
Efficient Floating Point Precision Tuning for Approximate Computing

Nhut-Minh Ho1, Elavarasi Manogaran1, Weng-Fai Wong1, and Asha Anoosheh2

1School of Computing, National University of Singapore
e-mail: {minhhn,elamano,wongwf}@comp.nus.edu.sg

2Dept. of Electrical Engineering & Computer Sciences, University of California, Berkeley
e-mail: asha@berkeley.edu

Abstract— This paper presents an automatic tool-chain that
efficiently computes the precision of floating point variables down
to the bit level of the mantissa. Our toolchain uses a distributed
algorithm that can analyze thousands of variables. We success-
fully used the tool to transform floating point signal processing
programs to their arbitrary precision fixed-point equivalent, ob-
taining about 82% and 66% average reduction in resources when
compared to the double precision and single precision versions,
respectively.

I. INTRODUCTION

Floating-point arithmetic is ubiquitous and convenient in
computing. However, with generally only two sizes, i.e.,
single- and double-precision, available for selection, it can
lead to wastage in compute cycles (and hence energy), as well
as storage space. Recognizing this, the latest processors are
starting to introduce shorter precision floating point formats.
Nvidia’s upcoming general purpose graphic processing unit
(GPGPU) computing architecture will support half-precision
floating-point arithmetic natively to target certain application
domains [4]. The FPGA community has also recognized this,
and the use of lower precision choices in FPGA devices in-
cluding fixed-point and shorter floating-point arithmetic [9, 14]
have been suggested. Furthermore, there have been active re-
search on variable precision formats, especially for field pro-
grammable processors [11], giving rise to the field of approxi-
mate computing.

Utilizing all the multiple precision choices effectively neces-
sitate precision analysis. However, without proper tool sup-
port, precision analysis can be complex and tedious, and in
particular, difficult to scale to larger and more complex ap-
plications. Unfortunately, today’s precision analysis tools ei-
ther produce conservative results [3], or can only deal with
very small code sizes [13, 17]. In this paper, we will intro-
duce an efficient tool-chain to support precision tuning not only
for floating-point programs running on CPU but also for fixed-
point programs on different architectures. It is a distributed
search that support multi-purpose precision tuning. The tool-
chain can yield result in less than a second for more than half of
our experiments. The result is for arbitrary precision and hence
can be used for any precision formats available in the actual
hardware. Apart from comparing the result with the precision

tuning for large programs, we also showed how our toolchain
can be applied to fixed-point conversion.

II. RELATED WORK

Approximate computing is well etablished, and we refer the
reader to detailed surveys of the whole field [24]. We shall only
examine a small subset of works that are most relevant to the
work described here.

One direction of work in the reduction of floating point pre-
cision uses code profiling to track the range of variables [10] or
in search algorithms [17]. These techniques are either conser-
vative or failed to scale up to large programs. Recently, using a
similar profiling approach, Precimonious [23] became the first
tool to be able to analyze considerably large programs. The
tool was later augmented with blame analysis [22] to further
improve performance. Most of these tools automatically deter-
mine the best mix of single or double precision for code. We
differ from these techniques in being able to tune for an arbi-
trary number of precision bits for the floating point mantissa.

Approximation in circuit synthesis attempts to minimize
area, and energy under some error constraints. In the early
days, when floating point units were too resource heavy to be
implemented in many devices including FPGAs, fixed point
arithmetic was used. Apart from search-based wordlength op-
timization proposed in [8], Gaffar et al. proposed a unified
approach for bitwidth analysis for both floating point and fixed
point designs through the use of automatic differentiation [13].
Techniques and tools such as [19] use interval arithmetic and
affine arithmetic to calculate the range and precision of float-
ing point variables. The most recent work in high level synthe-
sis of approximate computing circuits that are related to ours
includes [20], [21]. Most of these techniques perform conser-
vative approximations on computations which could lead to an
over-estimation and over-provisioning of hardware resources.
Our tool can be seen as a uniform solution for both software as
well as circuit synthesis.

