
Shell over a Cluster (SHOC):
Towards Achieving Single System Image via the Shell

C.M Tan, C.P. Tan and W.F. Wong
Department of Computer Science
National University of Singapore

3 Science Drive 2, Singapore 117543
{tancherm, tanchung, wongwf}@comp.nus.edu.sg

Abstract

With dramatic improvements in cost-performance, the

use of clusters of personal computers is fast becoming
widespread. For ease of use and management, a Single
System Image (SSI) is highly desirable. There are several
approaches that one can take to achieve SSI. In this
paper, we discuss the achievement of SSI via the use of
the user login shell. To this end, we describe shoc (Shell
over a Cluster) – an implementation of the standard
Linux-GNU bash shell that permits the user to utilize a
cluster as a single resource. In addition, shoc provides
for transparent pre-emptive load balancing without
requiring the user to rewrite, recompile or even relink of
existing applications. Running at user-level, shoc does
not require any kernel modification and currently runs on
any Linux cluster fulfilling a minimal set of requirements.
We will also present results on the performance of shoc
and show that the load balancing feature gives rise to
better overall cluster utilization as well as improvement
in response time for individual processes.

1. Introduction

Recent advances in both microprocessor and network
technologies have resulted in the widespread use of
cluster of personal computers (PCs) [4]. Dramatic
improvements in cost-performance and their off-the-shelf
availability make it an attractive approach to provide
cheap computing cycles to computer users.

With the use of networked nodes or cluster, computing
resources are no longer centralized. This gives rise to the
situation of unbalanced utilization where certain resources
(for example, CPU or memory) on one node are heavily
used, while those of some others are under-utilized.
Hence, the availability of a single system image (SSI)
[12] for the entire cluster provides the opportunities for
load balancing. This allows a user’s program to execute
transparently on any node in the cluster. The program is
unaware of the individual nodes making up the cluster

and how they are interconnected. To the user, the cluster
appears and operates like a single node with much more
computing power. Thus an important SSI feature is
transparent, cluster-wide load distribution. This attempts
to share all available resources in the cluster, such as CPU
cycles and memory, among all executing processes.

In this paper, we describe a prototypical user-level
shell we called shoc (Shell Over a Cluster) that provides
SSI over a cluster of PCs. The shell is responsible for
accepting the commands entered by the user and
submitting them to the operating system (OS) for
execution. Hence, the shell acts as an interface between
the user and the OS. Thus the shell gives us a point of
entry for implementing SSI features at the application
level.

Our cluster consists of dedicated Linux systems,
interconnected with Ethernet LAN. Shoc is a modified
version of the Linux-GNU bash shell extended to
provide the clustering capabilities. Currently, we have
achieved the following:

• No modifications, no relinking and no
recompiling to existing program.
The use of dynamic library preloading allows us
to provide SSI feature.

• Cluster-wide load distribution.
We had modified the shell to provide for load
distribution functionality to achieve effective
resource utilization. The load distribution uses a
Load Balancing (LB) policy in order to even out
the load among the nodes in the cluster.

2. Related work on SSI

There are several approaches to realizing SSI. They
can be classified in two main categories, those that
perform it at the application or at the kernel level. LSF
[6][11] provided support for remote execution of
interactive sequential jobs and load balancing but does not
provide process migration. Parallel processing libraries
such as PVM [7] provided for means to perform parallel
processing on a cluster. Extensions of these systems such
as dynamicPVM [9] (using Condor [2]) and tmPVM [8]

provided for dynamic load balancing in a PVM
environment. GLUnix [5] supports both interactive and
batch-style remote execution of both parallel and
sequential jobs. All the above systems lack transparency
as either special commands are introduced, or the user is
require to rewrite, recompile and relink existing code with
special libraries.

Another approach that is totally transparent is to solve
the problem at the kernel level. Both Mosix [1] and SSI
for Linux [12] are such solutions. However, one needs to
commit to the OS and there is a whole set of
administrative considerations.

Cluster Starter Kit for Linux [14] is an application for
the management and monitoring of a Linux cluster. It
allows administrators to monitor for certain conditions
and to take automated responses. However the Cluster
Starter Kit works with only one server per cluster. The
Jxta command shell [10][15] is an application that
provides interface to the Jxta platform. The Jxta platform
implements a core set of basic services such as
communication and group membership. This allows other
services and applications to be built on top of the basic
components.

