
SilkRoad: A Multithreaded Runtime System with Software Distributed Shared
Memory for SMP Clusters

L. Peng, W.F. Wong, M.D. Feng and C.K. Yuen
Department of Computer Science
National University of Singapore

3 Science Drive 2, Singapore 117543
fpengl,wongwf,fengmd,yuenckg@comp.nus.edu.sg

Abstract

Multithreaded parallel system with software Dis-
tributed Shared Memory (DSM) is an attractive direc-
tion in cluster computing. In these systems, distribut-
ing workloads and keeping the shared memory oper-
ations efficient are critical issues. Distributed Cilk
(Cilk 5.1) is a multithreaded runtime system for SMP
clusters with the support of divide-and-conquer pro-
gramming paradigm. However, there is no support for
user level shared memory. In this paper, we describe
SilkRoad, an extension of distributed Cilk, which im-
plementing the Lazy Release Consistency (LRC) mem-
ory model. In the SilkRoad runtime system, the data
of system control information (such as thread man-
agement, load balancing, etc) are kept consistent by
means of the backing store, just as it is in the orig-
inal distributed Cilk, while the user's cluster wide
shared data are kept consistent by LRC. With LRC,
SilkRoad programmers are allowed to define and use
shared variables between the threads running on dif-
ferent nodes in a cluster, and this greatly enlarged the
scope of supported programming paradigms in Cilk.
The result is a system that supports work-stealing and a
true shared memory programming paradigm. To show
the benefits of integration, we compared SilkRoad
with the original distributed Cilk. We also compared
SilkRoad with TreadMarks, a LRC software DSM im-
plementation for clusters with no support of multi-
threading. The results show that with the hybrid mem-
ory model of dag-consistency and LRC, multithreaded
SilkRoad programs written in a divide-and-conquer
fashion with good data locality can achieve compa-

rable performance with the corresponding multiple-
process TreadMarks programs.

Keywords: cluster computing, multithreading, lazy
release consistency.

1. Introduction

Multithreading is popular shared memory program-
ming paradigm for symmetric multiprocessor (SMP)
machines [9]. Many programming environments for
cluster computing, however, support only operating
system process-oriented parallelism, such as PVM [7],
and sometimes are only restrictive static parallelism as
is the case for MPI [8]. It is considered hard to achieve
parallelism dynamically, especially with load balanc-
ing and dynamic thread creation. Nevertheless, as
clusters of SMPs become prevalent, supporting multi-
threading in the cluster environment is desirable. With
such a system, multithreaded programs written for a
uniprocessor may be run on a uniprocessor, a true
SMP, a cluster of uniprocessors, or a cluster of SMPs.
This flexibility also promises performance scalability.

Software DSMs [15] provides the runtime support
for a virtual shared memory environment over a clus-
ter of workstations. Lazy release consistency [14] hass
proved to be one of the most efficient memory consis-
tency models in current software DSM systems. By
delaying the propagation of modifications from one
node to another until the next mutex acquisition, it
greatly reduces communication cost.

Distributed Cilk is a multithreaded programming



systems for clusters [5] of Unix PCs. Distributed
Cilk embodies the algorithmic multithreading pro-
gramming language Cilk [4] and implements the lan-
guage for a network of SMP's. Cilk supports “nor-
malized”1 thread spawning and synchronization. and
provides a limited form of distributed shared memory
support for threads in the cluster. Unfortunately, user-
level shared memory which is necessary in many mul-
tithreaded applications is absent in the Cilk. In the
distributed Cilk run-time system, data are kept con-
sistent by a means of a backing store. We have ex-
tended distributed Cilk by implementing LRC to sup-
port user level shared variables, allowing threads in
the cluster to be interacted with the cluster wide locks.
The result is a system we called SilkRoad. The per-
formance of SilkRoad was evaluated by comparing
it against distributed Cilk extended with straightfor-
ward user level locks, and TreadMarks [10], a popu-
lar DSM runtime system implementing LRC on cluster
supporting process-oriented static multitasking using
three benchmarks. Our results show that SilkRoad per-
forms better than distributed Cilk and is comparable
with TreadMarks. For programs written in divide-and-
conquer approach, SilkRoad outperforms TreadMarks
in some test cases.

