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Abstract 
 
With dramatic improvements in cost-performance, the 

use of clusters of personal computers is fast becoming 
widespread. For ease of use and management, a Single 
System Image (SSI) is highly desirable. There are several 
approaches that one can take to achieve SSI. In this 
paper, we discuss the achievement of SSI via the use of 
the user login shell. To this end, we describe shoc (Shell 
over a Cluster) – an implementation of the standard 
Linux-GNU bash  shell that permits the user to utilize a 
cluster as a single resource. In addition, shoc  provides 
for transparent pre-emptive load balancing without 
requiring the user to rewrite, recompile or even relink of 
existing applications. Running at user-level, shoc  does 
not require any kernel modification and currently runs on 
any Linux cluster fulfilling a minimal set of requirements. 
We will also present results on the performance of shoc  
and show that the load balancing feature gives rise to 
better overall cluster utilization as well as improvement 
in response time for individual processes. 
 
 
1. Introduction 
 

Recent advances in both microprocessor and network 
technologies have resulted in the widespread use of 
cluster of personal computers (PCs) [4]. Dramatic 
improvements in cost-performance and their off-the-shelf 
availability make it an attractive approach to provide 
cheap computing cycles to computer users. 

With the use of networked nodes or cluster, computing 
resources are no longer centralized. This gives rise to the 
situation of unbalanced utilization where certain resources 
(for example, CPU or memory) on one node are heavily 
used, while those of some others are under-utilized. 
Hence, the availability of a single system image (SSI) 
[12] for the entire cluster provides the opportunities for 
load balancing. This allows a user’s program to execute 
transparently on any node in the cluster. The program is 
unaware of the individual nodes making up the cluster 

and how they are interconnected. To the user, the cluster 
appears and operates like a single node with much more 
computing power. Thus an important SSI feature is 
transparent, cluster-wide load distribution. This attempts 
to share all available resources in the cluster, such as CPU 
cycles and memory, among all executing processes. 

In this paper, we describe a prototypical user-level 
shell we called shoc  (Shell Over a Cluster) that provides 
SSI over a cluster of PCs. The shell is responsible for 
accepting the commands entered by the user and 
submitting them to the operating system (OS) for 
execution. Hence, the shell acts as an interface between 
the user and the OS. Thus the shell gives us a point of 
entry for implementing SSI features at the application 
level. 

Our cluster consists of dedicated Linux systems, 
interconnected with Ethernet LAN. Shoc is a modified 
version of the Linux-GNU bash shell extended to 
provide the clustering capabilities. Currently, we have 
achieved the following: 

• No modifications, no relinking and no 
recompiling to existing program. 
The use of dynamic library preloading allows us 
to provide SSI feature. 

• Cluster-wide load distribution. 
We had modified the shell to provide for load 
distribution functionality to achieve effective 
resource utilization. The load distribution uses a 
Load Balancing (LB) policy in order to even out 
the load among the nodes in the cluster. 

 
2. Related work on SSI 
 

There are several approaches to realizing SSI. They 
can be classified in two main categories, those that 
perform it at the application or at the kernel level. LSF 
[6][11] provided support for remote execution of 
interactive sequential jobs and load balancing but does not 
provide process migration. Parallel processing libraries 
such as PVM [7] provided for means to perform parallel 
processing on a cluster. Extensions of these systems such 
as dynamicPVM [9] (using Condor [2]) and tmPVM [8] 



provided for dynamic load balancing in a PVM 
environment. GLUnix [5] supports both interactive and 
batch-style remote execution of both parallel and 
sequential jobs. All the above systems lack transparency 
as either special commands are introduced, or the user is 
require to rewrite, recompile and relink existing code with 
special libraries. 

Another approach that is totally transparent is to solve 
the problem at the kernel level. Both Mosix [1] and SSI 
for Linux [12] are such solutions. However, one needs to 
commit to the OS and there is a whole set of 
administrative considerations. 

