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Abstract

It is well known that dynamic typing in languages like Lisp is costly in terms of

performance. Besides the cost of tag checking, the other major source of ine�ciency

comes from the need to place and retrieve data from dynamically allocated objects,

i.e. boxing and unboxing. This makes it unacceptable in general to write numerical

code in Lisp. Such programs involve \tight" loops in which boxing, unboxing and tag

checking will dominate the computation time. With advances in the compilation of

Lisp programs, it has been suggested that type checking and inference can be used to

alleviate the problem. In this paper we shall examine a sub-problem, namely using

type inference to aid compilation of numerical intensive Lisp code. A type inference

algorithm for 
oating point operations will be described. This has been implemented

in a Scheme compiler. Implementation issues and performance results on fairly large

numerical code will also be reported. The results suggest that signi�cant performance
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gains can be obtained. It is our hope that as an augmentation to other general type

inferencing scheme, it will contribute towards the realization of highly optimizing

Scheme compilers.

Keywords: Scheme, tag optimization, type inference, compilers

1 Introduction.

Lisp is a dynamically typed language and it is well known that tag handling consumes a

substantial amount of time in the execution of Lisp programs [1]. Generally, this can be

attributed to two classes of operations:

� Boxing and unboxing: these are operations to, respectively, place and retrieve (\raw")

data in allocated and tagged objects and return the appropriate references. Boxing

is necessitated by polymorphism and the need for uniform representation. It can

also be found in statically typed languages. In many Lisp implementations, bits in

integers, for example, are sacri�ced for tags. For example, one popular trick is to use

the lowest two bits of a 32 bit word to indicate if the word is an integer or a pointer.

While this does not involve additional memory allocation, for the purpose of this

paper, we shall consider it to be a form of boxing as shift operations are needed to

recover the actual integer.

� Dynamic tag checking: this refers to the need to ascertain the types of operands

before invoking the appropriate operators.

This has prompted research into the use of type inference in the compilation of Lisp

programs [2]. The basic strategy is based on the following approach:
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1. extract as much type information from a Lisp program as possible either by some

automated means or with user assistance in the form of type declarations;

2. perform type inference either within functions only (local type inference) or both

within and between functions (global type inference);

3. for those data items whose types are completely determined, they may be unboxed

and the operators changed appropriately.

In the past, research focused on the application of this technique to all data in a Lisp

program. In this paper, we shall focus on a subproblem which turns out to be easy to

solve and reaps signi�cant performance gains in many situations. Speci�cally, the problem

addressed is that of type inference over arithmetic operators. This paper describes an

algorithmic approach for the optimization of 
oating point operations in Scheme programs.

The approach is based on control 
ow analysis.[3]

(do ((i 0 (+ i 1)))

((>= i n))

(vector-set! X i (+ (vector-ref Y i)

(* A (vector-ref X i)))))

Figure 1: Fragment of the SAXPY/DAXPY Loop in Scheme.

We shall now use a small example to hint at the potential gains involved. Fig. 1 shows

a fragment of the SAXPY/DAXPY loop commonly found in many numerical application,

here coded in Scheme. At least in theory, the vector accesses can be made almost as

e�cient as that of C or Fortran. The main problem is in the arithmetic operations. Take

for example the multiplication operator. Because of dynamic typing, it is necessary to
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check the types of A and Xi and then decide on the appropriate multiplication operations

to use in each iteration of the loop. Furthermore, after the multiplication, it is necessary

to box the result before the addition operation can begin. The addition operator will

have to do the same operations of checking the types of Yi and the result returned by the

multiplication, decide on the appropriate operation to use and then box its result before

returning. There are therefore four unbox and two box operations during each iteration

of the loop. In all practical implementations, this overhead will cost signi�cantly in terms

of performance especially when compared to the two actual arithmetic operations. Since

numerically intensive programs spend a lot of time in loops like this, the overall overhead

of boxing and unboxing is very signi�cant. If we can decide, during compile time, the

actual arithmetic operators to be used and use unboxed data instead of boxed ones, the

saving will therefore be signi�cant.

In our work, we made the following assumptions:

A1: Type inference is applied only as an optimization. The algorithm

was designed and implemented with the assumption that the input

program is correct.

A2: Numbers are either �xed point integers and (double precision) 
oating

point numbers. This reduces the overloading overheads of the arith-

metic operators and simpli�es the implementation. In particular,

\bignums" are not considered. It is very di�cult to detect over
ow

of integers into \bignums" during compile time and this severely lim-

its the deployment of machine representations as unboxed values and

thus the use of machine-supported arithmetic operations.

A3: Minimal user intervention.
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In section 2, we shall outline the algorithm. This is followed by the discussion of how

it was implemented in a public domain Scheme compiler. In section 3, performance results

will be reported and discussed. This is followed by a brief survey of related work done to

highlight the contribution of this paper and the conclusion.

2 Floating Point Type Inference.

The type inference requires two passes through the source program. The basic steps in

the type inference algorithm is as follows:

1. Type information extraction and program annotation;

2. Type inference and propagation;

3. Program transformation.

The details of each step will now be described.

2.1 Type Information Extraction and Program Annotation.

The �rst step of the algorithm is an attempt to associate each expression, E, of the source

program with a type variable, �E . The following are used in the description:
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Sexp = Scheme expressions

Aexp = Annotated Scheme expressions

TypeVar = type variables

Var = program variables

FuncLab = labels for function de�nitions

SimpleType = f>; Number, Integer, Float, Other, ?g

ListOpType = (op h TypeVar+ i) where op is a list operator

FuncType = (funcFuncLab h TypeVar� i �! TypeVar)

AppType = (apply FuncLab h TypeVar� i)

CallCCType = (call/cc FuncLab)

TypeSeq = SimpleType j TypeVar j ListOpType j

FuncType j AppType j CallCCType

TypeBind = TypeVar 7! TypeSeq+

VarTypeBind = Var 7! TypeVar+

The simple types are f>, Number, Integer, Float1, Other, ?g. The simple type `?' is

used to represent the `unknown type' while `>' represents `a mixture of other simple types.'

