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Abstract. Identifying non-trivial requirements for large complex dy-
namical systems is a challenging but fruitful task. Once identified such
requirements can be used to validate updated versions of the system
and verify functionally similar systems. Here we present a technique for
discovering behavioural properties of bio-pathway models whose dynam-
ics is modelled as a system of ordinary differential equations (ODEs).
These models are usually accompanied at best by high level functional
requirements while undergoing many revisions as new experimental data
becomes available. In this setting we first specify a set of property tem-
plates using bounded linear-time temporal logic (BLTL). A template
will have the skeletal structure of a BLTL formula but the time bounds
associated with the temporal operator as well as the value bounds as-
sociated with the system variables encoded as atomic propositions will
be unknown parameters. We classify a given model’s behavior as corre-
sponding to one of these templates using a convolutional neural network.
We then synthesize a concrete property from this template by estimating
its parameters via a standard search procedure combined with statistical
model checking (SMC). We have synthesized and validated properties of
a number of pathway models of varying complexity using our method.

Keywords: property synthesis, statistical model checking, bounded linear-time
temporal logic, ODEs models of bio-pathways

1 Introduction

Synthesizing specifications of system models is a useful but challenging task. This
is especially so for bio-pathway models. These models are rarely come with con-
crete temporal specifications. Instead, they are accompanied by functionalities
such as “EGF-NGF stimulation of PC12 cells discriminates between prolifer-
ation and differentiation”. Synthesizing more concrete temporal specifications
from these models is appealing for at least two reasons. First, the synthesized
specifications can point to mechanistic chains of events that determine the over-
all functionality such as “transient activation of Erk1/2 leads to proliferation
while its sustained activation results in differentiation”. (We hasten to add that



this is merely an illustration using the functional specification and the concrete
mechanistic property presented in [5]). Second, the construction of a model is
rarely complete. Instead, it is repeatedly updated as fresh experimental data be-
comes available. In such settings, the temporal specifications synthesized from
a previous version of the model can be used to assess whether the new model is
qualitatively different from the older one.

As is well known there are two major classes of models to describe the dynam-
ics of bio-pathways, namely deterministic ones based on ODEs [2] and stochastic
ones [13] based on continuous-time Markov chains (CTMCs). In this paper, we
shall focus on ODEs based models. In both types of models many rate constants
of the reactions as well as the initial concentrations will be unknown. Here we
consider this to be an important but orthogonal issue. Hence for evaluating our
proposed method, we consider curated models with known parameter values
taken from the Biomodels database [18].

We first build a set of property templates that capture parametrized fam-
ilies of pathway dynamical properties. Each template is built out of a BLTL
(bounded linear time temporal logic) formula but whose time bounds associated
with the temporal operators are integer-valued parameters. Furthermore, the
atomic propositions appearing in the formula will be of the form (` ≤ x ≤ u)
where x is a system variable and ` and u are parameters that take values from
the value domain of x. (These template parameters are not to be confused with
the (model) parameters associated with the ODEs model). The choice of BLTL
as the specification logic -and the accompanying atomic propositions- is guided
by the nature of the experimental data that is usually available for our models
of interest, namely signaling pathways. Here the experimental data (ie. obser-
vations of the system states) will typically consist of finite precision and noisy
measurements regarding a small subset of system variables at a finite number
of discrete time points. Further, only qualitative temporal properties will be
applicable.

To focus on the main issues, we restrict our attention to four templates that
capture key behavioural patterns of interest such as: “the concentration of a
species x starts from an initial level in the interval [c1, c2], rises to a level [d1, d2]
within k time units and remains in this interval until tmax”. Based on these tem-
plates we develop a synthesis framework as shown in Figure 1. First, by assuming
an initial probability (usually uniform) distribution over the initial states of the
system variables, a set of trajectories is generated through numerical simula-
tions. Next, the trajectories are presented to a pre-trained convolutional neural
network to identify the template ψ that best corresponds to the trajectories.
We then employ a simulated-annealing [21] based global optimization proce-
dure to estimate the parameters of the template. Specifically, in each step of
the procedure, the value generator instantiates from ψ a concrete property ψ̂.
We then use statistical model checking to evaluate the quality of satisfaction
of ψ̂. Subsequently, the loss function computes the loss, and reports it to the
simulated-annealing procedure which then terminates, or generates a new set of
values for the parameters.
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Fig. 1: Overview of the property synthesis framework