Scyld Beowulf [18] is another software solution for
cluster OS. It includes an enhanced Linux kernel, libraries
and utilities designed for clustering. The SSI is provided
through bproc, the Beowulf cluster process management
kernel enhancement. Scyld Beowulf works on the concept
of a front-end “Master node” and cluster “Computation
node”. Processes are started on the front-end node and
migrate to a cluster node. The bproc makes the processes
running on cluster nodes visible and manageable on the
front-end node. Currently, Scyld Beowulf does not
support load balancing.

Table 1 gives a summary of the comparison between
various approaches to achieving SSI. In summary, shoc
distinguishes itself from the other approaches by the
following:

• It is implemented at the user level. This gives the
user flexibility in changing the choice of OS as
an after-thought.

• It is transparent to the user. The user is
presented a familiar bash shell interface.
Applications do not need to be touched to run in
this environment.

• It performs load balancing. This allows for the
true sharing of cluster-wide resources.

3. Design and Implementation

3.1. Overview

Shoc is a variant of the standard Linux-GNU bash
shell [16][19], implemented at user-level to support

cluster-wide load distribution. The current version of
shoc works in a homogeneous environment, where all
the nodes in the cluster have the same architecture and
running the same version of the Linux kernel. This
ensures binary compatibility among all nodes in the
cluster. Our cluster is built upon a common Network File
System (NFS) [3] that allows homogeneous file access
from all nodes.

When the user submits a command at the command-
line, shoc will process the command just as bash would
and in addition will perform initial process placement.
The decision about where to execute the command is
made by the Load Manager (LM) based on the load
information of individual nodes in the cluster. Hence,
both the shell and LM cooperate to determine where a
command should execute. The command is not executed
directly on the remote node. Rather it is spawned off as a
child process of the LSERV process. We will describe the
details of this in section 3.3. In summary, the three
components to achieve SSI are listed below:

• Shell
• LSERV
• Load Manager (LM)

The overview of the interactions between the above
components is shown in Figure 1. In the following
subsections, more detailed description of each component
will be given.

LM

Shell LSERV

User
process

/proc file
system

Communication

Parent-child
relationship

Access /proc

Node

Figure 1. Components to achieve SSI

System Category Implementation level Load balancing Process migration
Shoc SSI User (shell) Yes Yes
LSF Resource management suite User Yes No
PVM Software package User Yes No
Condor High throughput computing

environment
User Load sharing Yes

TmPVM Extension to PVM User Yes Yes
DynamicPVM Extension to PVM User Yes Yes
GLUnix SSI User Yes No
Mosix SSI Kernel Yes Yes
SSI for Linux SSI Kernel Yes Yes
Cluster Starter Kit
for Linux

SSI User (application) - -

Jxta command
shell

Interface to Jxta platform User (shell) - -

Scyld Beowulf software solution Kernel and User No Yes

Table 1. Comparison of approaches to achieve SSI

3.2. The Shell

We shall now describe the internal structure of shoc.
Our description will be based on bash. However, we
believe our ideas can easily be implemented in other
shells as well.

As an interface between the user and the operating
system, the shell handles the submission of user process.
This allows the shell to communicate with the LM to
determine where it should execute the process, either
locally or remotely. Figure 2 shows a simplified version
of how the shell reads in a user command and executes it.
It consists of a loop where the user command is read in by
read_command(). The function execute_command() will
then determine the type of the command supplied by the
user, execute shell internal commands or it will calls
execute_disk_command() to spawn a new process to
execute executable programs.

For the shell to know where to execute a user

command, the function execute_disk_command() in
bash is modified to include the following function:

RequestSingleHostForRemoteExec(program)
The above function will send a message to LM to

request for the node to execute the process. Together with
the message, the estimated memory requirement (based
on executable file size) of the process is sent. This is to
allow the LM to check whether the execution of the
process will exhaust the available free memory. The reply

from LM contains a host name for the process to be
executed. This task is performed by the LSERV
component.