In the above, `�' denotes \zero or more occurrences in a set", `+' denotes \one or more

occurrences in a set", while `h� � �i' indicates an ordered set, i.e. a sequence. Fig. 2 shows

the type lattice we used. Since we are primarily interested in the domain of numbers,

other Scheme types such as characters, strings etc. are grouped together under the type

Other. However, we believe that our approach can be extended to these other types to

get more re�ned results.

1The entire paper is based on the assumption that numbers are either �xed point integers or 
oating

point numbers. `Bignum's are assumed not available.
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Figure 2: Lattice of Simple Types.

The annotation function, bA, of the following type,

bA : (Sexp � TypeBind� � VarTypeBind� � VarTypeBind�) �!

(Aexp � TypeBind� � VarTypeBind� � VarTypeBind�)

accepts a Scheme expression of type Sexp, the set of type variable bindings of type

TypeBind, the local environment of type VarTypeBind and the global environment also of

type VarTypeBind. The function returns a four-tuple, consisting of an annotated Scheme

expression of type Aexp, the modi�ed set of type variable bindings, local environment and

global environment.

Each annotated Scheme expression begins with a type variable. The basic idea of

annotation is to link this type variable with either a simple type, composite type or other

type variables. This is done using the semantics of Scheme such that after type inference,

it will correctly hold the type of the result of the expression's evaluation. For some simple

operators, this type variable can be bound to a simple type. This is our equivalent of the
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type extraction idea �rst given by Shivers[4]. To do this, it is necessary to have program

variables consistently bound to type variables. For instance, if the program variable x is

used in two places and if they refer to the same variable (according to the semantics of

Scheme), then we want to re
ect this in the annotation. However, it is possible that the

same variable at di�erent places in the program is assigned values of di�erent types. A

set of result type variables is then maintained so that this may be settled during type

inferencing. This is essentially a form of monovariant 
ow analysis [5] where each variable

and subexpression is associated with a set of abstract values. In contrast, polyvariant

analysis [5] uses program contours to distinguish multiple abstract values associated with

a single type variable.

Fig. 3 shows the �rst part of bA which annotates constants and variables. In the

description `E [x 7! � ]' is the functional update or extension of an environment E . In Fig. 3,

T is the type binding environment which hold the bindings of type TypeSeq to each type

variable. The local environment, E , holds the set of type variables associated with each

program variable lexically visible at a particular program point. The global environment,

G is similar to E except that it holds the bindings for global program variables. To

annotate a variable, the local environment, E , will be checked to see if there is already a

type variable bound to it. If not, the global environment, G, will then be searched. If it is

also not found there, a new binding associating the variable with ? will be made in the

global environment.

Fig. 4 shows how set! expressions are annotated. It proceeds in a manner similar

to that for variables except that instead of ?, the variable is associated with the type

variable of the expression e.
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Vectors and their operators are annotated according to Fig. 5. Essentially, the type

of a vector will be dependent on each of its elements. This is handled by associating the

type of a vector to a set of type variables. Furthermore, each vector-set! to a vector

will contribute a new type variable, namely that of the source expression, to the set. At

type inference, the type of a vector will be determined by taking the least upper bound of

the types represented by each of the type variables according to the type lattice.

2.1.1 Operators.

The annotation of operators is shown in Fig. 6. Type extraction for operators producing

integers and 
oating point numbers is shown in the �gure. For list operations, the actual

operator used is kept as part of the type information. During type inference, the operation

is attempted on the type sequence.

2.1.2 Conditionals.

Fig. 7 shows the annotation for conditionals. The type sequences of both arms of a

conditional are maintained as a set, namely f�t �fg. As an enhancement, an auxiliary

function bA0 checks the conditional test and if it is either integer? or real?, then the type

variable concerned is forced to the respective type so that more information is available

during the annotation of the body.

2.1.3 Sequence, let and lambda.

As shown in Fig. 8, the type variable of a sequence is bound to the type variable of the

last expression in the sequence, i.e. its type is exactly that of the last expression. For let,

the local environment must be extended by the newly introduced local variables before

the body can be annotated.
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Functions are typed as (funcl (�0 � � ��k �! �l)) where l is a unique label that identi�es

the de�nition of the function, �0; � � � ; �k are the type variables associated with the formal

parameters and �l is the type variable associated with the result. The body of the function

is annotated as a sequence with the proper extension of the local environment by the local

variables.

2.1.4 Function Applications.

Applications of explicit lambdas are straightforward (see Fig. 9) - each formal parameter

is given the type of the corresponding actual argument before the body of the lambda is

processed. The type of the application is the type of the last statement in the lambda

body.

Non-lambda applications are typed as (possibly sets of) (apply l 	) where l is the label

of the function's de�nition and 	 is a sequence of type variables corresponding to each of

the actual arguments. The operator is �rst annotated. Should this be a variable that is

unde�ned in both the global or local environment, a fresh function label is generated and

the global environment is extended by assuming that the function take the same number

of parameters as there are actual arguments with an unknown return type. If, however,

the operator is not a variable, i.e. it is another expression, then an auxiliary function bJ is

used to locate a set of function labels for the functions that the expression may evaluate

to. The type of the application is then a set of application types indicating the set of

possible types the result of the application may take. This method of handling function

calls is similar to Shivers' 0CFA [4].
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2.1.5 Continuations.