Cluster Starter Kit for Linux [14] is an application for 
the management and monitoring of a Linux cluster. It 
allows administrators to monitor for certain conditions 
and to take automated responses. However the Cluster 
Starter Kit works with only one server per cluster. The 
Jxta command shell [10][15] is an application that 
provides interface to the Jxta platform. The Jxta platform 
implements a core set of basic services such as 
communication and group membership. This allows other 
services and applications to be built on top of the basic 
components. 

Scyld Beowulf [18] is another software solution for 
cluster OS. It includes an enhanced Linux kernel, libraries 
and utilities designed for clustering. The SSI is provided 
through bproc, the Beowulf cluster process management 
kernel enhancement. Scyld Beowulf works on the concept 
of a front-end “Master node” and cluster “Computation 
node”. Processes are started on the front-end node and 
migrate to a cluster node. The bproc makes the processes 
running on cluster nodes visible and manageable on the 
front-end node. Currently, Scyld Beowulf does not 
support load balancing. 

Table 1 gives a summary of the comparison between 
various approaches to achieving SSI. In summary, shoc  
distinguishes itself from the other approaches by the 
following: 

• It is implemented at the user level. This gives the 
user flexibility in changing the choice of OS as 
an after-thought. 

• It is transparent to the user. The user is 
presented a familiar bash shell interface. 
Applications do not need to be touched to run in 
this environment. 

• It performs load balancing. This allows for the 
true sharing of cluster-wide resources. 

 
3. Design and Implementation 
 
3.1. Overview 
 

Shoc is a variant of the standard Linux-GNU bash 
shell [16][19], implemented at user-level to support 

cluster-wide load distribution. The current version of 
shoc works in a homogeneous environment, where all 
the nodes in the cluster have the same architecture and 
running the same version of the Linux kernel. This 
ensures binary compatibility among all nodes in the 
cluster. Our cluster is built upon a common Network File 
System (NFS) [3] that allows homogeneous file access 
from all nodes. 

When the user submits a command at the command-
line, shoc will process the command just as bash would 
and in addition will perform initial process placement. 
The decision about where to execute the command is 
made by the Load Manager (LM) based on the load 
information of individual nodes in the cluster. Hence, 
both the shell and LM cooperate to determine where a 
command should execute. The command is not executed 
directly on the remote node. Rather it is spawned off as a 
child process of the LSERV process. We will describe the 
details of this in section 3.3. In summary, the three 
components to achieve SSI are listed below: 

• Shell 
• LSERV 
• Load Manager (LM) 

The overview of the interactions between the above 
components is shown in Figure 1. In the following 
subsections, more detailed description of each component 
will be given. 
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Figure 1. Components to achieve SSI 



System Category Implementation level Load balancing Process migration 
Shoc SSI User (shell) Yes Yes 
LSF Resource management suite User Yes No 
PVM Software package User Yes No 
Condor High throughput computing 

environment 
User Load sharing Yes 

TmPVM Extension to PVM User Yes Yes 
DynamicPVM Extension to PVM User Yes Yes 
GLUnix SSI User  Yes No 
Mosix SSI Kernel Yes Yes 
SSI for Linux SSI Kernel Yes Yes 
Cluster Starter Kit 
for Linux 

SSI User (application) - - 

Jxta command 
shell 

Interface to Jxta platform User (shell) - - 

Scyld Beowulf software solution Kernel and User No Yes 

Table 1. Comparison of approaches to achieve SSI 
 
 
3.2. The Shell 
 

We shall now describe the internal structure of shoc.  
Our description will be based on bash. However, we 
believe our ideas can easily be implemented in other 
shells as well. 

As an interface between the user and the operating 
system, the shell handles the submission of user process. 
This allows the shell to communicate with the LM to 
determine where it should execute the process, either 
locally or remotely. Figure 2 shows a simplified version 
of how the shell reads in a user command and executes it. 
It consists of a loop where the user command is read in by 
read_command(). The function execute_command() will 
then determine the type of the command supplied by the 
user, execute shell internal commands or it will calls 
execute_disk_command() to spawn a new process to 
execute executable programs. 

