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Abstract

In embedded systems, performance and power are im-
portant inter-related issues that cannot be decoupled. Ex-
pensive and extensive simulations in a processor design
space are usually required to verify whether a design meets
both performance and power requirements. In this paper,
an analytical co-optimization approach based on an inte-
grated workload, performance and power model for mod-
ern processors is described and studied. A design space
consisting of more than 15 architectural and workload pa-
rameters can be quickly explored for co-optimization. Val-
idation with measured results obtained from simulators as
well as physical processors showed that the model has a
good degree of accuracy. We shall describe the details of
approach and the model, and show how to apply the ap-
proach to the problem of co-optimizing the power and per-
formance of processor design. With the completeness, flex-
ibility and efficiency, our approach provides clear insights
into the tradeoffs of designs for performance and power.

1 Introduction

In the era of mobile and pervasive computing, embed-
ded systems are experiencing ever more complicated ap-
plications migrated from desktop platforms. The computa-
tion complexity of these applications requires higher com-
putation capabilities that traditional scalar embedded pro-
cessors may not offer. There are both academic [19] and
industrial [8] attempts on increasing the computation per-
formance by using superscalar architectures.

�This research was partially funded by A*STAR Grant 022/106/0043
and NUS Research Grant R-252-000-185-112.

Superscalar processing is the de-facto standard architec-
ture for commercial off-the-shelf microprocessors. It is a
complex scheme that involves the hardware dynamically is-
suing instructions. Modeling such processors is therefore
also a complex task. However, there are numerous advan-
tages of having a good model for such processors. Such a
model can be used to design future processors as well as to
gain insight into the behavior of applications under super-
scalar processing.

The modeling methodology we have taken includes the
usual five steps of performance modeling, namely trace col-
lection, separable components analysis, modeling and mea-
surement of machine behavior, performance validation, and
model validation [3]. Our work resembles that of Austin
and Sohi [2], Lam and Wilson [13], Dubey et. al. [6],
and Noonburg and Shen [15] in the use of similar separa-
ble components. Part of our model, i.e. the modeling of
the central (issue) window, is built on the work of Pyun et.
al. [17]. We went beyond their work by having a compre-
hensive model that accounts for all the key components of
modern superscalar processors.

Austin and Sohi [2] used dynamic dependence graphs to
expose the parallelism in program traces. The studies of
Lam and Wilson [13], and Dubey et. al. [6] were based on
probability theory and experimental simulations. One short-
coming of these models is that they do not capture detailed
dependency metrics accounting for architectural features,
such as out-of-order issue. Nonetheless, these studies gen-
erally formed the bases of analytical models of superscalar
processors. Noonburg and Shen [15] accounted for pro-
gram parallelism and machine parallelism by representing
dependencies and branch distributions in terms of probabil-
ity vectors. The caches, retirement rate, and multiple-cycle
functional units are not considered in their model. Pyun
et. al. [17] quantified the relationship among instruction is-
sue policy, dependencies in the instruction queue and func-
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tional units. The model however, did not distinguish differ-
ent classes of functional units. Karkhanis and Smith [9] re-
cently proposed a first-order performance model framework
based on miss events. An “oldest-first” priority scheme is
assumed for instruction issue, which does not model depen-
dency resolution clearly.

In a previous work [22], a queuing model is presented
for superscalar processors based on a network of Multi-
ple Class and Multiple Resource (MCMR) queues. Us-
ing this model, three classes of architecture modifications
were studied through sensitivity analysis [23, 24]. Sensitiv-
ity analysis gives qualitative insight into the nature of the
performance improvement with respect to these architec-
ture changes, thereby assessing the merits of these changes.
The more recent paper [25] further extended the previous
works to consider out-of-order issue processors. Moreover,
the model was inclusive of processor power analysis.

As far as we know, there are very few works focus-
ing on co-optimization of processor power and perfor-
mance. A possibly relevant one is done by Nakamura et
al. [14], where compiler technologies were employed to re-
duce memory accesses, consequently improve performance
and save memory power.

In this paper, we proposed a co-optimization work flow
based on the integrated power and performance model to
address the problem of co-optimization for both perfor-
mance and power consumption. The work flow allows both
partial and full parameter re-extraction during the optimiza-
tion process. Its efficiency and completeness make it a use-
ful method to explore huge design space of embedded pro-
cessors under power constraints.