Calls with current continuation are typed as (possibly a set of) (call/cc l) where l is

the label of the single parameter function which is the sole argument to a call/cc. In

the case of an explicit lambda de�nition, a new function label, l say, is generated and

used in the function type sequence. The type of the result of the call/cc expression is

set to (call/cc l). The idea is that the type of the call/cc expression is determined

by the type of the formal argument in the applications of l. In the case of a non-lambda

argument to call/cc, bJ is invoked to �nd the set of possible functions that may be the

argument during runtime. The type of the result of the call/cc expression is then set to

a set of (call/cc i) where i is a member of the set returned by bJ . The details are shown

in Fig. 11.

2.2 Type Inference.

After the program has been annotated by calling bAhP ; ;; ;; ;i where P is the sequence

of Scheme expression that makes up the program, type inferencing may begin. Here

type inferencing is equivalent to the computation of the type variables. Unlike program

annotation, however, this is not quite a distinct phase. What is now possible is the

computation for the value of any type variable. However, this value may still change, as

will be apparent later, and the same inference algorithm may have to be invoked again to

�nd its new value.

Fig. 12 shows the basic algorithm for computing the �nal value, in terms of simple

types, of any type variable in a program. Note that when there is a set of possible �nal

values for a type variable, we will make use of the type hierarchy given in Fig. 2 to obtain

the �nal value which the type variable will contain. Note also how type variables which
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result from list operations are obtained. The list operation is noted down during the

annotation phase and is actually evaluated on the available arguments. Should this not

be possible, the simple type ? is returned. It may be necessary sometimes to deal only

with simple types. In this case, an operator bK can be de�ned as follows:

bK: SimpleType� �! SimpleType

bK hti =
8>>><
>>>:

t if t is a SimpleType

? otherwise

will force lists to the simple type Other.

The existence of circularity in control 
ow analysis type inference algorithms has been

noted and studied by Nielson and Nielson [3]. This happens, for example, when in an

attempt to infer the type of type variable � , we run into a recursive occurrence of itself

in one of the type sequences or � 7! � is in T and � 2 �. This implies recursion at the

source level. Termination is ensured in our inference algorithm by keeping track of all the

type variables seen in the inference process so far by the set M of bI. When an attempt

is made to infer a type variable which has already been encountered, ? is returned as the

result of the inference on the last occurrence of the type variable and the inference process

continues from that point on. This is done instead of terminating the entire inference and

returning > as the overall result because there is a chance that further inference using this

new binding may yield more precise results.

An important feature in our scheme is the automatic specialization of functions based

on the types of the arguments of the calls. A similar idea was pursued in the compiler

for Smalltalk-like language SELF [6]. The algorithm that performs the specialization is

given in Fig. 13. The basic idea is to collect all the calls to a (named) function and then

partition the calls according to the data types of the arguments. Based on the partitions,

12



new instances of the function, appropriately renamed, will be created. The names and

data types of the arguments are noted so that during the transformation phase, changes

can be made to the function calls. The idea behind doing this is that once the data types of

the arguments can be fully determined, it will create opportunites to optimize operations

in the function body. We have the following:

Theorem 1 Let T be the type binding after the function specialization phase, then for all

type variables � 2 T , bK DbI h�; T ; ;iE 2 SimpleType.

Proof: The proof is quite straightforward. First, we note that the type bindings T

produced by the annotation algorithm are strictly of the form TypeBind for any valid

Scheme program. This is possible because of the `catch-all' that produces � 7! ? whenever

there are unknown operators. For each type variable, the inference algorithm will then

produce either a SimpleType or a TypeSeq which is then reduced by bK. 2

For correctness, we informally claim that given a type variable, the inference algorithm

will at worst report an upper bound, with respect to the type hierarchy of Fig. 2, of its

`true' type.

2.3 Program transformation.

Given that we can infer type information, we are now in a position to optimize the program

by means of source-level code transformation. This is outlined in Fig. 14.

For the most part, program transformation performs the inverse operation of program

annotation, i.e. it strips the type variables from the annotated expressions resulting in an

executable Scheme program. The two major di�erences are in the handling of arithemtic

expressions and function calls. For the latter, it may be necessary to rename the call based
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on the data types of the arguments inferred.

Using the type information available, it is possible to specialize the arithmetic op-

erations based on the inferred data types of the arguments. In Fig. 14, we assume the

availability of 3 operators:

� int-op : the integer arithmetic operators, i.e. int-+, int-- and int-*, which

assume that the inputs are integers and will not do tag checking on their inputs;

� fp-op : the 
oating point arithmetic operators, i.e. fp-+, fp--, fp-* and fp-/,

which assume that the inputs are 
oating point numbers and will not do tag checking

on their inputs;

� exact->inexact : converts a number, which may be an integer or a 
oating point

number, to a 
oating point number;

In other words, the specialized arithmetic expression will do tag checking and conversion

explicitly only in cases where the data type of the argument is uncertain.

The program transformation may introduce new type bindings or change existing ones.

This will continously modify the set of type bindings on which the type inference algo-

rithm will work on. It is fairly easy to see that the termination of the inference algorithm

is not a�ected. An inductive argument can be used to argue for the correctness of the

transformation. Assuming that the inference algorithm is correct for a given annotated

program and its associated type binding, then by the principle that, for arithmetic opera-

tors considered, the result of its application would be a 
oating point number should any

of its operand be a 
oating point number.
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3 Implementation Issues.

We have implemented the above algorithms in Scheme!C [7] and have proceeded to

modify the Scheme!C compiler to support the new arithmetic operators. It turns out

that e�cient implementations of these operators are crucial for performance. In addition,

some other optimizations are done.