This paper are organized as follows: First, we will
briefly describe distributed Cilk and our extension, i.e.
SilkRoad, in Section 2. In Section 3, we describe
the LRC protocol and its implementation in SilkRoad.
Then, we describe our testbed, the applications used
in the performance evaluation, and the results of the
evaluation in Section 4 and Section 5. Section 6 dis-
cusses some related work. We conclude the paper with
a short discussion of our future plans in Section 7.

2. Distributed Cilk

Distributed Cilk implements the basic features of
the Cilk multithreaded language, which in turn is
based on C language. The two basic parallel control
constructs introduced in Cilk are spawn for thread
spawning, and sync for synchronization. The paral-
lel control flow of a Cilk program can be viewed as

1Normalization means that (1) a thread which can only be
joined by its immediate parent thread; (2) a parent thread will join
all its created child threads before the completion. The thread rela-
tion graph (i.e. parallel control flow) is a serial-parallel graph [17].

Figure 1. The parallel control flow of the Cilk
program viewed as a dag.

a directed acyclic graph (dag), as illustrated in Fig-
ure 1. The vertices of the dag represent parallel con-
trol constructs, and the edges represent Cilk threads,
which are maximal sequences of instructions without
containing any parallel control constructs.

Cilk is effective at exploiting dynamic, highly asyn-
chronous parallelism, which may be difficult to be
achieved in the data-parallel or message-passingstyle.
For example, the divide-and-conquer paradigm can
be easily expressed in Cilk: threads are dynamically
spawned at the dividing stage, and synchronized at the
conquering stage. There is no theoretical limit on ei-
ther the number of threads that may be spawned (in
practice, this is limited by the available heap space)
or on the number of the nesting level of threads to be
spawned (limited by the available stack space).

The Cilk run-time system uses the work stealing
strategy for load balancing [3]. When a processor
becomes idle, it initiate attempts to steal work (i.e.,
threads) from a randomly chosen busy processor. This
kind of scheduler is also called greedy scheduler. The
execution time of a multithreaded program running
on P processors with the greedy scheduler is Tp �

T1=P + T1, where T1 is the executing time on one
processor and T

1
is the executing time on infinite pro-

cessors [6]. The work stealing strategy is also used by
distributed Cilk for scheduling in a cluster of SMPs.

As is required in the distributed memory clustering
environment, the distributed Cilk runtime system im-
plements its own distributed shared memory, support-
ing a memory consistency model called dag-consistent
shared memory [2]. In this consistency model, a read



can see the result of write only if there is a serial exe-
cution order within the dag in which the write precedes
the read (i.e., the write should be executed before the
read in any possible of the scheduling). This relaxed
consistency model is adequate for programs written in
the divide-and-conquer paradigm.

The careful reader would have noted that the inabil-
ity for incomparable nodes in the dag (possibly sib-
ling nodes) to share data is more restrictive than true
shared memory processing.

To maintain dag consistency, the BACKER coher-
ence algorithm is employed by Cilk. In this algo-
rithm, a backing store provides global storage for each
shared object. The backing store actually consists of
portions of each processor's main memory. Three ba-
sic operations, namely fetch, reconcile and flush, are
used by the BACKER algorithm to manipulate shared-
memory objects.

However, distributed Cilk does not support any
user-level lock as the concept of locking is absent in
the dag-consistency model. Thus some applications
that require locks to protect critical sections cannot
run in distributed Cilk2. We extended distributed Cilk
by implementing cluster-wide distributed locks [13].

We implemented distributed locking by using a
straightforward centralized scheme. For each lock, a
processor is chosen statically in a round-robin manner
to be its manager. To obtain a lock, the acquirer will
send a lock request message to the lock's manager. If
no other thread is holding the lock, the manager sends
a reply message to the acquirer granting the lock ac-
quisition request. If the lock is already held by some
other thread, the current acquirer waits in a queue as-
sociated with the lock. A lock holder will send a mes-
sage to the manager when it releases the lock. If there
are more than one acquirers waiting for the lock, the
first one in the waiting queue is given the lock. The
others remain in the queue. In conforming with the
messaging convention in distributed Cilk, we used ac-
tive messages in the sending of messages [18].