 
For the shell to know where to execute a user 

command, the function execute_disk_command() in 
bash is modified to include the following function: 

RequestSingleHostForRemoteExec(program) 
The above function will send a message to LM to 

request for the node to execute the process. Together with 
the message, the estimated memory requirement (based 
on executable file size) of the process is sent. This is to 
allow the LM to check whether the execution of the 
process will exhaust the available free memory. The reply 

from LM contains a host name for the process to be 
executed. This task is performed by the LSERV 
component. 

Using LSERV to start the process for both local and 
remote execution requires modification to the command 
submitted by the user. Initially, the shell will have the 
command as entered by the user given as follow: 

program argument … 
Modifications to execute_disk_command() is needed 

to replace the user program with LSERV. The steps to 
achieve this are given below: 

1. Set the program to be executed by shell as 
LSERV. 

2. Pass the host name for execution as an 
argument to LSERV. 

3. The user process and its arguments are then 
appended as arguments to LSERV. 

To the shell, it will look as though the user had typed 
the following at the command line: 

LSERV hostname program argument … 
By performing this simple modification, a user 

program can be run on any cluster node. Figure 3 shows 
the exchange of messages between the shell and LM to 
perform initial task placement (ITP). 

 
3.3. LSERV 
 

LSERV is an application level program started by the 
shell. Its responsibility is to start the user program on 
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Execute_disk_command 

Figure 2. Execution of a user command 
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2 

1. Shell sends request message for location to execute process. 
2. LM replies with node location to execute process. 
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Figure 3. Exchange of messages between shell and LM. 



either a local or remote node. Hence, for each executing 
user process, there is a copy of LSERV started. The 
rationale for using LSERV is to minimize the amount of 
modifications to be made to the shell. This allows a more 
modular development and permits additional 
functionalities to be added in an easier manner. This is 
possible since LSERV is just another program that is 
independent from the shell. 

Currently, the LSERV is responsible for performing a 
number of tasks to achieve the overall goal of load 
distribution. One of its important tasks is to set the 
environment variable (LD_PRELOAD) to load the 
dynamic library for migration and signal handling before 
the process starts to execute. When the user process is 
executing, LSERV will sample the process resource usage 
at periodic interval. This information is obtained from 
/proc/PID/status, where PID denotes the process 
identifier of the user process. The information that is of 
interest to us is the amount of memory used by the 
process as well as its execution time. When a process 
becomes eligible for migration, its execution time must be 
at least the cost of performing the migration. This 
condition is needed to prevent short-lived processes from 
being chosen for migration.  

When a migration message is received by LSERV 
from LM, the LSERV is responsible for carrying out the 
migration of the user process to a new node. LSERV 
achieved this by sending a signal SIGUSR2 to its child 
process and restart the process on another node. Figure 4 
shows both the resource usage update (Step 1) and the 
process migration (Steps 2-7). 

 
3.4. Load Manager (LM) 
 

A copy of the LM is executed on each node. It 
performs regular sampling of load information to 
determine if load re-distribution is necessary.  LM also 
takes care of the dissemination of the local load 
information to other nodes. The local load information is 
obtained from /proc/loadavg, which gives both the system 
load average for the past one minute and the 
instantaneous run queue length. The file /proc/meminfo 
supplies us the amount of free memory of the local node. 
When the local node becomes heavily loaded, the LM will 
use the resource usage message (from LSERV) to 
formulate a reply (to LSERV) to carry out migration, 
pushing those eligible processes to node with lighter load. 
The LM component does not record the names of 
processes that are eligible for migration in order to keep 
the management overhead low. 
 