In Scheme!C , the arithmetic operators are implemented in two levels. First, as a

macro, the compiler will issue code which will check if both arguments are integers. If

they are, the operation can be performed immediately. If not, a call will be made to the

corresponding routine in the runtime library. Fig. 15 shows how the `+' operator is imple-

mented in the Scheme!C runtime library. By checking the tag of the two arguments, the

appropriate add operation together with the necessary type conversion (here represented

as macros) will be performed.

In our implementation, we augment the original Scheme!C with new arithmetic op-

erations that will not do any tag checking. This is similar to Soft Typing [8] but with

explicit coercion where necessary. Only in the face of uncertainty will the type inference

program emit explicit type checks.

Another important optimization has to do with intermediate results and can be illus-

trated by the following example:

(* (+ A B) (- C D))

This would translate to (1) unbox A, (2) unbox B, (3) add, (4) box the result, (5) unbox

C, (6) unbox D, (7) subtract, (8) box the result, (9) unbox the result of (+ A B), (10)

unbox the result of (- C D), (11) multiply, and (12) box the result. Immediately we see

that operations (4), (8), (9) and (10) can be eliminated if the results of the addition and
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the subtraction had stayed unboxed. Not only is the number of tag checking and boxing

operations reduced, so too are the necessary memory accesses. Accordingly, the type

inference program will emit new operations for intermediate computation that in addition

to working with unboxed data will produce unboxed results in special variables which can

then be immediately used by the operator at the next level.

4 Performance Results.

Having given the type inference algorithm and outlining its implementation in Scheme!C

we have evaluated the performance gains using three numerically intensive programs. They

are:

� Linpack. The famous Gaussian elimination with partial pivoting benchmark was

translated from its C version into Scheme. The double precision version was used as

Scheme!C uses double precision internally.

� mp3d. This is the molecular collision simulation program that is part of the

SPLASH [9] suite of benchmarks. The whole code was translated from C into

Scheme. The type inferencing was applied only to the code for advancing the simu-

lation which accounts for the bulk of the computation.

� Simplex. This is a program that solves a system of inequalities using the simplex

method.

The performance results are given in Table 1. The tests were conducted on a DEC

3000/300L workstation with a 100 MHz A21064 Alpha CPU running OSF/1 with only

one user logged in.
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In Table 1, the column for Opt-1 indicates the performance with type inferencing

only whereas the column for Opt-2 indicates the combined type inferencing together with

the elimination of the boxing and unboxing of intermediate results as mentioned in Sec-

tion 3. The `improvement' is de�ned by (jSpeed of original � Speed of optimized versionj)

� Speed of original.

The results indicate that a performance gain of 5% to 25% can be obtained depending

on the application. With Opt-2, there is an additional gain. Eliminating unnecessary

boxing and unboxing operations also reduces the overall memory requirements. This is

shown by the reduction in the number of calls to the garbage collector (except for one case

in mp3d which we are unable to explain). This allowed Linpack to be executed with n

up to 400. This partially accounts for the performance improvement. In the best case, we

obtained more than twice the original performance.

4.1 A Note on Function Calls.

The careful reader would have observed that the number of calls to the garbage collector

is di�erent even between the original and the Opt-1 version which introduces 
oating

point operations explicitly. Upon closer scrutiny, this revealed an important characteristic

of our algorithm. Recall that the algorithm will examine each function call and based

on the type information inferred will instantiate new versions of the same function. For

example, let A(x) be a function which takes one argument. Suppose there are two calls

to A, one with A(s) and one with A(t). In general, we cannot guarantee that the type of

s will be identical to that of t. If we �nd that s is a 
oating point number, then we can

optimize the body of A accordingly. However, it may turn out that we are unable to say

yCrashed after 283 calls to the garbage collector.
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the same about t. In this case, we need two versions of A to cater for both calls.

Unfortunately, the above can have a potentially negative impact on tail recursive calls.

Scheme!C optimizes tail recursive calls by replacing them with goto statements. The

above phenomenon can prevent such an optimization from taking place. For example,

both A(s) and A(t) may be tail recursive calls. However, after specialization, at best

one of them will remain tail recursive; the other being instantiated to call a di�erent

version of A. The result is a potential loss in performance and an increase in memory

requirements (which is reduced by tail recursion optimizations) and therefore garbage

collection activities. This explains the poor performance of the Simplex code in which

exactly such a situation occurred. It should be possible to detect such a situation and

then disable the specialization although this is not done currently.

5 Related Works.

The problem of tag optimization has also received constant attention from Lisp and func-

tional programming language researchers. Tag optimization in functional programming

language is done in the context of polymorphic functional programming languages [10].

Most Lisp compilers such as ORBIT [11] or Screme [12] will do local tagging optimiza-

tions [1]. TICL [13] is a type system for Common Lisp but it relies on user declarations.

Type inference in high level dynamic typed languages is not a new problem. Early

works on this problem include [19], [14] and [15]. Their approaches are mainly based on

data 
ow analysis. Shivers' [4] and Henglein's [2] works are the inspiration for ours. In

particular, our approach is similar to Shivers' 0CFA [4], which does control 
ow analysis

on distinct call sites, except that

� we do not work with a continuation-passing 
avor of Scheme;
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� we do not keep explicit call-sites;

� we use the type information for specialization as well as tag optimizations;

Henglein tackled the problem of tag optimization from a global perspective without re-

sorting to control 
ow analysis. His method was particularly e�ective for eliminating tag

checking in list operations. In EuLisp [16], all these works were combined into a practical

system.