1.1 Related Work

Learning temporal logic formulas from data (or a generative model) is becoming
a well explored field. The applications come from both cyber physical systems [8,
15, 17] and biological domains [3, 7, 12]. In the latter domain —which is our
interest— the line of work reported in [7] is particularly relevant. The authors
first learn a stochastic hybrid system from data and then use the model to
generate data for learning the temporal logic formulas of interest in two steps.
First, using an evolutionary algorithm, the structure (template as we call it)
of the formula is learned. Then the parameters in the template are calibrated
using a previously developed stochastic optimization method called the Gaussian
Process Upper Confidence Bound (GP-UCB) algorithm [4]. The specification
logic is bounded metric temporal logic. In our setting the model is available as
a system of ODEs. We fix a set of templates in advance and train a convolution
network using synthetic data not generated by the model in order to avoid bias.
Then using this network and trajectories randomly generated by the model we
match a template to the model. We then learn its parameters using simulated
annealing combined with statistical model checking. Finally we use BLTL as our
specification logic since it is a good fit for the class of models we wish to study.

An important aspect of parameter learning is to determine how well the
formula instantiated by a particular choice of parameters matches the training
data. Here again there is a good deal of literature on “robustness of satisfaction”
[3, 9, 10, 28]. Specifically, [28] is illustrative for ODEs based models in which a
continuous notion of satisfaction is combined with an evolutionary search pro-
cedure to estimate kinetic parameters meeting temporal logic specifications. On
the other hand the work reported in [3] formulates a robustness of satisfaction
notion for stochastic systems and then uses this notion to optimize chosen con-
trol parameters of a stochastic system in order to maximize the robustness of
satisfaction.

The paper is organized as follows. Section 2 presents the preliminaries and
property templates. In Sections 3 and 4, we explain our search procedure. Sec-
tion 5 presents the experimental results and we conclude in Section 6.



2 Preliminaries

We introduce the basic notations we will be using in connection with ODEs,
BLTL, statistical model checking. We conclude with the introduction of property
templates.

2.1 Trajectories of a System of ODEs

Suppose there are n molecular species {x1, x2, . . . , xn} in the pathway. For each
species xi, an equation of the form dxi

dt = fi(x, Θi) describes the kinetics of
the reactions that produce and consume xi where x is the concentrations of
the molecular species taking part in the reactions. Θi consists of the rate con-
stants governing the reactions. Each xi is a real-valued function of t ∈ R+,
the set of non-negative reals. We shall realistically assume that xi(t) takes val-
ues in the interval [Li, Ui], where Li and Ui are non-negative rationals with
Li < Ui. Assuming there are m reactions, we let Θ = {θ1, θ2, . . . , θm} be the
set of rate constants. We define for each variable xi an interval [Liniti , U initi ]
with Li ≤ Liniti < U initi ≤ Ui. We assume the value of the initial concen-
tration of xi to fall in this interval. We also assume the nominal value of the
rate constant θj falls in the interval [Linitj , U initj ] for 1 ≤ j ≤ m. We set INIT

= (
∏
i[L

init
i , U initi ])× (

∏
j [L

init
j , U initj ]). Here INIT is meant to capture the vari-

ability in the initial concentrations of the variables and the rate constants across
a population of cells. Further, we let v to range over

∏
i[L

init
i , U initi ] and w to

range over
∏
j [L

init
j , U initj ]. We define in the usual way the notion of a trajectory

σv,w starting from (v,w) ∈INIT at time 0. We let TRJ denote the set of all
finite trajectories that start in INIT.

As mentioned earlier we assume a probability distribution over INIT and for
convenience assume it to be the uniform one. The ODEs systems arising in our
setting will induce vector fields that satisfy a natural continuity property. Hence
one can define the probability that a trajectory starting from a randomly chosen
state in INIT will satisfy a given BLTL formula. Consequently one can develop
a statistical model checking procedure to verify whether the system of ODEs
meets the given BLTL specification with required probability [27].

2.2 Bounded Linear-time Temporal Logic

An atomic proposition for our setting will be of the form (L ≤ xi ≤ U) with
Li ≤ L < U ≤ Ui where L, U are rationals. The proposition (L ≤ xi ≤ U) says
“the current concentration level of xi lies in the interval [L,U ]” and we fix a
finite set of atomic propositions. BLTL formulas are then defined in the usual
way.

We fix a finite set of time points T = {t0 < t1, . . . , tK} and interpret a BLTL
formulas over a trajectory σ in TRJ observed at the time points in T as usual.
We say that σ is a model of ψ if σ, t0 |= ψ.

For a formula ψ the statement P≥r(ψ) where r ∈ [0,1) will mean “the prob-
ability that a trajectory in TRJ is a model of ψ is at least r”. To verify this,



we consider the sequential hypothesis testing problem where the null hypoth-
esis is H0 : P≥r(ψ) and the alternate hypothesis H1 : P<r(ψ). A convenient
termination criterion here is is the Bayes factor [16,19].