We shall brief our performance model in Section II, our
power model in Section III, and validations in Section IV.
Section V will describe the co-optimization approach and
examples of applications of the approach. That will be fol-
lowed by a conclusion.

2 Performance Model

To model a generic superscalar processor, we used a net-
work of multiple-class multiple-resource (MCMR) systems.
Each stage of the pipelines contributes to the final results
of the processor. The lowest throughput of all the pipeline
stages is the bottleneck of the entire processor and deter-
mines the maximum possible throughput of the processor.
We shall now recall the main results of the performance
model [24, 25].

The throughput of the processor� is the minimum of the
service rates of decoder unit (����), central window (����),
and retirement unit (����):

� � ��������� ����� ����� � (1)

���� denotes the average decoding rate without overflow
in the central window. Let���� denote the decoding width;
��� be the average number of (non-branch) instructions be-
tween two branch instructions; ��� be the misprediction
penalty time; ���	
��		 be the instruction cache miss ra-
tio; ���	
��� be the instruction cache miss penalty time; and

���
���� be the probability of a correct branch prediction. If
��� � ����,

���� �
	�

	� � 	� � ���	
��� � ���	
��		

� (2)

where	�� 	�, and	� are linear functions of ���, ���,����,
and ���
����. The rest cases can be looked up in [24].

���� denotes the retirement rate under an in-order retire-
ment policy. Its parameters are as follows. ���� is the the
maximum number of instructions that can be retired per cy-
cle. 
 is the average dependence distance (inclusive of one
of the instruction in the dependence) between two instruc-
tions that have a data dependence relation. For 
 � ����,
���� is given below, the rest cases can be referred in [24]:

���� � ���
���	 � ����� � (3)

where ����, the average time for an antecedent instruction
to pass through the functional units, is:

���� � 


�
���

�

��� � ����� �	 � 
 ���� � (4)

where ���� � ����� ���� ���� ��� is the set of types of func-
tional units, namely the integer execution unit, the floating
point unit, the load store unit and the branch unit. �� � 
�� 	�
is the fraction of the total number of instructions that is exe-
cuted on functional unit �, and �� is the average service time
of each functional unit of type �. Typically, ���� � �	� ��,
���� � �
� ..., ��, ��	� � ��
���� � ����
��� � �	� ��
�����
and ��� � ��
���� � ���	
��� � �	 � ��
�����. The parame-
ters ��
����, ��
���� � 
�� 	� represent the probabilities of the
data cache prediction and the instruction cache prediction,
respectively.

For ����, we consider out-of-order issue processors with
multiple instruction types or classes. On out-of-order-issue
processors, any independent and ready instruction in the in-
struction window may be dispatched to an available func-
tional unit. Hence, ���� is the total sum of service rates
of functional units �� where � is an instruction type, that is
���� � ����� ����� ��	�� ���.

Given ��
������� as the probability that � instructions
of type � are issued from the window of size ���� and ��
representing the number of functional units of type �. then:

���� �

�
���

�

���

���

���
�������� �� � (5)

and ��
������� � ��
������� � �����
����, where
��
������� is the probability that � independent instruc-
tions are extracted from ���� instructions and �����
����
is the probability that at least � pipeline units of type
� are available. Detailed discussions on ��
������� and
�����
���� can be found in [25].
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Tech. stat. pwr. /tot. pwr. stat. pwr./tot. pwr. ���
without leakage opti. with leakage opti.

0.35�m 9.8% 6.6% 3.3
0.18�m 22.6% 11.7% 1.8
0.13�m 43.4% 26.9% 1.5
0.10�m 48.1% 25.5% 1.2
0.07�m 56.2% 25.1% 0.9

Table 1. Prop. of leak. power in tot. power.

3 Power Model

The power consumption of a resource consists of a dy-
namic and a static component, i.e., ����
��	 � �	�����
��	 �
��
�
��	. The static portion is given by �	�����
��	 �
�	�����
��	 � ���. The leakage current �	�����
��	 is an
exponential function of threshold voltage �� (in mV) by
Sylvester and Keutzer [20]. For any technology node, the
static power takes a usually stable portion of the total power.
Khouri and Jha [10] summarized the ratios of the static
power over the total power based on 6 different circuits. We
use the averaged ratios in TABLE I.