Berlin [17] uses partial evaluation and symbolic manipulation to specialize numerical

programs. His method requires the symbolic execution of the input program at compile

time whereas ours only does this for list operations. He also did not consider the problem

of boxing and unboxing, although he did brie
y mention the potentials for performance

improvement. This was taken up by SUA [18] which optimizes boxing. However, uniform

representation is sacri�ced. Furthermore, continuations and function specialization are

not considered.

Our work di�ers from these earlier works in that

� the focus is on the arithmetic operators;

� the type inference is done from a global perspective;

� we investigated the necessary modi�cations that must be done internally to the

compiler;

� we have implemented and tested the algorithm on medium size applications;

Our work should be seem as an augmentation for the suite of type optimization techniques

that have been proposed.
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6 Conclusion.

In this paper we described a simple type inferencing mechanism applicable to 
oating

point computation in full Scheme - with side-e�ect operators, vectors and continuations.

Through a three step process of annotation, inference and transformation, 
oating point

operations are optimized. This improves the performance of 
oating point Scheme code

by reducing the type checking operations, especially in numerical loops. Memory require-

ments are also reduced thereby reducing the number of times of garbage collector have to

be invoked.

We have implemented the algorithm and tested it out by modifying the Scheme!C

compiler. We have found that on some applications we were able to double the perfor-

mance. As a reference, the optimized C version of the double precision Linpack benchmark

did a little less than 10 M
ops. The Scheme version optimized by our type inference sys-

tem achieved a little better than 1/20 of this performance. Our aim is to reduce the

performance gap between Lisp and other procedural languages in every aspect of general

purpose computing. Much remains to be done but we hope that the algorithm reported

in this paper will be a contribution towards this goal.
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Integer constants:bAh�; T ; E ;Gi where � is an
integer constant

=) h(�� �); T [�� 7! Integer]; E ;Gi

Floating point constants:bAh�; T ; E ;Gi where � is an

oating point constant

=) h(�� �); T [�� 7! Float]; E ;Gi

Other constants: bAh
; T ; E ;Gi =) h(�
 
); T [�
 7! Other]; E ;Gi

Variables:bAhx; T ; E ;Gi where x is a
variable

=) if 9�x:(x 7! �x) 2 E
then

h(�x x); T ; E ;Gi
else

if 9�x:(x 7! �x) 2 G
then

h(�x x); T ; E ;Gi
else

h(�x x); T [�x 7! ?]; E ;G[x 7! �x]i

Figure 3: Annotation Algorithm for constants and variables.
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set!: bAh(set! x e); T ; E ;Gi =) let hE0; T 0; E 0;G0i = bAhe; T ; E ;Gi
in

if 9�x:(x 7! �x) 2 E
then

if �e = �x
then

h(�E set! x E0);
T 0[�E 7! Other]; E [x 7! �e];G0i

else

h(�E set! x E0);
T 0[�E 7! Other]; E [x 7! �x [ f�eg];G0i

if �x is a set

h(�E set! x E0);
T 0[�E 7! Other]; E [x 7! f�x; �eg];G0i

otherwise

else

if 9�x:(x 7! �x) 2 G0

then

if �e = �x
then

h(�E set! x E0);
T 0[�E 7! Other]; E ;G0[x 7! �e]i

else

h(�E set! x E0);
T 0[�E 7! Other]; E ; G0[x 7! �x [ f�eg]i

if �x is a set

h(�E set! x E0);
T 0[�E 7! Other]; E ; G0[x 7! f�x; �eg]i

otherwise

Figure 4: Annotation Algorithm for set!.
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Vector constants:

bAh#(feig�); T ; E ;Gi =) let
n
hSi; Ti; Ei; Gii = bAhei; T ; E ; Gio�
T 0 = T [ (

S
i=0 Ti)

G0 = G [ (
S
i=0 Gi)

in

h# (�E fSig�) ;
T 0[�E 7! f?g [ (

S
i=0f�eig)]; E ;G

0i
where �ei is the type variable
associated with ei in Si

Vector operations:

bAh(vector feig�); T ; E ;Gi =) let
n
hSi; Ti; Ei; Gii = bAhei; T ; E ; Gio�
T 0 = T [ (

S
i=0 Ti)

G0 = G [ (
S
i=0 Gi)

in

h(�E vector fSig�) ;
T 0[�E 7! f?g [ (

S
i=0f�eig)]; E ;G

0i

bAh(make-vector k); T ; E ;Gi =) h(�E make-vector k); T [�E 7! ?]; E ;Gi

bAh(make-vector k e0); T ; E ;Gi =) let hS0; T0; E0; G0i = bAhe0; T ; E ; Gi
in

h(�E make-vector k S0) ; T0[�E 7! �e0 ]; E ;G0i

bA h(vector-ref e0 k); T ; E ;Gi =) let hS0; T0; E0; G0i = bAhe0; T ; E ; Gi
in

h(�E vector-ref S0 k) ; T0[�E 7! �e0 ]; E ;G0i

bAh(vector-set! e0 k e1);
T ; E ;Gi

=) let hS0; T0; E0; G0i = bAhe0; T ; E ; Gi
hS1; T1; E1; G1i = bAhe1; T ; E ; Gi
T = T0 [ T1
G = G0 [G1

in

h(�E vector-set! S0 k S1) ; T [�E 7! f�e0 ; �e1g]; E ;Gi

Figure 5: Annotation algorithm for vector operators.