III. OVERVIEW

Given an application’s source code, we first rewrite the pro-
gram into one that uses a arbitrary-precision version that uses

GNU MPFR (GNU Multiple Precision Floating-Point Rou-
tines) [12]. We could have also used any similar library. The
rewriting process itself is done using a modified version of the
C syntax parser and code generator pycparser1. Because
intermediate results are present during the execution, we also
introduced an intermediate variable for each binary operation
that has MPFR operands. The rewritten program will obtain
the precision value of each variable from a configuration file
at the beginning of each execution to initialize all the required
MPFR variables. This is then used in the search which is im-
plemented in Python. As the search proceeds, only the external
configuration file will be modified before each run. After ob-
taining the search result, we can choose to further refine the
result based on some statistical features, or end the search. The
whole process is automatic and parallelizable, with little to no
human interaction, depending on the application.

IV. ARBITRARY-PRECISION TUNING

This section presents the key components of our toolchain
for arbitrary-precision tuning. In this paper, by ‘floating-point
precision’ we are referring to the precision of the mantissa.

A. Problem formulation

A given program has N variables X = {x1, x2, . . . , xN},
each having the (same) upper-bound U and lower-bound L of
precision. For our work, we set the L = 4 and U = 53
(double precision). Assigning each xi to a precision pi bits
in its mantissa, L ≤ pi ≤ U, i ∈ 1, N , we get a vector
P = {p1, p2, . . . , pN}. For convenience, we shall use P to
denote the entire array where P [i] = pi. Let δ be the error in-
duced by running the program with precision P . The δ value is
calculated differently depending on the original program. We
define the whole process of running a program with precision
P , and deriving the output error as the function δ = F (P). The
target of the search is to find the smallest precision possible for
each variable while keeping δ ≤ ε, some user given bound. Be-
fore describing the algorithm, we need to introduce the concept
of an influence group.

Definition IV.1 Consider the dependency graph of a program,
the influence group G[i] is the list of variables along some pro-
gram path from xi to the last variable that is affected by the
value of xi.

G[i] is a simple way of capturing the impact of changing the
precision of variable xi on other variables.

B. Distributed search algorithm

Our search algorithm consists of 2 phases, both paralleliz-
able. In the pseudo-code (Algorithm 1), we marked the paral-
lelizable loops as MPI Parallel. The number of parallel MPI
threads is set to N . To discuss the theoretical upper-bound of
run time of each step in the following explanation, we shall as-
sume that the network delay and synchronization time of the
algorithm is negligible compared to the execution time of the
target program. This assumption is true in practice as we target

1https://github.com/eliben/pycparser

large running programs that take minutes or hours to complete
one execution. The time unit referred in this section is the exe-
cution time of the target program.
Algorithm 1 Heuristic precision tuning

1: procedure ITERATIVE SEARCH . main procedure
2: MWL0 ← {L1, L2, . . . , LN} . initialize
3: P0 ← {U1, U2, . . . , UN} . initialize
4: repeat
5: MWLk ← ISOLATED DOWNWARD(MWLk−1, Pk−1)
6: Pk ← GROUPED UPWARD(MWLk)
7: until Converged
8: return Pk

9: end procedure
10: procedure ISOLATED DOWNWARD(MWL, P)
11: Ptemp ← P
12: for i← 1, N do . MPI Parallel
13: Ptemp[i]← BINARYSEARCH(MWL[i], P [i], P, i)
14: end for
15: return Ptemp

16: end procedure
17: procedure GROUPED UPWARD(P)
18: δmin ← F (P)
19: ∆← {0, 0, . . . , 0} . results from parallel threads
20: Pmin ← P
21: repeat
22: for i← 1, N do . MPI Parallel
23: Ptemp ← INCGROUPPREC(Pmin, i)
24: ∆[i]← F (Ptemp)
25: end for
26: δmin, Imin ← min value and its index in ∆
27: Pmin ← INCGROUPPREC(Pmin, Imin)
28: until δmin ≤ ε
29: return Pmin
30: end procedure