For the dynamic power component, we model dynamic
power as a traditional function of dynamic capacitance
(���	), the supply voltage (���) and the clock frequency (�):

��
�
��	 � ���	 � � �

�� �� � (6)

The accesses to each resource are obtained from the sim-
ulators. With total dynamic capacitance and number of ac-
cesses of a resource, we can obtain the dynamic capaci-
tance per access to the resource ���
��	� for each bench-
mark. This enables us to establish a link between the perfor-
mance model and the power model. We also need the aver-
age number of accesses to the resource per request (instruc-
tion), denoted by ��
���
��	. Then the number of accesses
a resource services each cycle ��
��	 can be obtained as:
��
��	 � ���	 ���
���
��	.

The link to power is expressed as the dynamic capaci-
tance per resource per cycle, ���	
�
��� � ��
��	 � ��
��	.
We assume ���	 to be equal to ���	
�
���, so ���	 � ���	 �
��
���
��	���
��	. With the total dynamic capacitance per
resource or ���	, we can obtain the power in 6. Explanation
on how to obtain ���	 from the performance model can be
found in [25]. The dynamic power costs of all resources
form the total dynamic power:

��
�
��� � ���� � ���� � ���� � ���� � ���� (7)
���	� � ��� � ������� � ������� �

4 Validations of the Model

For the integrated model, extensive validations against
measured results on simulators and actual processors
showed a high degree of accuracy. The performance model
attained average relative errors of 5.08% [22–24], and

5.31% [25] compared with an in-order-issue UltraSPARC-
I processor, and the out-of-order-issue SimpleScalar simu-
lator. In this paper, we extend the validation to a physi-
cal processor UltraSPARC-III [21]. Most of parameters for
our model were obtained from UltraSPARC-III processor’s
hardware performance counters. The dependency metrics
were counted with additional profiling using the PAPI li-
brary [16]. With a physical processor, it is very difficult to
tell where our model lost accuracy. Nonetheless, as far as
we know, the 17% relative error is the best, if not the only,
validation results for a theoretical model compared against
a physical processor ever reported.

The power model achieved an average relative error of
10.9% [25] when compared to full simulation. Bose et.
al. [4] pointed out that high-level models (such as those
based on instruction traces) often lack the fidelity neces-
sary to accurately reproduce the complex nature of data-
dependent micro-architecture optimizations. We believe
that our model is a step in making this possible.

5 Power and performance Co-optimization

Having modeled the power and performance in an inte-
grated manner, we can evaluate architecture configurations
under constraints of both performance and power. We start
with the details on how we extract the relevant parameters
for the co-optimization.

5.1 Parameter Extraction

To obtain the parameters, we use stand-alone profiling
tools and analyzers attached to the benchmarks running on
a physical processor or simulator. For example, the profil-
ing tool for the simulated SimpleScalar processor is “sim-
profile”. We also embedded our analyzer into the “sim-
outorder” simulator.

Most of the parameters for the model can be measured
quickly using the profiling technique. These parameters are
����,����, ���, ��	�, ���, 
, 
 ���, and �.
����,����, ���, ��	� are obtained by counting instruc-

tions in different categories and the total number of instruc-
tions. ��� is obtained by totalling the distance between two
most adjacent branch instructions. To find 
, we count
the instances of dependencies for each type of dependen-
cies. We also count the distance between an instruction and
its dependent ancestor instruction for each type of depen-
dencies. The number of instances of dependencies are also
used to obtain 
 ��� and �. Other parameters, �, ���	
��		,
����
��		 and ���
����, are collected during the simulations
of benchmarks.

To calculate � accurately, we need to check in each sim-
ulation cycle if a ready instruction, whose dependencies are
resolved, can be given an available resource for execution.
To approximate �, we just simply slide an analysis window,
whose width is the issue width, through the profiled code.
For each instruction class in the window, if the number of
non-dependent instructions is less than the number of re-
sources for the class, then we assume these instructions can
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be issued. The number of issued instructions along with the
total number of instructions give us �.

We can approximate the miss ratios ���	
��		, ����
��		

by looking up the miss ratios from Cantin and Hill’s re-
sults [5]. These ratios can also be estimated with additional
analytical cache models [7]. Alternatively, a single-pass,
multiple configuration cache simulation [18] such as the
Cheetah cache simulator that comes with SimpleScalar sim-
ulator can be used to facilitate the collection of cache miss
ratios over a broader range of cache configurations in a sin-
gle simulation. We further assumed ���
���� is equivalent
to ���	
��		. Table 2 lists the extraction time for the bench-

parameter extract. time extract. time
set (s) of equake (s) of bzip

full parameters 3778 358656
����,����, ��� , ��	�,��� , �, 197 14985

�,� ���, �
�, ��
	���		, ��
����		,�������� 3581 343671

Table 2. Parameter extraction time.

marks 183.equakewith a test input set, and bzipwith a
reference input set on a simulated SimpleScalar processor.
The input parameters are listed in Table 3 and Table 4.