3. Lazy Release Consistency and SilkRoad

Memory consistency model defines the semantics of
the shared data, namely, when the modified data on

2User-level lock is supported in the SMP version of Cilk.

one node will be seen by the other nodes. Sequen-
cial consistency [12] is a straightforward consistency
model, but it is too strict and hard to implement ef-
ficiently. Relaxed consistency models, such as release
consistency [11], were later proposed to overcome this
problem. TreadMarks implements release consistency
in a “lazy” way, thus its name lazy release consistency
(LRC). In LRC, each processor delays the propagation
of its modifications (i.e. diffs) until the next lock acqui-
sition.

As mentioned in Section 2, in distributed Cilk the
runtime system uses a backing store to maintain mem-
ory consistency. This causes a performance problem
when user level locks are introduced: each time when
there is a lock release, diffs will be created and sent to
the backing store. At each lock acquire, the processor
will obtain fresh diffs from the backing store by flush-
ing its own locally cached pages. Thus the backing
store is a home for all cached pages, but it is just too
eager in propagating modifications.

To address this problem, we introduce LRC into
distributed Cilk. We named the resulting system
SilkRoad. In the SilkRoad run-time system, all data
are divided into two parts: system information (which
includes thread spawning, the scheduling info, work
stealing messages, etc) and the user's shared data
(which is defined by the programmer). For system in-
formation, the original BACKER algorithm was used
to maintain consistency between the nodes, while LRC
was used to handle the consistency of the user's shared
data. We opted for eager diff creation and the write
invalidation protocol to propagate the modifications.
User programs have to acquire cluster-wide locks to
access the shared variables and then release it after-
wards. When releasing a lock, the diffs for the mod-
ifications done to shared pages during this lock are
created and stored. Thus there is a correspondence
between diffs and locks. During the next remote lock
acquisition, write notices will be sent to the acquirer.
When the acquirer requests for the diffs of a page, only
the diffs associated with this lock will be sent to the
acquirer. So in this the number of diffs are greatly re-
duced.

We measured the average time for acquiring of a
lock and found it to be approximately 0.38 msec for
our testbed described below.



4. Performance of the SilkRoad

In this section, we will first describe the cluster on
which we run our experiments and the three applica-
tion programs chosen for the experiment. This is fol-
lowed by a discussion of the results.

The testbed of our experiment is a 8-node SMP
PC cluster. Each node has two Pentium-III 500 MHz
CPUs, 256 MB memory (512 MB for the node acting
as the NFS/NIS server), and a 100Mbps Fast Ether-
net network card. Nodes are interconnected in a star
topology through a 100baseT switch. The operating
system of each node is RedHat Linux 6.1 with the ker-
nel version 2.2.12-20.

In our tests, the following three applications were
used:

matmul Matrix multiplication is a basic application
which is widely used in benchmarking. Matmul
multiplies two n � n matrices and puts the re-
sults into another matrix. It fits into the divide-
and-conquer paradigm well: recursively split the
problem into 8 n=2 � n=2 matrix multiplication
subproblems and combine the results with one
n � n addition. This program needs the DSM
support because three matrices are shared among
spawned threads. No lock is needed however as
the basic parallel control constructs suffice.

queen The objective of the queen program is to place
n queens on an n � n chess board such that they
do not attack each other. The program finds the
number of all such configuration for a given chess
board size. The SilkRoad program explores the
different columns of a row in parallel, using a
divide-and-conquer strategy. The chess board is
placed in the distributed shared memory such that
child threads can get the chess board configura-
tion from their parent thread. Again user lock is
not necessary in the program.

tsp The program tsp solves the traveling salesman
problem using a branch and bound algorithm. In
this program, a number of workers (i.e., threads)
are spawned to explore different paths. The ac-
tual number of workers depends on the number
of available processors. The emerged unexplored
paths are stored in a global priority queue in the

distributed shared memory. All workers retrieve
the paths from the priority queue. The bound is
also kept in the distributed shared memory, and
each thread accesses (i.e., reads or writes) the
bound thorough a lock, in order to ensure the con-
sistency. Three example cases were tested: two of
them with 18 cities, and one with 19 cities.