We use a similar idea of minimum word length (MWL)
described in Min+b algorithm [5] for the first step,
then exploiting the internal structure of the target pro-
gram to improve the second step. The first call to
ISOLATED DOWNWARD(MWL0, P0) in our algorithm corre-
sponds to the first phase in Min+b, except that we use binary
search combined with MPI Parallel at the variable-level to re-
duce the maximum search time to blog2(U −L) + 1c. At each
parallel thread, BINARYSEARCH(MWL[i], P [i], P, i) will find
the minimum required precision for xi while setting other vari-
ables at the precision given in P . It uses binary search strategy
in the range from MWL[i] to P [i]. The second phase of our
algorithm is a competition between different influence groups
(and there are N groups) to gain 1 bit for all members. The
group that yields the most error reduction is chosen (lines 26-
27 in Algorithm 1). This is iterated until the program satisfies
the accuracy requirement. At this point (after the first iteration
in IterativeSearch), one can simply stop the search to return
a workable result P1 with some redudant bits.

To reduce the redundant bits, we chose to reuse the
ISOLATED DOWNWARD(MWL1, P1) to find MWL2, which is
the minimum precision for each variable when the other pre-
cisions are in the P1 just obtained. We then compute an-
other feasible P2 = GROUPED UPWARD(MWL2). The pro-

cess iterates until convergence, i.e., when MWLk = Pk or
Sum(Pk) = Sum(Pk−1).

Unlike Min+b, we use actual error propagation information
from the source code. This is how we form the Grouped Up-
ward procedure. In the Grouped Upward procedure, instead of
running the program

(
N
b

)
times to get Pmin, we only need to

run N copies that can be parallelized. The cost for this sim-
plification is that redundant bits will be added to some of the
variables (because INCGROUPPREC(P, i) will increase preci-
sion of the whole influence group G[i] in P by 1 bit), which ne-
cessitates the iterative process to eliminate the redundant bits.

To get a better idea of the quality of our search result, we
reimplemented a version of Max-1 in [5], and used it to test on
the DSP programs in our benchmarks set as that algorithm does
not scale for the others of our benchmarks. The average num-
ber of bits reported by our algorithm is 6% fewer than Max-
1 in the cases we tested. In other words, our search result is
comparable to an established search algorithm for wordlength
optimization. Parallel search strategies have also been imple-
mented on GPUs [15] with additional heuristics for pruning.
The major issue of their approach is that GPU threads are
lightweight and cannot handle the complex programs that we
are targeting. The programs we tested are larger than the three
largest bechmarks in [15], and yet our algorithm only needs
less than a second to complete.

C. Statistically guided refinement for DSP programs

Using the above algorithm, the required precision vector for
a given input can be computed. For real programs, inputs are
often come from specific ranges instead of single fixed values.
Intuitively, the worse input in the given range should be used
for tuning. However, finding the worse input in a given range
is nontrivial, even if automated [6]. We shall now present a
statistically guided process to refine the result obtained from
our search algorithm that does not need the worst case input.

C.1 Percentile and average error refinement

We further refine the search result iteratively to ensure one
of two common statistical features, namely either the average
Signal-to-Quantization-Noise Ratio (SQNR), or the 5th per-
centile SQNR. Instead of spending effort on rare corner cases
of the inputs, we try to ensure the majority of the outputs will
not fall below a certain quality. The important parameter for
this refinement process is M , the size of the training set for the
iterative process. We chooseM to be not so large that the entire
process is too slow. Neither can it be so small that the results
are unreliable when generalizing beyond the training set.

The process begins with selecting a random input and using
our search procedure to get the precision vector P . We then run
the program using the P to extract the features of M inputs to
find out which is the worst input in the training set that caused
the lowest SQNR. Let’s call that worst input 1. After that, we
invoke another search on the worst input 1 to get Ptemp which
satisfies worst input 1. Then we form the new Prefined by com-
paring P and Ptemp and keeping the maximum precision for
each variable. Using the new refined precision, we repeat the
process using M inputs again, and search for the worst input
using the current precision. In the Algorithm 2, the worst seed

corresponds to worst input because we use the seed value to
generate input. In the DSP programs we tested, with M = 100,
the refinement process finished after 5-6 epochs. The refined
precision still satisfied the statistical feature when we tested
against 100,000 other random inputs beyond the training set.
Algorithm 2 Average SQNR refinement