Benchmark bzip2 equake gzip mcf mesa vpr
IEU1-4 45.7% 26.3 % 46.8 % 39.4 % 42.2 % 43.6 %
FPU1-4 0.0% 15.3% 0.0 % 0.0 % 7.0 % 5.6 %

BRU 15.9% 6.1% 19.6 % 2.7 % 1.0 % 1.0 %
LSU 28.5% 41.5% 23.8 % 48.2% 53.4 % 53.4 %
� 1.996 1.955 1.983 2.016 1.873 1.911
��� 7.26 6.69 4.38 3.65 4.18 4.74
� ��� 0.562 0.504 0.627 0.620 0.425 0.589
���� 1.972 2.403 1.985 2.085 2.248 2.187
� 0.438 0.4962 0.3729 0.3802 0.5755 0.5178
� 0.991 0.975 0.997 0.995 0.95 0.983

��
	����		 0.0110 0.0343 0.0008 0.0038 0.0296 0.0067
��
����		 0.0227 0.0552 0.0603 0.1589 0.0221 0.0459

Table 3. Characteristics of the benchmarks
used as inputs to our Model.

5.2 Solving the Co-optimization Problem

To co-optimize power and performance, we have to min-
imize ��
�
��� in Eq.�	��, while maximizing the throughput
in terms of number of instructions per second, i.e. � � �.
Firstly, we shall assume that the user sets an upper limit, ��
say, i.e. ��
�
��� � �� .

Within this constraint, we seek to maximize � in Eq. 1
along with varying �. In short, we would like to maximize
throughout under a power budget.

In order to find the configuration with the least energy
consumption for a computation, we look for the minimal to-
tal energy to complete the task of executing  � instructions.

Bench. bzip2 equake mcf mesa vpr
�
���
 �	��� �	��� �	��� �	��� �	���

�
�������� �	��	 �	��� �		�� �	��� �		��

�
���� �	��� �	��� �	��� �	��	 �		��

�
���� ��	�� ��	�� ��	�� ��		� ��	��

�
���� ��	�� ��	�� ��	�� ��		� ��	��

�
��	� �		�� �	��� �	��� �	��� �	��	

�
��� ��	�� 	�	�� ��	�� ��	�� ��	��

�
���
��� �	�	� �	��� �	��� �	�	� �	���

�
���
��� ��	�� ��	�� ��	�� ��	�	 ��	��

Table 4. Capacitance (in farad) related param-
eters as inputs to our power model.

Let ��
� be the upper bound for power for !, a solution
point in the space of feasible configurations. The constraint
��
�
��� � ��
� � �� must hold as we are searching for
the maximum performance �� �.

If such a point ! in the configuration space exists, then
the time to execute the application is  ���� � ��. Conse-
quently, this will also yield the minimal total energy, where
the power is ��
�
���:

"� �  � � ��
�
���������� (8)

5.3 Co-optimization Work Flow

The work flow with full parameter extraction is illus-
trated in the left part of Fig. 1. It starts with the parameter
extraction which can be done either during an application’s
execution or simulation, or from stored trace files. These
parameters are fed into the model to calculate performance
or power metrics. The next stage is to judge if these metrics
meet the design constraints on the performance or power.
Once the constraints are satisfied, the flow completes. Oth-
erwise, some of the parameters should be modified by enu-
merating. The next stage is chosen according to whether
the modified parameters affect other parameters extracted.
If it does, the next stage should be partial or complete re-
run of the extraction process. Otherwise, the next stage is
the analytical calculation.