The speedups of SilkRoad programs are listed in Ta-
ble 1. These speedups are computed by dividing the se-
quential program's executing time by the correspond-
ing parallel program's executing time. We used the
egcs compiler (version 1.1.2) with the -O option to
compile all of the application programs. To run the
parallel version of the program, it is copied to all the
nodes involved in the computation. Where possible, we
avoided using the physical shared memory of a node so
as to observe the performance of the distributed shared
memory. For instance, when running an instance of
an application with only two computation threads, we
distributed the threads to distinct nodes to minimize
physical sharing.

As expected, speedups varies depending on the ap-
plications3. For the matmul and queen problems,
SilkRoad achieves good speedups, especially when
the problem size is large. Good speedups were also
achieved for tsp.

matmul

In this application, the divide-and-conquer strategy
used in the SilkRoad program achieved good perfor-
mance. For the smaller matrices (512 � 512), the
speedup was 1.51 on two processors, while not very
good on more processors because the communication
overhead cannot be offset by the parallelism. The
amount of concurrent work cannot make all processors
busy all the time. For the larger matrices (1024�1024
and 2048 � 2048), we achieved good speedups and
even super-linear speedups. For example, speedup
3.13 for 1024 � 1024 matrices on 2 processors, and
speedup 3.86 for 2048 � 2048 matrices on 4 proces-
sors. The super-linear speedup comes from the data
locality. In SilkRoad, if all elements of a divided mat-
mul block can fit in the local cache, there are much

3Matmul for n = 2048 on 8 processors failed to run due to
insufficient heap space.



Applications 2 processors 4 processors 8 processors

512� 512 1.51 1.76 1.72
matmul 1024� 1024 3.13 2.67 3.18

2048� 2048 3.53 3.86 -
12 2.16 4.01 6.03

queen 13 2.30 4.45 8.65
14 1.70 3.41 6.65
18 1.31 2.05 1.80

tsp 18b 1.52 3.46 3.00
19b 1.27 1.69 1.54

Table 1. Speedups of the applications.

fewer cache misses in comparison with the sequential
program that stores the matrices in the cache in row
major order. When the matrices cannot fit into the lo-
cal cache, thrashing occurs. On the other hand, in the
SilkRoad matmul program, the matrices are divided
into small blocks till the size of 16� 16 which fits into
the local cache easily. If a thread is stolen and run
on a remote processor, the amount of transferred ma-
trices data via DSM may still be considerable, so too
the amount of messages (please see Table 5 in Sec-
tion 5). However, increased parallelism coupled with
the data locality still tipped the balance in the favour
of SilkRoad.

queen

In this application, the SilkRoad program also uses
the divide-and-conquer strategy. When the problem
size increases (e.g., 14-queen problem), near linear
speedups were achieved. The chess board is stored
in the distributed shared memory, but the amount of
data (i.e., the current chess board configuration) to be
transferred is less than that of matmul. Thus, the par-
allel execution did not suffer too much from the DSM
overhead, and reasonable speedup is achieved through
the parallelism in the problem. As is usual in paral-
lelizing search problems, super-linear speedups were
observed in some cases.

tsp

In this application, the distance of all cities, the cur-
rent shortest route found so far, the bound of the cur-

rent shortest route, and a priority queue storing all un-
explored routes are held in global shared memory that
is frequently accessed by multiple worker threads.

5. Comparison with TreadMarks

In this section, we compare the performance of the
SilkRoad with TreadMarks on the same applications
we used in Section 4. TreadMarks is a typical DSM im-
plementation for clusters without the support of multi-
threading. The purpose of our comparison is to the
overheads in the SilkRoad run-time system as com-
pared with a well established LRC system.

We used TreadMarks version 1.0.3 and ported it to
the Linux kernel version 2.2.15-20. For the matmul
problem, we developed a corresponding TreadMarks
program that statically partitions the matrices. The
TreadMarks and SilkRoad queen programs were es-
sentially the same. For the tsp problem, we used the
program included in the TreadMarks distribution, and
on which our SilkRoad version was based. We com-
pile the TreadMarks runtime system code and the test
applications by using the same C compiler and the op-
timization flags that were used for SilkRoad.