Using LSERV to start the process for both local and
remote execution requires modification to the command
submitted by the user. Initially, the shell will have the
command as entered by the user given as follow:

program argument …
Modifications to execute_disk_command() is needed

to replace the user program with LSERV. The steps to
achieve this are given below:

1. Set the program to be executed by shell as
LSERV.

2. Pass the host name for execution as an
argument to LSERV.

3. The user process and its arguments are then
appended as arguments to LSERV.

To the shell, it will look as though the user had typed
the following at the command line:

LSERV hostname program argument …
By performing this simple modification, a user

program can be run on any cluster node. Figure 3 shows
the exchange of messages between the shell and LM to
perform initial task placement (ITP).

3.3. LSERV

LSERV is an application level program started by the
shell. Its responsibility is to start the user program on

Read_command Execute_command

Execute_disk_command

Figure 2. Execution of a user command
LM Shell

1

2

1. Shell sends request message for location to execute process.
2. LM replies with node location to execute process.

Node

Figure 3. Exchange of messages between shell and LM.

either a local or remote node. Hence, for each executing
user process, there is a copy of LSERV started. The
rationale for using LSERV is to minimize the amount of
modifications to be made to the shell. This allows a more
modular development and permits additional
functionalities to be added in an easier manner. This is
possible since LSERV is just another program that is
independent from the shell.

Currently, the LSERV is responsible for performing a
number of tasks to achieve the overall goal of load
distribution. One of its important tasks is to set the
environment variable (LD_PRELOAD) to load the
dynamic library for migration and signal handling before
the process starts to execute. When the user process is
executing, LSERV will sample the process resource usage
at periodic interval. This information is obtained from
/proc/PID/status, where PID denotes the process
identifier of the user process. The information that is of
interest to us is the amount of memory used by the
process as well as its execution time. When a process
becomes eligible for migration, its execution time must be
at least the cost of performing the migration. This
condition is needed to prevent short-lived processes from
being chosen for migration.

When a migration message is received by LSERV
from LM, the LSERV is responsible for carrying out the
migration of the user process to a new node. LSERV
achieved this by sending a signal SIGUSR2 to its child
process and restart the process on another node. Figure 4
shows both the resource usage update (Step 1) and the
process migration (Steps 2-7).

3.4. Load Manager (LM)

A copy of the LM is executed on each node. It
performs regular sampling of load information to
determine if load re-distribution is necessary. LM also
takes care of the dissemination of the local load
information to other nodes. The local load information is
obtained from /proc/loadavg, which gives both the system
load average for the past one minute and the
instantaneous run queue length. The file /proc/meminfo
supplies us the amount of free memory of the local node.
When the local node becomes heavily loaded, the LM will
use the resource usage message (from LSERV) to
formulate a reply (to LSERV) to carry out migration,
pushing those eligible processes to node with lighter load.
The LM component does not record the names of
processes that are eligible for migration in order to keep
the management overhead low.

3.5. Achieving migration

A migration facility consists of two parts, freezing (or

suspending) and restarting of the process. The freezing
stage is used to prepare the necessary transfer of memory
pages of the migrating process. The freeze stage preserves
the current execution context as well as its environment
for later use. During restart, the previous execution
environment of the process as well as its memory pages
are restored so that it may continue execution.

1. LSERV sends resource usage message of process to LM.
 This is done when the process is eligible for migration.
2. LM has chosen process for migration by sending a migration message to LSERV.
3. LSERV sends a SIGUSR2 signal to process to freeze the process to be migrated.
4. LSERV informs LM to restart process on another node.
5. LM forwards restart message to destination node LM.
6. Destination node LM starts LSERV.
7. LSERV restarts the frozen process to allow it to continue execution on a new node.

LM

LSERV

Process

1 2

3

4

Node 1

LM

LSERV

Restarted
process

6

7

Node 2

5

Figure 4. Resource usage update and process migration

Checkpointing method used in Condor is an example
of a migration facility. It consists of a library that must be
linked with the application code. Part of this library is a
signal handler that is used to create the checkpoint file of
the process. This checkpoint file is then used to restart the
process on a node of compatible architecture and
operating system.

Our migration facility is similar to the one used by
Condor. Instead of using the linker to incorporate the
necessary signal handler for performing migration, we use
the dynamic library preloading. This achieves the
installation of the signal handler as well as the migration
code without any modifications (compilation and
relinking) to user executables.