3.5. Achieving migration 

 
A migration facility consists of two parts, freezing (or 

suspending) and restarting of the process. The freezing 
stage is used to prepare the necessary transfer of memory 
pages of the migrating process. The freeze stage preserves 
the current execution context as well as its environment 
for later use. During restart, the previous execution 
environment of the process as well as its memory pages 
are restored so that it may continue execution. 

1. LSERV sends resource usage message of process to LM. 
    This is done when the process is eligible for migration. 
2. LM has chosen process for migration by sending a migration message to LSERV. 
3. LSERV sends a SIGUSR2 signal to process to freeze the process to be migrated. 
4. LSERV informs LM to restart process on another node. 
5. LM forwards restart message to destination node LM. 
6. Destination node LM starts LSERV. 
7. LSERV restarts the frozen process to allow it to continue execution on a new node. 
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Figure 4. Resource usage update and process migration 



Checkpointing method used in Condor is an example 
of a migration facility. It consists of a library that must be 
linked with the application code. Part of this library is a 
signal handler that is used to create the checkpoint file of 
the process. This checkpoint file is then used to restart the 
process on a node of compatible architecture and 
operating system. 

Our migration facility is similar to the one used by 
Condor. Instead of using the linker to incorporate the 
necessary signal handler for performing migration, we use 
the dynamic library preloading. This achieves the 
installation of the signal handler as well as the migration 
code without any modifications (compilation and 
relinking) to user executables. 

The dynamic library preloading is achieved by setting 
the environmental variable LD_PRELOAD. This allows 
our migration library to be loaded before the user process 
is executed. Our migration library will install the signal 
handler for SIGUSR2 before executing the actual user 
process.  

The process can be frozen during its execution when 
the signal SIGUSR2 is raised by LSERV. The associated 
signal handler will invoke the migration code to extract 
the memory segments of the executing process from the 
/proc filesystem [17]. The extracted contents are then 
written to a segment file. Once this is done, the current 
process will exit.  

The restart of the process is achieved by using the text-
segment from the process binary and restoring the 
memory segments of the frozen process from the segment 
file. The stack of the frozen process is also restored so 
that the execution is continued immediately where it 
received SIGUSR2 signal. 
 
3.6. Limitations 

 
Our current implementation works with only single 

process that does not use inter-process communication 
(IPC), sockets and pipes. However, the standard file 
descriptors are handled by setting up socket connections 
to the local LSERV. This enables us to redirect any input 
and output to the remote process. 

The following is a list of other limitations: 
• The migration mechanism assumes that the 

user directories are mounted identically on all 
nodes. 

• Timer routines (such as sleep()) may not be 
honoured. 

• Sufficient disk space must be available to 
store the segment file during migration. 

• Both LM and LSERV must be present in 
order for migration to be successful. 

• Support for parallel jobs are currently not 
present. 

 

4. Load balancing 
 
Load Balancing (LB) is the attempt by the system to 

even out the differences in the load of the nodes. This has 
the aim of ensuring that all the available resources are 
shard equally among all running processes. The following 
subsections will describe more about the considerations 
during load distribution and the algorithms used. 
 
4.1 Load distribution considerations 
 

Load distribution comes with overhead. Hence, care 
must be taken when capturing load information. 
Scalability issues related to how load information is 
disseminated need to be considered too. These will affect 
the accuracy of the load information and the quality of the 
load distribution decision. There is a tradeoff between the 
accuracy of the required information and the overhead. 
Care must be taken to prevent the system from becoming 
unstable when it is heavily loaded. The reason is that the 
extra overhead may aggravate the load problem instead of 
alleviating it. 
 
Capturing of information. When load distribution is 
performed at the application level, there are limitations on 
the amount of information we could obtain. Take disk I/O 
monitoring as an example. Intercepting system calls 
would slow down the overall process and thus affect the 
significance of the recorded information. Another issue is 
the frequency at which both the load information as well 
as the resource usage of process can be obtained. In 
Linux, both of the above information can be obtained 
from the /proc file system. This involves file access that 
can be costly especially when the operation is carried out 
frequently. 