The model parameters that do not change during the op-
timization process are ����, ����, ���, ���	
���, ����
���,
����, ����, ���
����, 
 ���, and �. The remaining ones,
namely, ����, �, ���	
��		, ����, ����, ��	�, and ���
would require re-extraction if the configuration changes.
The latter parameters can be approximated by a rerun of
profiling. For run-time efficiency, we can construct a look-
up table and use interpolation and/or extrapolation to esti-
mate these parameters. The approach we take here is that of
re-profiling by looking up tables of reference values or a re-
run of profiling. This approximation forms the another flow
shown in the right part of Fig. 1. For example, ���	
��		

can be found from Cantin and Hill’s results [5]. ����, ����,
��	�, and ��� are taken into consideration to calculate � dur-
ing the profiling run. To determine 
 ��� and �, ���� is
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Implementation
Dependent?
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Figure 1. Work flows with full parameter ex-
traction or approximate parameter lookup.

considered during the quick profiling.
It is noteworthy that it is difficult to use a physical pro-

cessor to perform the optimization. In the process of opti-
mization, changes are made to the configuration of the pro-
cessor. Therefore, modeling and simulation are the only
two choices. Of these two options, our model allows for the
immediate enumeration of the design subspace consisting
of the first set of parameters mentioned above that do not
require re-extraction. That same subspace would require
thousands of simulation runs. To explore a design space
containing both sets of parameters, a partial re-extraction
of parameters is required if the optimization process loops
on the affecting parameter. In this case, the model’s explo-
ration is still much faster since it takes almost no time to
explore the subspace containing the first set of parameters.

Conf. Anal. Para. Model- Simu. Simu.
Changes Power Re-extract. ling Power Time

(watts) Time (s) Time(s) (watts) (s)
orig. config. 31.10 0 2 32.85 4186
double 
��� 36.26 0 2 39.85 4186

reduce L1 28.45 3581 2 29.02 4186
inst. cache
to 64 lines

Table 5. Costs in Optimization Process.

Table 5 illustrates the costs of an optimization process
with the benchmark 183.equake. ���� is a parameter
that does not require re-extraction while changes to the L1
instruction cache will impact other parameters. While the
latter requires a partial re-extraction of parameters, the cost
is still less than the simulation cost.

5.4 Applications of the Approach

We shall demonstrate the usability and flexibility of the
approach with examples to solve different problems.
Optimizing Clock Frequency: We will now use bzip2
as an example to show how co-optimization is achieved.
To begin, we set an upper bound on the dynamic power,
��
�
� � �� watts. The co-optimized solution is obtained
by the following search procedure:

1. Read the performance values of 256.bzip2 from Ta-
ble 3 : ����� � �����, ���� � ���, ��	� � �����,
��� � ��	��, 
 � 	�����, ��� � ����, ���� � �����,
���	
��		 � ���		�, ����
��		 � ������, ��
���� �
	 � ����
��		, ��
���� � 	 � ���	
��		, ���
���� �
	 � ���	
��		�. These benchmark specific parame-
ters along with architectural parameters ����� � 	,
���� � 
, ����
��� � 
, ���	
��� � �, ���� � �,
���� � �, ���� � �� are fed into ���� �
� and ��� to
obtain ����, ����, and ���� then ��	� � ���� � ��	�,
������� and �������.

2. For the power constraint on the dynamic power, ��
�
from 25 watts down to 1 watt in steps of �	 watt do:

2.1. For each clock frequency� from 100 to 600 MHz
at a step of 100 MHz, we repeat the following steps
to obtain the maximum performance �� � under the
power constraint of 25 watts.

2.1.1. With the above performance service ratios of
resources and �, we obtain ���	 in ���, where ��
��	 is
obtained from Table 4.

2.1.2. Sum up ���	 for all components. If the total
��
�
��� is less than ��, then we have found a config-
uration within the constraints. We also note down the
performance ��� and ��
�
���.

3. Find the maximum of � � �� and its associated
��
�
��� and ��.

Optimization with Clock Only
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Figure 2. Optimal performance by varying
only clock within power constraints.
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Optimization with Clock and Other Parameters
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Figure 3. Optimal performance by varying
clock and others within power constraints.

The X axis in Figure 2 and Figure 3 indicates different
optimization ‘cases’ where variant power constraint, and a
combination of optimization choices. In Figure 3, in ad-
dition to clock frequency, we tried varying a number of
other parameters including ����, ����, ���, ����, ����
���,
���	
���, ���	
��		, ��
����, ��
���� and �. Figure 2 only
shows the varying clock with all others constant.

For example, the first optimization case in Figure 2
shows the impact of varying only the processor clock on
the optimization. This first case includes a power constraint
��
� of 25 watts, clock frequencies range of 100 to 600MHz
and other fixed parameters regarding the configuration and
the benchmark. The Y axis shows the product of maximum
throughput and clock frequency under power constraint.