The dynamic library preloading is achieved by setting
the environmental variable LD_PRELOAD. This allows
our migration library to be loaded before the user process
is executed. Our migration library will install the signal
handler for SIGUSR2 before executing the actual user
process.

The process can be frozen during its execution when
the signal SIGUSR2 is raised by LSERV. The associated
signal handler will invoke the migration code to extract
the memory segments of the executing process from the
/proc filesystem [17]. The extracted contents are then
written to a segment file. Once this is done, the current
process will exit.

The restart of the process is achieved by using the text-
segment from the process binary and restoring the
memory segments of the frozen process from the segment
file. The stack of the frozen process is also restored so
that the execution is continued immediately where it
received SIGUSR2 signal.

3.6. Limitations

Our current implementation works with only single

process that does not use inter-process communication
(IPC), sockets and pipes. However, the standard file
descriptors are handled by setting up socket connections
to the local LSERV. This enables us to redirect any input
and output to the remote process.

The following is a list of other limitations:
• The migration mechanism assumes that the

user directories are mounted identically on all
nodes.

• Timer routines (such as sleep()) may not be
honoured.

• Sufficient disk space must be available to
store the segment file during migration.

• Both LM and LSERV must be present in
order for migration to be successful.

• Support for parallel jobs are currently not
present.

4. Load balancing

Load Balancing (LB) is the attempt by the system to

even out the differences in the load of the nodes. This has
the aim of ensuring that all the available resources are
shard equally among all running processes. The following
subsections will describe more about the considerations
during load distribution and the algorithms used.

4.1 Load distribution considerations

Load distribution comes with overhead. Hence, care
must be taken when capturing load information.
Scalability issues related to how load information is
disseminated need to be considered too. These will affect
the accuracy of the load information and the quality of the
load distribution decision. There is a tradeoff between the
accuracy of the required information and the overhead.
Care must be taken to prevent the system from becoming
unstable when it is heavily loaded. The reason is that the
extra overhead may aggravate the load problem instead of
alleviating it.

Capturing of information. When load distribution is
performed at the application level, there are limitations on
the amount of information we could obtain. Take disk I/O
monitoring as an example. Intercepting system calls
would slow down the overall process and thus affect the
significance of the recorded information. Another issue is
the frequency at which both the load information as well
as the resource usage of process can be obtained. In
Linux, both of the above information can be obtained
from the /proc file system. This involves file access that
can be costly especially when the operation is carried out
frequently.

In our design, we have chosen to keep the overhead
cost of load distribution as low as possible by sacrificing
the accuracy in gathering both the load and process
resource usage information. This is achieved by
performing the sampling at intervals of 1s. This sampling
interval is adjustable in terms of value and scale
depending on the system used.

Scalability issue. Two obstacles to the scalability of any
system are the use of a centralized node to perform certain
duties and the use of a broadcast algorithm. When the
node becomes heavily loaded, a centralized design will
experience a bottleneck due to its inability to service the
incoming requests fast enough. The use of broadcast can
aggravate the network congestion problem.

In our design, each LM is responsible for handling
execution requests from processes originating from the
local host. This will eliminate any communication
between a process and a remote LM. The communication

between any two LMs is peer to peer. This avoids the use
of broadcast or any centralized server.

4.2 Algorithms used

Dissemination of load information. The algorithm used
in the dissemination of load information is given by
Mosix [1], Algorithm 8.1. This involves updating the
local load value and randomly sending to another node
half of the local load vector entries. When the local node
receives load information vector from another node, the
former will merge the received information into the local
load vector.

Triggering of load distribution. The load distribution
algorithm is triggered when the amount of swap space
used exceeds the amount of free memory. This is to avoid
the occurrence of disk thrashing when the memory
demand by all the processes exceeds the amount of
physical memory available on the node. Another trigger
condition is when the minimum of instantaneous run
queue length and average queue length for the last one
minute hits a certain threshold. The rationale for using the
minimum value is given below:

• For a lightly loaded node, the instantaneous run
queue length reflects a sudden increase in the
number of short-lived processes. The value for
the average queue length, however, will grow
more slowly. Taking the smaller of the two
values, we try to delay load distribution to allow
the local processor to clear the run queue length.