1: procedure AVERAGE REFINEMENT(M)
2: Worst seed← Random value in[0, 1, . . . ,M − 1]
3: Prefined ← [0, 0, . . . , 0] . assign 0 for each variable
4: repeat
5: Programk ← Program(Worst seed)
6: Ptemp ← IterativeSearch on Programk

7: for i← 0, Length(Ptemp) do
8: Prefined[i]←Max(Prefined[i], Ptemp[i])
9: end for

10: for j ← 0,M − 1 do . MPI Parallel
11: Run Program(j), Record SQNRj

12: end for
13: Find Worst seed← j causes lowest SQNR
14: until Average(SQNRj) ≥ Expected Avg
15: return Prefined

16: end procedure

V. APPLICATIONS AND EVALUATION

A. Software precision tuning

First, we shall compare the search result with the enhanced
version of Precimonious [22]. Because our analysis produces
the precision value down to the number of bits, we mapped
the results back to either single or double precision for the
comparison. We choose to reproduce the result of 5 programs
have the analysis results published online by the Precimonious
team2. We used the same input files and error metrics to an-
alyze the same set of variables for each program. For a fairer
comparison, we did not use the refinement process for this first
set of experiments. To test the scalability of the algorithm,
we also analyze larger and more complicated programs from
SPEC CPU2006, PARSEC and Rodinia benchmarks. The re-
quired number of double-precision variables for 4 different er-
ror thresholds are presented in Table I. The Init column is the
number of double-precision variables in the original code, the
B+P columns contain the result of the latest version of Preci-
monious. Our search results are in the D columns. For all the
tables in this section, the cells with ‘-’ indicate that either (1)
the original benchmarks do not have that high accuracy, or (2)
the exact results are provided in the benchmarks and the orig-
inal version needs more precision than double to satisfy the
particular accuracy requirement. Speedup value entries of ‘-’
indicates that the original version performed better or just as
well as our tuned versions. Only the results of those programs
where gain performance were obtained are shown in Table II
because in some mixed precision versions of the programs,
the compiler needs to implicitly add data type conversion from
float to double, and vice versa. This adds to the overhead
at the machine code level and may diminish, or even eliminate
the speedup gained in other single-precision operations.

2https://github.com/corvette-berkeley

TABLE I
: Number of double variables

ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

Init B+P D B+P D B+P D B+P D
ep 45 42 12 42 13 42 19 - 19
cg 32 2 0 13 3 16 7 16 19

polyroots 31 13 0 13 4 13 13 13 13
sum 34 11 0 11 6 11 8 24 17
blas 17 0 0 0 0 10 5 10 9
lbm 30 - 1 - 10 - 8 - 8

myocyte 417 - 7 - 19 - 96 - 189
blackscholes 35 - 2 - 6 - - - -

TABLE II
: Speedup (%) of the tuned programs

ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

B+P D B+P D B+P D B+P D
ep - - - - - - - -
cg 7.1 15.4 7.9 15.4 7.3 17.1 7.9 -

polyroots - 4.8 - - - - - -
sum 41.5 49.5 41.5 44.3 41.5 44.3 - 31.7
blas 5.1 5.1 5.1 5.1 - - - -
lbm - 63.1 - - - - - -

Table II shows the speedup of the tuned version that had a
reduced number of double-precision variables. To measure the
speedup, we ran each program 5 times and took the average ex-
ecution time. All the program are compiled by gcc -O2. We
observe that the speedup results vary within the range of ±1%
of the means. We also run the version of the programs tuned
by Precimonious using the same setup. The results show that
our tuned programs performed just as well as, and sometimes
even better than, Precimonious. The performance impact on
the floating-point programs is similar across the tools. Some
programs can take advantage of our tool to gain as much as
63.1% in performance.