25



Arithmetic operators:bAh(op e0 e1); T ; E ;Gi =) let hS0; T0; E0; G0i = bAhe0; T ; E ; Gi
hS1; T1; E1; G1i = bAhe1; T ; E ; Gi
T 0 = T0 [ T1
G0 = G0 [ G1

in

h(�E op S0 S1) ; T 0[�E 7! Number]; E ;G0i
where op 2 f+, -, *, /g

Operations producing integers:bAh(op e0 feig
�); T ; E ;Gi =) let hS0; T0; E0; G0i = bAhe0; T ; E ; Gin

hSi; Ti; Ei; Gii = bAhei; T ; E ; Gio�
T 0 =

S
i=0 Ti

G0 =
S
i=0 Gi

in

h(�E op S0 fSig�) ; T 0[�E 7! Integer]; E ;G0i
where op 2 fchar->integer, inexact->exact,

length, modulo, quotient,
string-length, vector-lengthg

Operations producing 
oat pointing numbers:
Similar to the above except [�E 7! Float] for op 2 fexact->inexact, sqrtg.

Operations producing other types:
Similar to the above except [�E 7! Other] for other operators.

List operations:bAh((op e0 feig�); T ; E ;Gi =) let hS0; T0; E0; G0i = bAhe0; T ; E ; Gin
hSi; Ti; Ei; Gii = bAhei; T ; E ; Gio�
T 0 =

S
i=0 Ti

G0 =
S
i=0 Gi

in

h(�E op S0 fSig�) ; T 0[�E 7! (op �e0 f�eig
�)]; E ;G0i

where op is a list operation.

Figure 6: Annotation algorithm for arithmetic and list operators.
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Conditionals:bAh(if b0 e0 e1);
T ; E ;Gi

=) let hB0; TB ; T 0B; EB; GBi = bA0 hb0; T ; ;; E ; Gi
hE0; T0; E0; G0i = bAhe0; T [ T 0B; E ; Gi
hE1; T1; E1; G1i = bAhe1; T ; E ; Gi
T 0 = TB [ T0 [ T1
G0 = GB [ G0 [ G1

in

h(�E if B0 E0 E1)
T 0[�E 7! f�E0

� � � �E1
g]; E ;G0)i

Auxiliary functions:bA0 : (Sexp � TypeBind� � TypeBind� � VarTypeBind� � VarTypeBind�) �!
(Aexp � TypeBind� � TypeBind� � VarTypeBind� � VarTypeBind�)

bA0 h(integer? e) ,
T ; T 0; E ;Gi

=) let hE0; T0; E0; G0i = bAhe; T ; E ; Gi
in

h(�E integer? E0); T0[�E 7! Other]; T 0[�e 7! Integer]; E0;G0i

bA0 h(real? e) ,
T ; T 0; E ;F ;Gi

=) let hE0; T0; E0; G0i = bAhe; T ; E ; Gi
in

h(�E real? E0); T0[�E 7! Other]; T 0[�e 7! Float]; E0;G0i

bA0 hE; T ; T 0; E ;Gi =) let hE0; T0; E0; G0i = bAhe; T ; E ; Gi
in

hE0; T0; T 0; E0;G0i

Figure 7: Annotation algorithm for conditionals.
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Sequences:bAh(begin e0 � � � ek); T ; E ;Gi =) h(e0 � � � ek); T ; E ;GibAh( ); T ; E ;Gi =) h( ); T ; E ;GibAh(e0 � � � ek); T ; E ;Gi =) let hS0; T0; E0;G0i = bAhe0; T ; E ; Gi
hS0; T 0; E 0; G0i = bAh(e1 � � � ek); T0; E0;G0i

in h(�E (cons S0 S0)); T 0[�E 7! �ek ]; E ; G
0i

let: bAh(let ((v0 e0)
� � �
(vk ek))
c0 � � � cl);

T ; E ;Gi

=) let hS0; T0; E0; G0i = bAhe0; T ; E ; Gi
� � �

hSk; Tk; Ek; Gki = bAhek; T ; E ; Gi
T 0 =

S
i=0 Ti

G0 =
S
i=0 Gi

hC; T 00; E 00; G00i = bAh(c0 � � � cl); T 0;
E [v0 7! �e0 ; � � � ; vk 7! �ek ];G

0i
in

h(�E let ((v0 S0)
� � �

(vk Sk))
C); T 00[�E 7! �cl ]; E ;G

00)i

lambda: bAh(lambda (x0 � � � xp)
c0 � � � cq);

T ; E ;Gi

=) let hC; T 0; E 0; G0i =bAh (c0 � � � cq);
T [�x0 7! ?; � � � ; �xp 7! ?];
E [x0 7! �x0 ; � � � ; xp 7! �xp ];G

�
in

h(�E lambda (x0 � � � xp) C);
T 0[�E 7! (funcl (�x0 � � � �xp �! �cq ))];
E ;G0)i
where l 2 FuncLab is a fresh function label

Figure 8: Annotation algorithm for sequence, let and lambda.
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Applications:bAh((lambda (x0 � � � xp)
c0 � � � cq)

e0 � � � ep); T ; E ;Gi

=) let hS0; T0; E0; G0i = bAhe0; T ; E ; Gi
� � �

hSp; Tp; Ep; Gki = bAhep; T ; E ; Gi
T 0 =

S
i=0 Ti

G0 =
S
i=0 Gi

hC; T 00; E 00; G00i =bA h (c0 � � � cq); T 0;
E [x0 7! �e0 ; � � � ; xp 7! �ep ];G

0
�

in

h(�E (lambda (x0 � � � xp) C) S0 � � � Sp);
T 00[�E 7! �cq ]; E ;G

00
��

bAh(F e0 � � � ep); T ; E ;Gi =) let hSF ; TF ; EF ; GF i = bAhF; T ; E ; Gi
hS0; T0; E0; G0i = bAhe0; T ; E ; Gi
� � �

hSp; Tp; Ep; Gpi = bAhep; T ; E ; Gi
T 0 = TF [ (

S
i=0
Ti)

G0 = GF [ (
S
i=0
Gi)