In our design, we have chosen to keep the overhead 
cost of load distribution as low as possible by sacrificing 
the accuracy in gathering both the load and process 
resource usage information. This is achieved by 
performing the sampling at intervals of 1s. This sampling 
interval is adjustable in terms of value and scale 
depending on the system used. 

 
Scalability issue. Two obstacles to the scalability of any 
system are the use of a centralized node to perform certain 
duties and the use of a broadcast algorithm. When the 
node becomes heavily loaded, a centralized design will 
experience a bottleneck due to its inability to service the 
incoming requests fast enough. The use of broadcast can 
aggravate the network congestion problem. 

In our design, each LM is responsible for handling 
execution requests from processes originating from the 
local host. This will eliminate any communication 
between a process and a remote LM. The communication 



between any two LMs is peer to peer. This avoids the use 
of broadcast or any centralized server. 
 
4.2 Algorithms used 

 
Dissemination of load information. The algorithm used 
in the dissemination of load information is given by 
Mosix [1], Algorithm 8.1. This involves updating the 
local load value and randomly sending to another node 
half of the local load vector entries. When the local node 
receives load information vector from another node, the 
former will merge the received information into the local 
load vector. 
 
Triggering of load distribution. The load distribution 
algorithm is triggered when the amount of swap space 
used exceeds the amount of free memory. This is to avoid 
the occurrence of disk thrashing when the memory 
demand by all the processes exceeds the amount of 
physical memory available on the node. Another trigger 
condition is when the minimum of instantaneous run 
queue length and average queue length for the last one 
minute hits a certain threshold. The rationale for using the 
minimum value is given below: 

• For a lightly loaded node, the instantaneous run 
queue length reflects a sudden increase in the 
number of short-lived processes. The value for 
the average queue length, however, will grow 
more slowly. Taking the smaller of the two 
values, we try to delay load distribution to allow 
the local processor to clear the run queue length. 

• For a heavily loaded node, the instantaneous run 
queue length reflects a sudden drop in the 
number of processes. The value for the average 
queue length, however, will decrease more 
slowly. Taking the smaller of the two values, we 
try to avoid unnecessary load distribution 
because the average queue length shows a high 
value. 

The metrics used to derive trigger conditions for load 
distributions contain three key values, namely the amount 
of free memory, the instantaneous run queue length and 
the average queue length. When no trigger condition is 
present, a newly arrived process will execute on the local 
node, and no process migration will be carried out. 
 
5. Performance of load distribution 
 

Using our implemented system, we performed 
experiments to determine its performance in load 
distribution using LB. The experiments are aimed at 
testing two aspects of the system. The first experiment 
tests how the system responds to an increasing number of 
hosts while the workload is kept constant. The second 

experiment tests how the system responds to the increased 
in workload while the number of hosts is fixed. 

In the experiment environment, a 100Mbps Ethernet 
switch connects 11 personal computer nodes (Pentium II 
400 MHz single processor system). Each computer runs 
the Redhat v2.2.16-22 Linux operating system. The bash  
shell (version 2.04.0(1)) was modified and used in our 
experiments. In all the experiments, a single stream of 
workload is injected into a node. The workload consists of 
uniform CPU-bound processes that require 60 seconds of 
CPU time each. Once the workload is injected into the 
system, they are free to migrate to any node. Each 
experiment is carried out four times and the average 
execution times are recorded. 

 
Varying the number of hosts. In this experiment, 30 
CPU-bound processes are injected into a node. The 
number of hosts is varied from 7 to 11 and we want to 
observe whether the additional nodes result in better wall-
clock time. Table 2 shows the wall-clock time of the 
processes. The column ‘Max’ refers to the longest wall-
clock time recorded for a process while the column 
‘Average’ refers to the average of the wall-clock time of 
all 30 processes. The column ‘Average (opt)’ refers to the 
best possible average wall-clock time with prior 
knowledge about the workload. The percentage value in 
column three represents the performance of the system 
with respect a system with prior knowledge about the 
workload. As we can see from Table 2, the adding of 
more hosts results in better performance (both in terms of 
Max and Average). The percentage value also shows a 
corresponding improvement. Therefore with load 
distribution, it gives rise to better overall cluster 
utilization as well as improvement in response time for 
individual processes. 
 