Table 2 shows the speedups of the applications run-
ning on 2, 4, and 8 processors for both SilkRoad and
TreadMarks. We observed that for matmul (1024 �
1024), the speedup of the SilkRoad program does
not increase a lot when the number of processors in-
creases. We attribute this to the lack of parallelism.
From Table 1, we see that as problem size increases,
the SilkRoad programs achieve better speedups. For
the queen program, SilkRoad's performance is com-



parable with TreadMarks. In solving tsp problem,
SilkRoad is a little slower than TreadMarks. We be-
lieve the shared memory run-time in SilkRoad still
needs to be optimized further. Section 4.

Besides the running time and speedup, we are also
interested in whether the load is balanced within clus-
ters, and the cost of the synchronization and commu-
nication. Load balancing is a key issues in cluster
computing. All things being equal, a properly load
balanced system will achieve higher performance and
better efficiency. We compared the load situation of
TreadMarks and SilkRoad. Table 3 and Table 4 give
part of the output for running matmul (1024 � 1024)
on 4 processors in SilkRoad and TreadMarks respec-
tively. Though the data in these two tables are not di-
rectly comparable, it does show evidence that the bal-
ance of load differs in the two systems.

Summary of time spent by each processor
Proc. No. Working Total Ratio

0 13.9000 19.4000 71.6%
1 13.3500 17.8900 74.6%
2 14.3800 20.7700 69.2%
3 14.9100 20.2200 73.7%

AVE. 14.1350 19.5700 72.2%

Table 3. Load balance in one execution of mat-
mul (1024�1024) on 4 processors in SilkRoad.

processor messages diffs twins barrier waiting
time (seconds)

0 7274 0 4 1.3
1 3593 256 256 1.61
2 3530 256 256 0.49
3 5838 256 256 0.49

Table 4. Load balance in one execution of mat-
mul (1024 � 1024) on 4 processors in Tread-
Marks.

We can see that the load is more balanced in
SilkRoad than in TreadMarks. The column under the
heading “Working” reflects the time spent on execut-
ing threads in each processor respectively. The “To-
tal” column indicates the time including the work-

ing, spawning child threads, synchronization etc. The
load of the each processor in SilkRoad is roughly
equally distributed as shown in Table 3. This is mainly
due to the dynamic greedy scheduler. TreadMarks'
static load balancing strategy is unable to maintain a
balanced workload among the processors at runtime.
From Table 4, we see that processor 0 receives many
more messages than the other processors, while cre-
ating fewer diffs and twins during computation. The
barrier waiting time also varies among the processors.
One can deduce that the workload between these four
processors are not well balanced.

Besides dynamic load balancing, our current
SilkRoad implementation installs signal handlers for
incoming messages such that incoming messages trig-
ger signals to interrupt the working process and force
it to handle I/O promptly. This works better than cre-
ating a communicating daemon process on each pro-
cessor. Table 5 shows the amount of transferred data
and messages in communication. We can see that dur-
ing the computation, SilkRoad sends overwhelmingly
more messages and transfers much more data than
TreadMarks. For example, for matmul (1024� 1024)
running on 4 processors, even though there are fewer
cache misses because of the locality and small block
size, SilkRoad still sends about 7.6 times more mes-
sages and transfers 4.2 times more data than the
TreadMarks. We believe that the lazy release mem-
ory consistency (LRC) implemented in TreadMarks ef-
fectively reduces the amount of communication. LRC
delays the propagation of the consistency information
until the next time of an lock acquire operation starts,
but SilkRoad also uses the backing store to maintain
the consistency of the system information and this re-
sults in the large number of messages and data. More-
over, in SilkRoad, there are frequent thread migra-
tions between processors due to the work stealing al-
gorithm. Thread migration may trigger more DSM op-
erations when threads access shared data structure not
present in the local cache.