• For a heavily loaded node, the instantaneous run
queue length reflects a sudden drop in the
number of processes. The value for the average
queue length, however, will decrease more
slowly. Taking the smaller of the two values, we
try to avoid unnecessary load distribution
because the average queue length shows a high
value.

The metrics used to derive trigger conditions for load
distributions contain three key values, namely the amount
of free memory, the instantaneous run queue length and
the average queue length. When no trigger condition is
present, a newly arrived process will execute on the local
node, and no process migration will be carried out.

5. Performance of load distribution

Using our implemented system, we performed
experiments to determine its performance in load
distribution using LB. The experiments are aimed at
testing two aspects of the system. The first experiment
tests how the system responds to an increasing number of
hosts while the workload is kept constant. The second

experiment tests how the system responds to the increased
in workload while the number of hosts is fixed.

In the experiment environment, a 100Mbps Ethernet
switch connects 11 personal computer nodes (Pentium II
400 MHz single processor system). Each computer runs
the Redhat v2.2.16-22 Linux operating system. The bash
shell (version 2.04.0(1)) was modified and used in our
experiments. In all the experiments, a single stream of
workload is injected into a node. The workload consists of
uniform CPU-bound processes that require 60 seconds of
CPU time each. Once the workload is injected into the
system, they are free to migrate to any node. Each
experiment is carried out four times and the average
execution times are recorded.

Varying the number of hosts. In this experiment, 30
CPU-bound processes are injected into a node. The
number of hosts is varied from 7 to 11 and we want to
observe whether the additional nodes result in better wall-
clock time. Table 2 shows the wall-clock time of the
processes. The column ‘Max’ refers to the longest wall-
clock time recorded for a process while the column
‘Average’ refers to the average of the wall-clock time of
all 30 processes. The column ‘Average (opt)’ refers to the
best possible average wall-clock time with prior
knowledge about the workload. The percentage value in
column three represents the performance of the system
with respect a system with prior knowledge about the
workload. As we can see from Table 2, the adding of
more hosts results in better performance (both in terms of
Max and Average). The percentage value also shows a
corresponding improvement. Therefore with load
distribution, it gives rise to better overall cluster
utilization as well as improvement in response time for
individual processes.

Number of hosts Wall-clock time (s)
 Max Average Average (opt)

7 414.67 290.14 (31.7%) 220.33

9 261.06 207.70 (16.7%) 178.00

11 226.65 171.11 (15.5%) 148.20

Table 2. Varying the number of hosts

Varying the workload. In this experiment, a total

number of 11 hosts are used to study how the increase in
workload affects the ability of the system to distribute the
workload. Table 3 shows that the average wall-clock time
for 10 to 35 processes is within 17% of the optimal load
distribution. This shows that the system is able to balance
the range of increasing workload by utilizing the available
nodes.

Wall-clock time (s) Number of
processes Max Average Average (opt)

10 62.15 60.48 (0.8%) 60.00

15 111.32 94.13 (9.3%) 86.10

20 158.66 118.14 (13.5) 104.10

25 207.04 147.16 (16.2%) 126.60

30 209.42 164.23 (10.8%) 148.20

35 282.50 190.70 (12.6%) 169.40

Table 3. Varying the workload

From the above two experiments, the implemented
system shows that it is able to use the increase in the
number of available hosts as well as carrying out effective
load distribution as the workload is increased.

6. Inter-process Communication (IPC)

6.1. Overview of distributed IPC (DIPC)

We have implemented a prototype System V IPC that
is able to run over a cluster. This is achieved by
intercepting the IPC function calls. Figure 5 shows the
implementation overview of the developed DIPC.

The current system provides for only semaphore and

shared memory usage. Each node will run a DIPC
daemon that is responsible for handling IPC requests. The
DIPC daemon (DIPCd) residing on the login node of the
user is called the master DIPC daemon (mDIPCd).
mDIPCd is responsible for handling semaphore requests
and perform the required operation locally. This
centralized control is to ensure the correctness of the
semaphore operation. The control for the shared memory
is distributed, handled by all DIPCd. This is to avoid the

bottleneck when all memory requests are directed to a
single node.