	 = (�e0 � � � �ep)
in

if (�F 7! ?) 2 T
0 and F is a variable

then

h(�E SF S0 � � � Sp);
T 0[�E 7! (apply l 	);

�0 7! ?; � � � ; �p 7! ?; �l 7! ?;
�F 7! (funcl (�0 � � � �p �! �l))]; E ;G0i

where l is a fresh function label
else

if � = bJ h�F ; T 0; ;i is not empty
h(�E SF S0 � � � Sp);
T 0[�E 7! f(apply i 	) : i 2 �g]; E ;G0i

else

h(�E SF S0 � � � Sp); T 0[�E 7! ?]; E ;G0i

Figure 9: Annotation algorithm for function application.
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bJ : fSimpleType j TypeSeqg� TypeBind� � TypeVar� �! FuncType�

bJ ht; T ;Mi = ; if t 2 SimpleType

bJ h�; T ;Mi = bJ h�0; T ;M[f�gi if [� 7! �0] 2 T and
�0 2 TypeVar

bJ h�; T ;Mi = ; if � 2 M

bJ hf�0; � � � ; �kg; T ;Mi =
S
i
bJ h�i; T ;
M[f�0; � � � ; �i�1;

�i+1; � � � ; �kgi

bJ h(op �0; � � � ; �k); T ;Mi = let t0 = bJ h �0; T ;
M[f�1; � � � ; �kgi

� � �

ti = bJ h�i; T ;
M[f�0; � � � ; �i�1;

�i+1; � � � ; �kgi
� � �

tk = bJ h�k; T ;
M[f�0; � � � ; �k�1gi

in

if (op t0 � � � tk) is de�ned

then return the result of

evaluating (op t0 � � � tk)
else ;

where op is a list operation.

bJ h(apply l 	); T ;Mi = bJ h�; T ;Mi where (funcl(� �! � )) 2 T

bJ h(call/cc l); T ;Mi = bJ hSi	li ; T ;Mi 8(apply l 	li ) 2 T

bJ h(funcl(� �! �l)); T ;Mi = flg

Figure 10: De�nition of bJ .
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Call with current continuation:bAh(call/cc (lambda (x0)
c0 � � � cq)
T ; E ;Gi

=) let hC; T 0; E 0; G0i =bA h (c0 � � � cq);
T [�x0 7! (funcl (�v �! ?)); �v 7! ?]
E [x0 7! �x0 ];Gi

where l is a fresh function label
in

h(�E call/cc (lambda (x0) C);
T 0[�E 7! (call/cc l)]; E ;G0)i

bAh(call/cc F ); T ; E ;Gi =) let hSF ; T 0; E 0; G0i = bAhF; T ; E ; Gi
� = bJ h�F ; T 0; ;i

in

if (�F 7! ?) 2 T 0 and F is a variable
then

h(�E call/cc SF )
T 0[�E 7! (call/cc l);

�0 7! ?; �F 7! (funcl (�0 �! ?))]; E ;G0i
where l is a fresh function label

else

if � = bJ h�F ; T 0; ;i is not empty
h(�E call/cc SF );
T 0[�E 7! f(call/cc i) : i 2 �g]; E ;G0i

else

h(�E call/cc SF ); T 0[�E 7! ?]; E ;G0i

Figure 11: Annotation algorithm for continuation.
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bI : fSimpleType j TypeSeqg� TypeBind� � TypeVar� �! SimpleType�

bI ht; T ;Mi = t if t 2 SimpleType

bI h�; T ;Mi = t if [� 7! t] 2 T and
t 2 SimpleType

bI h�; T ;Mi = bI h�0; T ;M[f�gi if [� 7! �0] 2 T and
�0 2 TypeVar

bI h�; T ;Mi = ? if � 2M

bI hf�0; � � � ; �kg; T ;Mi = let t0 = bI h�0; T ;
M[ f�1; � � � ; �kgi

� � �

ti = bI h�i; T ;
M[f�0; � � � ; �i�1;

�i+1; � � � ; �kgi
� � �

tk = bI h�k; T ;
M[ f�0; � � � ; �k�1gi

in F
i ti

where
F
i is the least

upper bound of the simple
types ti in the type
hierarchy de�ned in
Fig. 2.

bI h(op �0; � � � ; �k); T ;Mi = let t0 = bI h�0; T ;
M[ f�1; � � � ; �kgi

� � �

ti = bI h�i; T ;
M[f�0; � � � ; �i�1;

�i+1; � � � ; �kgi
� � �

tk = bI h�k; T ;
M[ f�0; � � � ; �k�1gi

in

if (op t0 � � � tk) is de�ned

then return the result of

evaluating (op t0 � � � tk)
else ?

where op is a list operation.

bI h(funcl (� �! � )); T ;Mi = Other

bI h(apply l 	); T ;Mi = bI h�; T ;Mi where (funcl(� �! � )) 2 T

bI h(call/cc l); T ;Mi = bI hSi	li ; T ;Mi 8(apply l 	li ) 2 T

Figure 12: De�nition of bI.
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Algorithm SpecializeFunction

Inputs: { hSP ; T ; E ;Gi = bAhP; ;; ;; ;i
{ R initially empty.