B. Discussion

In Figure 1, we present the aggregated precision result across
all the programs we tested. We group the precision of all the
variables into 12 bins. A bin labelled p covers the precision
range of [p, p + 3] bits. The vertical axis gives the number
of variables has precision results falling into the range asso-
ciated with the bins’ label on the horizontal axis. We plotted
four series with all the values from 4 different error thresh-
olds reported. The total number of variables is 2,666. This
graph yields an interesting observation on the mantissa preci-
sion required for floating point programs. The majority of the
variables only needs the precision of 4 to 7 bits (> 50% for
ε = 10−4, ≈ 30− 40% for other thresholds). From our experi-
ments, the following conclusion can be drawn: as the accuracy
requirement increases, the precision of only a small number of
variables needs to be increased. For the rest of the variables,
there is no need for anything beyond single-precision. An-
other interesting observation is that, if we have the hardware
support half-precision for these programs, there will be around
66%, 52%, 38% and 31% of variables can be converted to half-
precision with an accuracy of 10−4,10−6,10−8 and 10−10, re-
spectively. The insights from the aggregated result point to a

 0

 50

 100

 150

 200

 250

 300

 350

 400

4 8 12 16 20 24 28 32 36 40 44 48 52

N
um

be
r

of
 v

ar
ia

bl
es

Precision

ε=10-4

ε=10-6

ε=10-8

ε=10-10

Fig. 1.: Histogram of the precision required by all floating-point
benchmarks we tested on for various error threshold (ε)

promising future for approximate computing, especially using
variable floating-point hardware.

C. Overhead Cost

To measure the searching overhead, we ran the search on a
cluster of servers has 2× Intel R© Xeon R© E5-2690. We used
the number of processors equals number of variables. We first
measured Tmpfr, the execution time of the MPFR versions used
for the search algorithm as the baseline and we measured the
overhead by the ratio of the total searching time to Tmpfr. Ex-
cept for the largest program, namely myocyte, the algorithm
needs, on average, to run the input program 25.8 times to yield
the final precision result. The fastest run takes only 9 × Tmpfr.
In case of myocyte which has 417 variables, the algorithm
converges after 110.5 × Tmpfr on average. The overhead result
shows that we can expect the overhead to be approximately
≤ N × Tmpfr in practice. When the search algorithm is in-
tegrated into the toolchain, we have to take the overhead of
MPFR arithmetic into account when considering the running
time of the toolchain. Although we observed an insignificant
overhead of MPFR arithmetic on most of the experiments, this
overhead very much depends on the original code. Among 14
programs we tested (including 6 DSP programs in Section D),
there are 9 programs had the total tuning time less than 1 sec-
ond. Two experiments belonging to Blackscholes com-
pleted in 2.2 seconds, on average. The myocyte experiments
ran in 1 minute 45 seconds on average. The three programs,
namely ep, cg and lbm, had Tmpfr compared to the native
program were 58× slower (Tmpfr ≈ 11.5 minutes) on average.
The overhead can be attributed to our automatic transformation
process preventing the compiler from otherwise optimizing the
code. Because of the overhead in MPFR arithmetic, the av-
erage processing time of lbm, cg, ep were 303 minutes on

TABLE III
: Comparison of resources consumed and execution time

(clock cycles x clock period) for single (SP), double (DP) and
arbitrary precision (AP) implementations.

Case study
Hardware resource consumption Execution time (ns) SNR
HW SP DP AP SP DP AP (dB)

FFT16
DSPs 72 90 10

430 437 182 62FFs 7991 8351 1356
LUTs 8150 10014 3365

Chebyshev
DSPs 19 17 2

1269 1742 1019 65FFs 4186 4084 647
LUTs 5559 5661 1096

2x2 Matrix
multiply

DSPs 24 62 7
187 233 61 60FFs 2761 5495 366

LUTs 2389 6564 813

FIR
filter

DSPs 5 14 2
2346 3149 1039 61FFs 543 1097 98

LUTs 476 1213 171

IIR
filter

DSPs 2 3 1
31 35 8 63FFs 231 450 20

LUTs 215 782 98

8x8
DCT

DSPs 31 79 10
5198 6178 2958 56FFs 3395 6744 1833

LUTs 3474 8843 4604
Average all 6587 9927 2417 1577 1962 877 62
Ave. AP 66% 82% 53% 62%Impr. (%)

average. It is possible to optimize the MPFR programs to re-
duce the arithmetic overhead. Alternatively, we can use other
more efficient libraries. This is left as future work.