The application layer consists of user programs making
use of IPC calls. The intercept layer serves to determine
the nature of the IPC calls made, either local or remote
operation. Local operation is performed locally while
remote operation is carried out by sending a message to
the remote node. The remote node will then perform the
operation on behalf of the sender, and sending the result
back as a reply. Figure 6 shows the actions taken when
semget() is called. For shared memory, the IPC calls are
intercepted and the local DIPCd performs all the
requested operations.

The use of DIPC is available without making any
modifications to existing source or executables. This is
achieved through the use of dynamic library preloading
that adds in the necessary code to perform remote
operations for DIPC.

6.2. Cost of basic operations

The following tests are performed to determine the

cost of DIPC calls as well as the time taken to read and
write a shared memory page (of size 4096 bytes). All tests
are performed on a cluster of PCs (450 MHz K6-2 with
128 MB memory) networked together by a 100 Mbps
Ethernet switch. Table 4 shows the performance results.

IPC operation
Semaphore

Cost (usec)

Semget (local) 48
Semop (local) 59
Semctl (local) 49

Semget (remote) 239
Semop (remote) 301
Semctl (remote) 239

Shared memory
Shmget 131
Shmctl 11
Shmat 451
Shmdt 516

Read (single page) 1396
Write (single page) 10042

Table 4. Cost of basic operation for DIPC

Application layer
Intercept layer

Semaphore system Shared memory system
Actual system calls / Network layer

Figure 5. Implementation overview of DIPC

7. Distributed execution (forall)

7.1. Overview

We have extended the shell to recognize the forall

construct. The forall is an extension of the for
construct from bash. This allows the iterations within the
for loop to execute concurrently and in a distributed
manner.

We assume that the iterations within the loops are
independent of one another. Hence, only statements
within the loop are executed in a sequential manner.

The distribution of the loop iterations to various nodes
for processing is based on the load information gathered
by the Load Manager (LM). This ensures a better
utilization of computing resources.

The local node will wait for all remote executions to
complete before proceeding with the next statement after
the forall loop. This ensures the correctness of the
script execution. The following subsection describes
about the modifications made to provide the forall
feature.

7.2. Modifications to provide forall construct

The grammar rules for the forall construct are

added to allow the shell to recognize the keyword
forall. When the forall keyword is encountered during
execution, the shell will requests from the LM a list of
available nodes for remote execution. When no available
nodes are available, forall will executes the iterations
sequentially. For remote executions, the loop iterations
are split such that each node will executes at least one
iteration. Figures 7 and 8 show how the splitting of the
loop iterations is done. Once the splitting is done, both the
local and remote executions are able to proceed
independently of one another.

Figure 6. Performing intercepted semaphore call

Step 1
User call semget()

Step 2
Intercept layer

Step 3
Local request, call
semget() locally and
return result to caller.

Step 4
4.1. Encode the necessary arguments
 required for remote operation.
4.2. Send message to master DIPC daemon (to
 Step 5.1).

Step 6
6.1. Receive reply from master DIPC daemon.
6.2. Decode the return value.
6.3. Pass the decoded return value back to caller
 (to Step 1).

Step 5
5.1. Receive message for semaphore operation.
5.2. Decode the required arguments.
5.3. Perform the semget() operation.
5.4. Obtain the return value of semget() operation.
5.5. Encode the return value.
5.6. Send reply back to sender (to Step 6.1).

Local

Remote

Master DIPC
daemon

Process

forall name in A B C D
do
 statements that can use $name…
done

Figure 7. forall statements (before splitting)

8. Conclusion and future work

Our implementation demonstrates that SSI can be

achieved through a simple shell mechanism. It allows the
user to execute existing binaries without any
modifications, relinking or recompilation. The ability of
the system to provide load distribution has the added
advantage of utilizing both the cluster-wide resources and
improving the response time for individual processes.
With these attractive features and its ease of use, it will
result in better user acceptance. Our current work
involves the use of the implemented system to study the
effects of different workload characteristics with respect
to different load distribution policies.

Future work involves implementing a cluster-wide
addressing scheme that will enable the user to access any
resource in the cluster. This will also enable utilities like
“ps” to list out all user’s processes (both local and
remote).