Table 6 shows the time spent by the applications
in synchronization between the processors in the clus-
ter. SilkRoad takes more time in acquiring distributed
locks. As shown in Table 6, the accumulative lock
acquiring time in TSP in SilkRoad is about 3.7 times
more than that in TreadMarks. This is mainly because
that in the TSP program, some threads repeatedly ac-



Applications No. of processors Speedups (dis. Cilk) Speedups (TreadMarks)

matmul 2 3.13 1.28
(1024� 1024) 4 2.67 2.41

8 3.18 4.30
2 1.70 2.19

queen (14) 4 3.41 3.50
8 6.65 6.65
2 1.52 1.89

tsp (18b) 4 2.39 2.74
8 3.00 3.21

Table 2. Speedups of the applications for both distributed Cilk and TreadMarks.

Applications Number of messages Transferred data (in KB)
dist. Cilk TreadMarks dist. Cilk TreadMarks

matmul (1024� 1024) 189438 24928 156016 37049
queen (12) 3577 45 1559 13
tsp (18b) 7350 5123 2635 806

Table 5. Messages and transferred data in the execution of applications (running on 4 processors).

quire and release the same lock during the computa-
tion. With the eager diff creation in SilkRoad, modi-
fications will be saved each time when the lock is re-
leased, while in TreadMarks, lazy diff creation avoid
this overhead in this case, hence the less lock acquir-
ing time. Eager diff creation in SilkRoad associates
the diffs with a particular lock which avoids send un-
necessary diffs of a page. However the cost is paid in
terms of the frequent diff creations in lock release.

Overall, we see that SilkRoad achieves good per-
formance for those problems that can be solved by the
divide-and-conquer strategy with little or no data de-
pendence among the child threads, as exemplified in
matmul and queen programs. Even in cases where
there are some increase in synchronization and com-
munication cost, the integration of multithreading and
software DSM still seems viable and good perfor-
mance on a cluster is still achievable.

The original distributed Cilk is suitable for those
dynamic and highly asynchronous parallelism (such
as queen). TreadMarks is suitable for the phase par-
allel, or master-slave applications such as tsp. When
dealing with some recursive problems (such as quick-
sort), it is more natural to choose the dynamic mul-

tithreaded programming system like SilkRoad. Cer-
tain applications (such as matrix multiplication) can
be as efficient done in both programming paradigm.
We have shown that by utilizing a more relaxed and
efficient DSM consistency model, the dynamic multi-
threaded run-time system can still perform well even
as it supports a wider range of parallel programming
paradigms. In addition, load balancing is achieved by
the greedy work stealing algorithm.

6. Related Work

Keith Randall is the original implementor of the dis-
tributed Cilk. In his PhD thesis [16], he discussed dis-
tributed Cilk in one of the chapters but no detailed per-
formance results except for a simple fibonacci program
was given. The distributed Cilk used in this paper dif-
fers from the original distributed Cilk by Randall in
two aspects: the use of signal handler to handle in-
coming message, which was added by Mike Bernstein
of Yale University, and the provision of cluster-wide
lock added by us.

There are few runtime systems for clusters which
supports both load balancing and distributed shared



Lock SilkRoad TreadMarks

Average execution time of lock operations 0.492 msec 0.335 msec
Total time in lock acquisition for tsp (18b) 0.33 sec 0.09 sec

Table 6. Synchronization costs (on 4 processors).

memory. Most of parallel programming environments
for cluster computing only support the static paral-
lelism, e.g., [7, 8, 10], without dynamic load balanc-
ing. Mosix [1] supports the migration of processes
for load balancing in a cluster, but lacks distributed
shared memory. Much work still needs to be done in
order to make clusters appear as a single system to
users.

7. Conclusion and Future Work

In this paper we have described SilkRoad, an en-
hancement of the distributed Cilk system supporting
user level global locks and a software distributed
shared memory while retaining its original novel fea-
ture of multithreaded, divide-and-conquer program-
ming paradigm coupled with work stealing.

With LRC implentation, SilkRoad performs better
for those applications using user level shared vari-
ables. At the moment, it is still a hybrid shared mem-
ory system in which dag-consistency and LRC co-exist.
This hybrid memory model is supports a wider range
of parallel programming paradigms, but we believe
its performance can still be improved. We are cur-
rently working on closing the performance gap be-
tween SilkRoad and a full LRC system like TreadMarks
that still exist in some applications. Our goal is to
come up with an efficient cluster run-time system that
supports multithreading, load balancing and shared
memory programming.