D. Fixed-point tuning

We also extended our tool-chain for fixed point conversion
via the Xilinx Vivado HLS Design Suite. Successful fixed point
precision tuning suggests that our search technique can be used
uniformly across floating point and fixed point designs. We
evaluated the hardware resource consumption using six case
studies in Table III by converting the floating point to fixed
point designs targeting the Xilinx Kintex 7 xc7k160tfbg484-1
FPGA. As future work, we plan to use our tool for RTL syn-
thesis of floating point operators from Xilinx LogiCORE IP [2]
or FloPoCo [11]. The bitwidth (BW) of a fixed point num-
ber is the sum of the integer bitwidth (IBW) and the fractional
bitwidth (FBW). IBW is calculated using a profile-based statis-
tical scaling procedure as described in [16] where the dynamic
range information is computed by measuring the mean, vari-
ance and standard deviation of the variables. These are then
propagated up in a bottom up fashion. The dynamic range is
estimated using the relation,

R(x) = max{(|µ(x)|+ n× σ(x)), Amax|x|}

where µ(x), σ(x) and Amax|x| is the average, standard devia-
tion and absolute maximum value, respectively, of a given vari-
able x. Unlike [16] where a larger value of n that overestimates
the range is used, we set n = 1. Our measured ranges for up
to 1000 random numbers generated within our predefined input
range showed that no overflow will occur. For FFT16,FIR and
IIR filters, we use the input dynamic range of (−1, 1), and the
input to the 2 × 2 matrix are in the range (0, 1). For Cheby-
shev approximation, we implemented the approximation of the

function sin(x) , the coefficients and the value of x are in the
range (−1, 1) and [0, π] respectively. The IBW of the fixed
point designs are calculated from the range results using,

IBWx = dlog2(R(x))e+ α, α =

{
1, frac(log2(xmax)) 6= 0

2, frac(log2(xmax)) = 0

where xmax is the maximum value of the variable x observed
during profiling [18]. The precision results obtained from our
presented search algorithm and average SQNR refinement pro-
cess are used as the FBW. The SQNR error metric is used to
evaluate the accuracy of the arbitrary precision output against
the original double precision code. Unlike most of previous
works [7] that aims to achieve a higher SQNR value by us-
ing higher target precisions, our aim is to reduce the resource
consumption whilst staying within a given accuracy bound for
the results. Most previous works used an average SQNR value
of 60 to 80dB. For this reason, we fixed the error bound of
our floating point precision search to be within these two val-
ues. After conversion to fixed point, we obtained an SQNR of
around 56 to 65 dB.

VI. CONCLUSIONS

We presented an algorithm for finding the minimum man-
tissa precision in floating point code assuming bounds on the
output error are given. The algorithm’s novelty lies in the use of
program’s high-level structure information to guide the black-
box search in such a way that is both scalable and yet produces
high quality results. The proposed search algorithm is not only
fast and parallelizable, but also produces results comparable to
that obtained by fine-grain wordlength optimization methods.
It has been implemented in a toolchain, and we have shown
how its arbitrary precision results can be used in both optimiz-
ing floating point code as well as for fixed point conversion.
This provides a new alternative for the latter. For smaller dig-
ital signal processing programs, our tool runs in less than a
second. We plan to extend the work using more efficient multi-
precision libraries, as well as other optimizations to further im-
prove the tool’s end-to-end delay. The tool is available under
MIT license [1].

REFERENCES

[1] https://github.com/minhhn2910/fpPrecisionTuning.

[2] LogiCORE IP floating-point operator v7.0.

[3] A. W. Brown, P. H. Kelly, and W. Luk. Profiling floating point value
ranges for reconfigurable implementation. In Proceedings of the 1st
HiPEAC Workshop on Reconfigurable Computing, pages 6–16, 2007.