IPC calls could be handled in a distributed manner by
intercepting the respective system calls. This concept is
applicable to both sockets and pipes. However, to migrate
processes that uses the above is much more tricky. As an
example, we need to be able to access the data that is
stored in the kernel for pipes during process migration.
This will allow the restarted process to access the same
data.

Signal handling is another area that requires special
handling. As an example, a local SIGKILL signal
generated by the user needs to be caught and send to the
correct remote process.

9. References

[1] A. Barak, S. Guday, and R. Wheeler, The MOSIX

Distributed Operating System, Load Balancing for UNIX.
Lecture Notes in Computer Science, Vol. 672, Springer-
Verlag, 1993.

[2] A. Bricker, M. Litzkow, and M. Livny, “Condor
Technical Summary.” University of Wisconsin-Madison
Technical Report 1069. Oct 1991.

[3] T. Barr, N. Langfeldt, and S. Vidal, Network File System
(NFS). http://www.linuxdoc.org/HOWTO/NFS-HOWTO/

[4] M. Baker, Cluster Computing White Paper.
http://www.dcs.port.ac.uk/~mab/tfcc/WhitePaper/

[5] D.P. Ghormley, D. Petrou and S.H. Rodrigues, “GLUnix:
a Global Layer Unix for a Network of Workstations”,
Software Practice and Experience, Vol 28(9), 1998:929-
961, http://now.cs.berkeley.edu/Glunix/glunix.html.

[6] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and
S.N. Zhou. Process migration survey. Collected papers,
The Open Group Research Institute, March 1997.
http://www.sdsc.edu/projects/production/NQE/SysAdmin/
SysAdmin_Batch.html

[7] V. Sunderam, “PVM: A Framework for Parallel
Distributed Computing.” Concurrency: Practice and
Experience, 2(4):315-339. Dec 1990.

[8] C. P. Tan, W.F. Wong, and C.K. Yuen, “tmPVM: Task
Migratable PVM.” Proc. of IPPS/SPDP 1999. pp. 196-
202a. Apr 1999.

[9] Leen Dikken, Frank van der Linden, Joep J. J. Vesseur,
and Peter M.A. Sloot, “DynamicPVM: Dynamic Load
Balancing on Parallel Systems”. Lecture Notes in
Computer Science, High Performance Computing and
Networking, Vol 797:273-277, Springer-Verlag, 1994

[10] R. Dornfest, Learning the JXTA Shell.
http://www.openp2p.com/pub/a/p2p/2001/04/25/learning_
jxta_shell.html

[11] S. Zhou, “LSF: Load Sharing in Large-scale
Heterogeneous Distributed Systems.” Proc. of Workshop
on Cluster Computing, Dec 1992.

[12] Compaq Computer Corporation, Brian J. Watson and
Bruce J. Walker, SSI for Linux, http://ssic-
linux.sourceforge.net/index.shtml

[13] U. Vahalia. Unix Internals – The New Frontiers. P rentice
Hall, 1996.

[14] Mark Ball, Sandy Bowers, Jackie Drane, Kevin Fought,
Alice Gentry, Ron Goering, Daniel Nguyen, Susan
Segura, and Johnny Shieh, Cluster Starter Kit for Linux.
http://www.alphaWorks.ibm.com/tech/clusterstarterkit?op
en&l=TS040102,t=awfl

[15] Wrox Press, “Making P2P interoperable: The Jxta
command shell”, Sep 2001,
http://www-106.ibm.com/developerworks/library/j-
p2pint2/index.html

[16] GNU Project, “Bash shell”.
http://www.gnu.org/software/bash/bash.html

[17] Red Hat Inc, “Chapter 4: T he /proc Filesystem”, Red Hat
Linux 7.2: The Official Red Hat Linux Reference Guide,
http://www.redhat.com/docs/manuals/linux/RHL-7.2-
Manual/ref-guide/ch-proc.html

[18] Scyld Computing Corporation, “Scyld Beowulf white
paper”, http://www.scyld.com/products/wpaper.pdf

[19] C. Newham and B. Rosenblatt, “Learning the bash shell.”
First Edition, O’Reilly & Associates, Inc, 1995.

forall name in A B
do
 statements that can use $name…
done

Group 1 (local execution)

forall name in C D
do
 statements that can use $name…
done

Group 2 (remote execution)

Figure 8. forall statements (after splitting)