B =
Pr(d|H0)

Pr(d|H1)
(1)

where d is the collection of Bernoulli random variables denoting the outcome
whether a random trajectory generated by the ODE system satisfies ψ. Com-
paring B against a pre-defined threshold h, the property is accepted if B is larger
than h and is rejected if it is less than 1/h. Unlike the SPRT ratio test one doesn’t
have to specify an indifference region.

2.3 Templates

A template is a BLTL formula in which the bounds on system variable values
in the atomic propositions and the integer bounds associated with the tempo-
ral operators are replaced by symbolic variables. These variables will be called
propositional variables and temporal variables respectively in what follows. In
addition, the template is augmented by a set of constraints. These constraints
will be of the form [uj ≤ `k] or [uk ≤ `j ] given two atomic propositions of the
form (`j ≤ xj ≤ uj) and (`k ≤ xk ≤ uk).

Here is an example of a template:

p1 ∧ F≤t1G≤t2p2 | [u1 ≤ `2]

where p1 = (`1 ≤ x1 ≤ u1) and p2 = (`2 ≤ x1 ≤ u2).

This template represents the statement “value of x1, starting from a low level
(p1) reaches within t1 time units a high level (p2) and stays at p2 for at least t2
units”. [u1 ≤ `2] captures the constraint the level (`1, u1) is lower than (`2, u2).

The main idea is to search over the temporal and atomic proposition variables
and use Bayes factor to measure of how well a synthesized property characterizes
the observed behavior. A property with a Bayes factor larger than a given Bayes
factor threshold is accepted while one with a small Bayes factor is rejected. In
this initial study we consider the templates listed in Table 1.

3 Classifying Templates using a Convolutional Neural
Network

Our workflow first trains a convolution network to recognize trajectories pre-
sented to it as belonging to one of the set of templates we have fixed. It then
classifies a set of random trajectories generated by a model as belonging to one
of the templates and then proceeds to synthesize a concrete property using the
template.



No. Template Description

1 p1 ∧ F≤t1G≤t2p2 where
p1 : (`1 ≤ x ≤ u1)
p2 : (`2 ≤ x ≤ u2)

Starting from the level p1, within t1 steps, the
value of x reaches the level p2 and stays there
for at least t2 steps. Typically describes sustained
activations or deactivations. Constraints can be
used to specify whether x decreases or increases
from the initial level.

2 p1 ∧ F≤t1(p2 ∧ F≤t2p3)
where p1 : (`1 ≤ x ≤ u1)

p2 : (`2 ≤ x ≤ u2)
p3 : (`3 ≤ x ≤ u3)

Starting from an initial level p1, the value of x
reaches the level p2 within t1 steps. Then, from
p2, x reaches a level p3 within t2 steps. Formulates
evolution of species concentration from an initial
level to a new level and then further to another
new level or back to the initial level.

3 p1 ∧ F≤t1(p2 ∧ F≤t2G≤t3p3)
where p1 : (`1 ≤ x ≤ u1)

p2 : (`2 ≤ x ≤ u2)
p3 : (`3 ≤ x ≤ u3)

Similar to Template 2, the value of x starts from
the level p1, reaches the level p2 within t1 steps.
Then within the next t2 steps, reaches a level p3
and stays in p3 for at least t3 steps. Character-
izes transient or sustained activations, can be ex-
tended to formulate bistability.

4 p1 ∧ F≤t1(p2 ∧ F≤t2(p3 ∧
F≤t1(p4)))

where p1 : (`1 ≤ x ≤ u1)
p2 : (`2 ≤ x ≤ u2)
p3 : (`3 ≤ x ≤ u3)
p4 : (`4 ≤ x ≤ u4)

Starting from an initial level p1, the value of
x reaches the level p2 where (u1 < `2) within
t1 steps. Then, from p2, x reaches a level p3,
(u3 < `2) within t2 steps. Further from p3, x
reaches a level p4 where (u3 < `4). Imposing con-
straints [u1 < `2]∧ [u1 < `4]∧ [u3 < `2]∧ [u3 < `4]
characterizes oscillations.

Table 1: Basic Templates

3.1 Data Preprocessing

The evolution of a variable x is mainly reflected by changes in its value over
time. We first transform the trajectories by evaluating the change in x at each
time point, and computing the normalized ∆x(t) data over time as indicated by
the formula below. This transformed data is then fed to the convolutional neural
network for classification.

∆x(t) =
x(t)− x(t− 1)

max(x)−min(x)
, (2)

where max(x) and min(x) are the maximum and minimum values of x across
all the time points in the simulation.