Acknowledgments

We would like to thank Willy Zwaenepoel of Rice
University, Charles Leiserson of MIT for their sug-
gestions and insightful discussions on the problems we
presented in the paper.

References

[1] A. Barak and O. La'adan. The MOSIX multicomputer
operating system for high performance cluster com-
puting. Journal of Future Generation Computer Sys-
tems, 3(13(4-5)):361–372, 1998.

[2] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson,
and K. H. Randall. Dag-consistent distributed shared
memory. In Proceedings of the 10th International Par-
allel Processing Symposium (IPPS), pages 132–141,
Honolulu, Hawaii, Apr. 1996.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. In Proceed-
ings of the 35th Annual Symposium on Foundations
of Computer Science (FOCS), pages 356–368, Santa
Fe, New Mexico, Nov. 1994.

[4] Cilk-5.2 Reference Manual. Available on the Inter-
net from http://supertech.lcs.mit.edu/
cilk.

[5] Distributed Cilk - Release 5.1 alpha 1.
Available on the Internet from http://
supertech.lcs.mit.edu/cilk/release/
distcilk5.1.html.

[6] M. Frigo, K. H. Randall, and C. E. Leiserson. The im-
plementation of the Cilk-5 multithreaded language.
In Proceedings of the ACM SIGPLAN '98 Confer-
ence on Programming Language Design and Imple-
mentation (PLDI), Montreal, Canada, June 1998.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine. MIT Press, 1994. PVM home-
page http://www.epm.ornl.gov/pvm/-
pvm home.html.

[8] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir. MPI: The
Complete Reference. Volume 2 – The MPI-2 Ex-
tensions. MIT Press, 1998. MPI forum homepage
http://www.mpi-forum.org.

[9] IEEE. Information technology–Portable Operating
System Interface (POSIX)-Part1: System Applica-
tion: Program Interface (API) [C Language], 1996.
ANSI/IEEE Std 1003.1, 1996 Edition.

[10] P. Keleher, A. L. Cox, S. Dwarkadas, and
W. Zwaenepoel. TreadMarks: Distributed shared



memory on standard workstations and operating sys-
tems. In USENIX Winter 1994 Conference Proceed-
ings, pages 115–132, San Francisco, California, Jan.
1994.

[11] K.Gharachorloo, D.E.Lenoski, J.Laudon, P.Gibbons,
A.Gupta, and J.L.Hennessy. Memory consistency an
event ordering in scalable shared-memory multipro-
cessors. In Proc. of the 17th Annual Int'l Symp.
on Computer Architecture (ISCA'90), pages 15–26,
May 1990.

[12] L.Lamport. How to make a multiprocessor computer
that correctly executes multiproces programs? In
IEEE Transactions on Computers, pages 690–691,
Sept. 1979.

[13] L. Peng, M. Feng, and C.-K. Yuen. Evaluation of
the pervormance of multithreaed cilk runtime system
on smp clusters. In Proc. of the IEEE International
Workshop of Cluster Computing, Dec. 1999.

[14] P.Keleher, A.L.Cox, and W.Zwaenepoel. Lazy release
consistency for software distributed shared memory.
In Proc. of the 19th Anaual International Symposium
on Computer Architecture (ISCA'92), May 1992.

[15] J. Protic, M. Tomasevic, and V. Milutinovic. Dis-
tributed Shared Memory: concepts and systems.
IEEE Computer Society, 1997.

[16] K. H. Randall. Cilk: Efficient Multithreaded Comput-
ing. PhD thesis, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of
Technology, May 1998. Available as MIT Technical
Report MIT/LCS/TR-749.

[17] J. Valdes. Parsing Flowcharts and Series-Parallel
Graphs. PhD thesis, Stanford University, December
1978. STAN-CS-78-682.

[18] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active messages: a mechanism for inte-
grated communication and computation. In Proceed-
ings of the 19th Annual International Symposium on
Computer Architecture (ISCA), pages 256–266, Gold
Coast, Australia, May 1992.