Number of hosts Wall-clock time (s) 
 Max Average Average (opt) 

7 414.67 290.14 (31.7%) 220.33 

9 261.06 207.70 (16.7%) 178.00 

11 226.65 171.11 (15.5%) 148.20 

Table 2. Varying the number of hosts 
 
 
Varying the workload. In this experiment, a total 

number of 11 hosts are used to study how the increase in 
workload affects the ability of the system to distribute the 
workload. Table 3 shows that the average wall-clock time 
for 10 to 35 processes is within 17% of the optimal load 
distribution. This shows that the system is able to balance 
the range of increasing workload by utilizing the available 
nodes. 

 
 



 
 
 

Wall-clock time (s) Number of 
processes Max Average Average (opt) 

10 62.15 60.48 (0.8%) 60.00 

15 111.32 94.13 (9.3%) 86.10 

20 158.66 118.14 (13.5) 104.10 

25 207.04 147.16 (16.2%) 126.60 

30 209.42 164.23 (10.8%) 148.20 

35 282.50 190.70 (12.6%) 169.40 

Table 3. Varying the workload 
 

From the above two experiments, the implemented 
system shows that it is able to use the increase in the 
number of available hosts as well as carrying out effective 
load distribution as the workload is increased. 

 
6. Inter-process Communication (IPC) 
 
6.1. Overview of distributed IPC (DIPC) 
 

We have implemented a prototype System V IPC that 
is able to run over a cluster. This is achieved by 
intercepting the IPC function calls. Figure 5 shows the 
implementation overview of the developed DIPC. 

 
The current system provides for only semaphore and 

shared memory usage. Each node will run a DIPC 
daemon that is responsible for handling IPC requests. The 
DIPC daemon (DIPCd) residing on the login node of the 
user is called the master DIPC daemon (mDIPCd). 
mDIPCd is responsible for handling semaphore requests 
and perform the required operation locally. This 
centralized control is to ensure the correctness of the 
semaphore operation. The control for the shared memory 
is distributed, handled by all DIPCd. This is to avoid the 

bottleneck when all memory requests are directed to a 
single node. 

The application layer consists of user programs making 
use of IPC calls. The intercept layer serves to determine 
the nature of the IPC calls made, either local or remote 
operation. Local operation is performed locally while 
remote operation is carried out by sending a message to 
the remote node. The remote node will then perform the 
operation on behalf of the sender, and sending the result 
back as a reply. Figure 6 shows the actions taken when 
semget() is called. For shared memory, the IPC calls are 
intercepted and the local DIPCd performs all the 
requested operations. 

The use of DIPC is available without making any 
modifications to existing source or executables. This is 
achieved through the use of dynamic library preloading 
that adds in the necessary code to perform remote 
operations for DIPC. 

 
6.2. Cost of basic operations 

 
The following tests are performed to determine the 

cost of DIPC calls as well as the time taken to read and 
write a shared memory page (of size 4096 bytes). All tests 
are performed on a cluster of PCs (450 MHz K6-2 with 
128 MB memory) networked together by a 100 Mbps 
Ethernet switch. Table 4 shows the performance results. 

 
IPC operation 
Semaphore 

Cost (usec) 

Semget (local) 48 
Semop (local) 59 
Semctl (local) 49 
  
Semget (remote) 239 
Semop (remote) 301 
Semctl (remote) 239 
  
Shared memory  
Shmget 131 
Shmctl  11 
Shmat 451 
Shmdt 516 
  
Read (single page) 1396 
Write (single page) 10042 

Table 4. Cost of basic operation for DIPC 
 

Application layer 
Intercept layer 

Semaphore system Shared memory system 
Actual system calls / Network layer 

Figure 5. Implementation overview of DIPC 



7. Distributed execution (forall) 
 

7.1. Overview 
 
We have extended the shell to recognize the forall 

construct. The forall is an extension of the for 
construct from bash. This allows the iterations within the 
for loop to execute concurrently and in a distributed 
manner. 