[4] I. Buck. nVidia’s next-gen pascal gpu architecture to provide 10x
speedup for deep learning apps., 2015.

[5] M.-A. Cantin, Y. Savaria, and P. Lavoie. A comparison of automatic
word length optimization procedures. In Circuits and Systems, 2002.
ISCAS 2002. IEEE International Symposium on, volume 2, pages II–
612. IEEE, 2002.

[6] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, and A. Solovyev. Effi-
cient search for inputs causing high floating-point errors. In ACM SIG-
PLAN Notices, volume 49, pages 43–52. ACM, 2014.

[7] J. Chung and L.-W. Kim. Bit-width optimization by divide-and-conquer
for fixed-point digital signal processing systems. Computers, IEEE
Transactions on, 64(11):3091–3101, 2015.

[8] G. A. Constantinides, P. Y. Cheung, and W. Luk. Wordlength optimiza-
tion for linear digital signal processing. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 22(10):1432–1442,
2003.

[9] M. Courbariaux, Y. Bengio, and J.-P. David. Low precision arithmetic
for deep learning. arXiv preprint arXiv:1412.7024, 2014.

[10] F. De Dinechin, C. Lauter, and G. Melquiond. Certifying the floating-
point implementation of an elementary function using Gappa. Comput-
ers, IEEE Transactions on, 60(2):242–253, 2011.

[11] F. De Dinechin and B. Pasca. Designing custom arithmetic data paths
with flopoco. IEEE Design & Test of Computers, 4(28):18–27, 2011.

[12] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann.
MPFR: A multiple-precision binary floating-point library with correct
rounding. ACM Trans. Math. Softw., 33(2), June 2007.

[13] A. A. Gaffar, O. Mencer, and W. Luk. Unifying bit-width optimisa-
tion for fixed-point and floating-point designs. In Field-Programmable
Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on, pages 79–88. IEEE, 2004.

[14] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan.
Deep learning with limited numerical precision. arXiv preprint
arXiv:1502.02551, 2015.

[15] N. Kapre and D. Ye. GPU-accelerated high-level synthesis for
bitwidth optimization of FPGA datapaths. In Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 185–194. ACM, 2016.

[16] S. Kim, K.-I. Kum, and W. Sung. Fixed-point optimization utility for
C and C++ based digital signal processing programs. Circuits and Sys-
tems II: Analog and Digital Signal Processing, IEEE Transactions on,
45(11):1455–1464, 1998.

[17] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. LeG-
endre. Automatically adapting programs for mixed-precision floating-
point computation. In Proceedings of the 27th international ACM con-
ference on International conference on supercomputing, pages 369–378.
ACM, 2013.

[18] D.-U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk, G. Constan-
tinides, et al. Accuracy-guaranteed bit-width optimization. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
25(10):1990–2000, 2006.

[19] D.-U. Lee, A. A. Gaffar, O. Mencer, and W. Luk. MiniBit: bit-width
optimization via affine arithmetic. In Proceedings of the 42nd annual
Design Automation Conference, pages 837–840. ACM, 2005.

[20] C. Li, W. Luo, S. S. Sapatnekar, and J. Hu. Joint precision optimization
and high level synthesis for approximate computing. In Proceedings of
the 52nd Annual Design Automation Conference, page 104. ACM, 2015.

[21] K. Nepal, Y. Li, R. Bahar, and S. Reda. Abacus: A technique for auto-
mated behavioral synthesis of approximate computing circuits. In Pro-
ceedings of the conference on Design, Automation & Test in Europe,
page 361. European Design and Automation Association, 2014.

[22] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Ka-
han, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough. Floating-point
precision tuning using blame analysis. In Proceedings of the 38th Inter-
national Conference on Software Engineering, pages 1074–1085. ACM,
2016.

[23] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough. Precimonious: Tuning
assistant for floating-point precision. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, page 27. ACM, 2013.

[24] Q. Xu, T. Mytkowicz, and N. S. Kim. Approximate computing: A sur-
vey. IEEE Design & Test, 33(1):8–22, 2016.