The results show the dominance of clock frequency in
the determination of optimal solution. By varying the clock
frequency alone within the range of 100 to 600 MHz, we are
able to obtain optimal ��� until the power limit ��
� be-
comes less than 3 watts (the 22nd case in Figure 2). There is
no solution beyond this ��
�. The results indicate the clock
frequency alone in the range of 100 to 600 MHz is effective
to lower the power consumption till the constraint of 7 watts
in the 22nd case. Figure 3 shows the co-optimization based
on the combination of clock frequency and 10 architectural
parameters can further improve the maximum throughput
in a constantly declining curve. Besides, the variations of
other architectural parameters together with the clock fre-
quency produce about a 7% higher maximum � � � than
the clock alone satisfying all power constraints. This is due
to the fact that the variations allow for a higher actual power
consumption, which is closer and yet still below the power
limit, a higher throughput can be obtained. As in the case of
process technology, supply voltage by itself does not affect
the throughput as it is not involved in the calculation of the
throughput.
Minimizing Energy by Changing Level 1 Instruction
Cache: We now use 183.equake as an example to il-
lustrate how the configuration with the minimal total en-
ergy can be found. The benchmark 183.equake has a

total of 	�
��	 � 	�� instructions with the test input set.
We set dynamic power limits ��
� to be less than 33 watts
and �=600MHz. We explore design subspace in which the
number of lines in a direct mapped L1 instruction cache,
whose line width is 32 words, is varied while the other pa-
rameters remains unchanged. Here, the cache miss ratios
are obtained through simulation run although it would be
possible to use other analytical cache models [12] to ob-
tain estimates. There are five solutions listed in Table 6 in

#lin ��
	���		 �� �
�

� ���� ���� max.(
 ��)
64 10.63% 62.70 62.57 26.56 27 5.799 ����

128 6.86% 47.64 47.97 27.16 28 7.805 ����

256 3.11% 49.58 50.80 28.43 29 7.850 ����

512 0.48% 53.45 56.29 30.78 31 7.882 ����

1024 0.38% 53.72 56.65 30.93 31 7.883 ����

Table 6. The impact of L1 instruction cache
on total energy.

which the second solution has the minimum of 47.64 joules.
In other words, total energy is minimized with a L1 instruc-
tion cache of 128 lines. In Table 6, #lin, ���	
��		, "�, "

�

�,
����, max.(�� ��, stand for the number of lines, the miss
ratios, analytical energy (in joules), simulation energy (in
joules), analytical power (in watts), and maximum � � �,
respectively.

Other than our analytical method, a brute force method
by simulation takes more than ����� seconds to obtain
these above results for the benchmark 183.equake given
the test input set. The method even takes much more time
given a longer input set such as the reference input set.
Impact of Leakage Power on the Optimization: As the
feature size decreases with scaling down technologies, the
leakage power starts to account for a significant portion of
the total power budget. Following our approach, we can il-
lustrate the impact of leakage power on the maximum clock
frequencies and dynamic power consumptions. The results
are shown in Fig. 4. The proportions of the leakage power
in the total power are reported by Khouri and Jha [10]. In
this showcase, we varied the clock frequency while keeping
the rest of the parameters unchanged.

Fig. 4 shows that the leakage power has a more sig-
nificant impact on 	
� # technology nodes than 	��nm.
For 	
�nm technology nodes without optimization on the
leakage power, the maximum clock frequency allowed is
	��GHz. Once the leakage power is improved as in [10],
the clock frequency allowed is extended to 	��Ghz. In com-
parison, the 	��nm technology nodes only see an extension
from 	�
Ghz to 	��Ghz.

6 Conclusion

In this paper, we proposed a co-optimization approach to
both performance and power issues based on a unified ana-
lytical model that accounts for both power and performance.
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power of 25W with 130nm & 180nm tech.

That model stands extension validations on simulators and
physical processors.

In our co-optimization process, the costs to extract pa-
rameters for our model are low as instruction traces are an-
alyzed once to obtain a set of key parameters which char-
acterize the traces. We showed how the approach works
to quickly explore large portions of the design space and
co-optimize both power and performance. With this ap-
proach, searching for the processor configuration that yields
the minimum energy under constraints becomes doable.

As demonstrated in the exercises on clock settings, leak-
age power and cache configuration optimization, the co-
optimization approach revealed interesting insights that are
consistent with conventional wisdom and experiences in
processor design. We believe our approach will be a useful
tool for designers to handle the dilemma between satisfying
computation demands and power budgets.
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