We assume that the iterations within the loops are 
independent of one another. Hence, only statements 
within the loop are executed in a sequential manner. 

The distribution of the loop iterations to various nodes 
for processing is based on the load information gathered 
by the Load Manager (LM). This ensures a better 
utilization of computing resources. 

The local node will wait for all remote executions to 
complete before proceeding with the next statement after 
the forall loop. This ensures the correctness of the 
script execution. The following subsection describes 
about the modifications made to provide the forall  
feature. 

 
 
 

7.2. Modifications to provide forall construct  
 
The grammar rules for the forall construct are 

added to allow the shell to recognize the keyword 
forall. When the forall keyword is encountered during 
execution, the shell will requests from the LM a list of 
available nodes for remote execution. When no available 
nodes are available, forall will executes the iterations 
sequentially. For remote executions, the loop iterations 
are split such that each node will executes at least one 
iteration. Figures 7 and 8 show how the splitting of the 
loop iterations is done. Once the splitting is done, both the 
local and remote executions are able to proceed 
independently of one another. 

 

 
 
 

Figure 6. Performing intercepted semaphore call 

Step 1 
User call semget() 

Step 2 
Intercept layer 

Step 3 
Local request, call 
semget() locally and 
return result to caller. 

Step 4 
4.1. Encode the necessary arguments 
       required for remote operation. 
4.2. Send message to master DIPC daemon (to 
       Step 5.1). 
 
 
Step 6 
6.1. Receive reply from master DIPC daemon. 
6.2. Decode the return value. 
6.3. Pass the decoded return value back to caller 
       (to Step 1). 

Step 5 
5.1. Receive message for semaphore operation. 
5.2. Decode the required arguments. 
5.3. Perform the semget() operation. 
5.4. Obtain the return value of semget() operation. 
5.5. Encode the return value. 
5.6. Send reply back to sender (to Step 6.1). 
 

Local 

Remote 

Master DIPC 
daemon 

Process 

forall name in A B C D 
do 
 statements that can use $name… 
done 
 
 

Figure 7. forall statements (before splitting) 



 
 

8. Conclusion and future work 
 
Our implementation demonstrates that SSI can be 

achieved through a simple shell mechanism. It allows the 
user to execute existing binaries without any 
modifications, relinking or recompilation. The ability of 
the system to provide load distribution has the added 
advantage of utilizing both the cluster-wide resources and 
improving the response time for individual processes. 
With these attractive features and its ease of use, it will 
result in better user acceptance. Our current work 
involves the use of the implemented system to study the 
effects of different workload characteristics with respect 
to different load distribution policies. 

Future work involves implementing a cluster-wide 
addressing scheme that will enable the user to access any 
resource in the cluster. This will also enable utilities like 
“ps” to list out all user’s processes (both local and 
remote). 

IPC calls could be handled in a distributed manner by 
intercepting the respective system calls. This concept is 
applicable to both sockets and pipes. However, to migrate 
processes that uses the above is much more tricky. As an 
example, we need to be able to access the data that is 
stored in the kernel for pipes during process migration. 
This will allow the restarted process to access the same 
data. 

Signal handling is another area that requires special 
handling. As an example, a local SIGKILL signal 
generated by the user needs to be caught and send to the 
correct remote process. 
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forall name in A B 
do 
 statements that can use $name… 
done 
 

Group 1 (local execution) 

forall name in C D 
do 
 statements that can use $name… 
done 
 

Group 2 (remote execution) 
 

Figure 8. forall statements (after splitting) 