Outputs: SP - the annotated program with specialized functions added;
T - the new set of type bindings;
G - the new set of global variable bindings;
R - the function rename set;

1. For each function label, l say, do step 2.

2. Compute 	 =
S
i	li where (apply l 	li ) 2 T :

3. Partition 	 into sets  0; � � � ;  n such that

8(�e0 � � � �ek ); (�f0 � � � �fk ) 2  i : bI 
�ej ; T ; ;� = bI 
�fj ; T ; ;�
4. If there is only one such partition

4.1 then pick a tuple in 	, (�e0 � � � �ek) say and update T as follows:
T  � T [�0 7! �e0 ; � � � ; �k 7! �ek ]

4.2 else for each  i do

4.2.1 Pick a tuple in  i, (�e0 � � � �ek ) say;

4.2.2 Obtain the body of F , E = (lambda (x0 � � � xk) c0 � � � cv) say, from P;

4.2.3 Pick a name Fi say, such that (Fi 7! � ) 62 G, for some � , i.e. it has not
been used before;

4.2.4 Let hSFi ; TFi; EFi;GFii =bAh(c0 � � � cv); T ; E [x0 7! �e0 ; � � � ; xk 7! �ek ];Gi

4.2.5 Update as follows:
a) SP  � SP [ f(�si set! Fi (�Fi lambda (x0 � � � xk)SFi)g
b) T  � TFi [�si 7! ?; �Fi 7! (func (�e0 � � � �ek �! �cv ))]
c) G  � GFi [Fi 7! �Fi ]
d) R  � R [ f(F; Fi; (�e0 � � � �ek �! �cl))g

Figure 13: Specialization of function calls.
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bD : (Aexp � TypeBind� � VarTypeBind� � VarTypeBind� � RenameSet) �!
(Sexp � TypeBind� � VarTypeBind� � VarTypeBind� � RenameSet)

Arithmetic Operators:bD h(�E op e0 e1); T ; E ;G;Ri =) let hS0; T0; E0; G0; Ri = bD he0; T ; E ; G; Ri
hS1; T1; E1; G1; Ri = bD he1; T ; E ; G; Ri
T 0 = T0 [ T1
G0 = G0 [ G1

in

if bI h�e0 ; T 0; ;i = Integer and bI h�e1 ; T 0; ;i = Integer

then

h(int-op S0 S1); T 0; E [�E 7! Integer];G0;Ri
else

if bI h�e0 ; T 0; ;i = Float

then

if bI h�e1 ; T 0; ;i = Float

then

h(fp-op S0 S1); T 0; E [�E 7! Float];G0;Ri
else

h(fp-op S0 (exact->inexact S1));
T 0; E [�E 7! Float];G0;Ri

else

if bI h�e1 ; T 0; ;i = Float

then

h(fp-op (exact->inexact S0) S1);
T 0; E [�E 7! Float];G0;Ri

else

h(op S0 S1); T 0; E ;G0;Ri
where op 2 f+, -, *, /g

Application:bD h(�F F e0 � � � ep); T ; E ;G;Ri =) let hS0; T0; E0; G0; Ri = bD he0; T ; E ; G; Ri
� � �

hSp; Tp; Ep; Gp; Ri = bD hep; T ; E ; G; Ri
T 0 =

S
i=0
Ti

G0 =
S
i=0 Gi

in

if 9Fi; �0; � � � �k; �c :
(F; Fi; (�0 � � � �k �! �c)) 2 R andbI h�e0 ; T 0; ;i = bI h�0; T 0i and

� � �bI h�ek ; T 0; ;i = bI h�k; T 0; ;i
then

h(Fi S0 � � � Sk); T 0[�E 7! �c]; E ;G0;Ri
else

h(F S0 � � � Sk); T
0; E ;G0;Ri

Figure 14: Program Transformation for Arithmetic Expressions and Function Calls.
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(define (+-TWO x y)

(cond ((fixed? x)

(cond ((fixed? y)

((lap (x y) (_TSCP (IPLUS (_S2CINT x) (_S2CINT y)))) x y))

((float? y)

((lap (x y) (FLTV_FLT (PLUS (FIX_FLTV x) (FLOAT_VALUE y))))

x y))

(else (error '+ "Argument not a NUMBER: ~s" y))))

((fixed? y)

(cond ((float? x)

((lap (x y) (FLTV_FLT (PLUS (FLOAT_VALUE x) (FIX_FLTV y))))

x y))

(else (error '+ "Argument not a NUMBER: ~s" x))))

((and (float? x) (float? y))

((lap (x y) (FLTV_FLT (PLUS (FLOAT_VALUE x) (FLOAT_VALUE y))))

x y))

(else (error '+ "Argument(s) not a NUMBER: ~s ~s" x y))))

Figure 15: Implementation of addition in Scheme!C.
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Benchmark Original Opt-1/Impr. Opt-2/Impr.

(# of GC calls) (# of GC calls) (#GC/Impr.)

Linpack

n = 100 288.11 k
ops 332.25 k
ops / 15.32% 535.06 k
ops / 85.71%

(14) (14) (5 / 64.28 %)

n = 200 204.92 k
ops 226.97 k
ops / 10.76% 412.71 k
ops / 101.40%

(60) (71) (38 / 36.67%)

n = 300 157.84 k
ops 172.21 k
ops / 9.10% 318.77 k
ops / 101.95%

(164) (164) (84 / 48.78%)

n = 400 crashed crashed 184.61 k
ops / 1

(283y) (|) (173 / |)

mp3d (3000 molecules)

�rst 100 steps 46.37 secs 35.18 secs / 24.13% 34.87 secs / 24.8%

(32) (32) (31 / 3.13%)

next 100 steps 59.98 secs 49.50 secs / 17.47% 50.05 secs / 16.22%

(43) (35) (42 / 2.32%)

next 100 steps 70.17 secs 58.80 secs / 16.20% 54.77 secs / 21.95%

(39) (38) (38 / 2.56%)

next 100 steps 70.63 secs 59.60 secs / 15.61% 59.30 secs / 16.04%

(45) (44) (42 / 6.67%)

Simplex

10000 repetitions 49.62 secs 46.85 secs / 5.6% 41.53 secs / 16.36%

(246) (254) (219 / 11.78%)

Table 1: Performance of Type Inference System.
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