . , 33} andΩ=600MHz. Fixing the rest
parameters, we explore the number of lines in a directly mapped
L1 instruction cache whose line width is 32 words. The miss
ratios are obtained through simulation runs. It is also possible
to use analytical cache models to obtain estimates. According
to (11), the total energy is minimized to 47.64 joules with a
L1 instruction cache of 128 lines.
Functional Units and Window Size:The number of functional
units, the pipeline length and the window size are inter-related
in the co-optimization of the power and performance.

To separate their impacts, we do separate rounds of co-op-
timization under a dynamic power constraint of33 watts by
enumerating one of the three factor and keeping the rest fixed
at the default values. Our calculation shows the optimization of
the pipeline length under the power constraint may significantly
improve the power-performance efficiency. This conclusion is
in agreement with the results of Srinivasan, et. al. [9].
Exhaustive Design Space Exploration:Though exhaustive
exploration is not usually feasible, we take it to give an idea of
the efficiency of our approach. We measured the time for our co-
optimization model implemented in Java to exhaustively search

the design space. It took7, 413 seconds on a 1.4GHz Intel Xeon
PC to explore a space of487M cases consisting of{Wdec, Tbr,
tins,pen, tieu, tfpu, tdat,pen, Fieu, Ffpu, Flsu, Fbr, andZwin}
under a power limitπU of 40 watts with other parameters fixed.
The exploration speed is65.7K cases per second.

VII. C ONCLUSION

We proposed a unified analytical model for both power
and performance. Extensive validations indicate the accuracy
of the model. Using our model, we studied the impact of
leakage power on the performance improvements for different
technology nodes. We also proposed an approach to co-optimize
power and performance and find the optimal total energy. The
implementation of our model achieved a fast exploration speed
of 65.7K cases/sec into a space containing15+ parameters.

Because of its completeness, flexibility and efficiency, our
model should be a useful tool for designers to make power-
aware decisions at early stages of design.
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