3.2 Training and Deploying the Convolutional Neural Network

A convolutional neural network (CNN) is a type of feed forward neural network
proposed in [24]. It has been successfully used to classify time series data and
other features [30]. In this paper, we have adopted a standard convolutional



neural network and implemented it using Tensorflow, a deep learning framework
by Google [1]. There is a vast literature available including [24] on CNNs.

The CNN receives the pre-processed inputs described in Section 3.1 and feeds
it to two convolutional and pooling layers, connected to two fully connected lay-
ers. Then it outputs to four output neurons, corresponding to the four templates.
Due to space limitations we present the architecture and other details of the this
CNN in the full report [31].

Our CNN is trained for the templates listed in Table 1. The training set is
generated from mathematical functions found in [29]. Specifically, we selected
25 functions that conform to the four templates. For each of these functions,
we generated 68 ‘seed’ curves using different random initial parameters. Next,
we transformed these into the frequency domain using Fast Fourier Transform
(FFT). In the frequency domain, we perform further randomization before trans-
forming them back into curves in time domain using the inverse FFT. We ob-
tained 2, 000 randomized curves from each seed curve. In total, 136, 000 curves
were used to train the CNN.

After training, the CNN is deployed to identify a template that best matches a
set of trajectories randomly generated by a a given model. Since neural networks
take as inputs fixed-length data, the trajectories need to be re-scaled using a
different sampling rate of simulation as follows. We first generate 20 trajectories.
The same simulation time as given in the literature for the respective model is
divided up into 200 equally spaced time-points, and sampled. The trajectories
are then transformed into ∆x(t) as mentioned before in Section 3.1, and fed to
the neural network. A simple majority across the results of classifying these 20
trajectories is used to determine the final template.

4 The Search Procedure

Given a template ψ identified from the convolutional neural network with time
variables VarT , and propositional variables VarAP , we automatically mine the
values of VarT and VarAP such that the concretized formula is optimal in a
certain sense.

In order to reduce the search complexity, we assume the BLTL based tem-
plate is given as a conjunction of component formula skeletons. We consequently
optimize each conjunct in the template.

We adopt a simulated annealing based procedure presented in Algorithm 1
to estimate the parameters.

We generate values for the propositional variables using the constraints spec-
ified in the propositional variables and the template constraints. Though the
constraint satisfaction problem is NP-complete the constraints in our framework
are simple inequalities which enables us to adopt a tree-based solution. The value
intervals of a variable are parsed as a tree structure where the values of the child
nodes are larger than the parent nodes.

For example, for the template p1 ∧ F≤t1(p2 ∧ F≤t2p3) suppose we have the
constraints [u1 < `2] and [`2 < u3], together with the implicit constraints [`1 <



Algorithm 1: optimizeProperty

Input : Template ψ
Output: Synthesized property ψsyn

1 ψ̂ ← Initialize VarT and VarAP using random values;
2 while Simulated Annealing decides to continue do

3 Compute Bayes Factor Bψ̂ ← SMC(ψ̂) ;

4 Compute Lossψ̂ ← Loss Function(ψ̂,Bψ̂);
5 Simulated Annealing ← Lossψ̂;

6 Update VarT and VarAP ;

7 return ψsyn ← ψ̂ with minimum loss if exists;

u1], [`2 < u2] and [`3 < u3] the tree is constructed as shown in Figure 2. We
generate values for the leaf variables(u2 and u3) first and then use them to bound
the value range of parents(`2 and `3), recursively till the root (`1) is reached.

`1 `2

`3

u2

u1 u3

Fig. 2: Generating values for propositional variables using a tree

4.1 Loss Function

Each instantiated property ψ̂ is scored using a loss function and the score will
guide the direction of the search. The score is composed out of the “loss” suf-
fered by three factors: temporal variables, atomic propositions and the quality
of satisfaction. For the temporal variables we use the intuition that if ψ1 and ψ2

are two instantiations such that ψ1 implies ψ2 then ψ1 is to be preferred. This
suggests that if ψ1 = F≤t1ϕ and ψ2 = F≤t2ϕ are two instantiations and t1 ≤ t2
then t1 is preferred to t2. Similarly t2 is preferred to t1 if G≤t1ϕ and G≤t2ϕ are
two instantiations with t1 ≤ t2.

The loss component LT of the temporal variables is given by:

LT =
∏

ti∈VarT

(
ti

)sgn(ti)

sgn(t) =

{
−1, if temporal operator of ti is G or U

1, if temporal operator of ti is F
.

Next, we define LAP , the loss function component contributed by the propo-
sitional variables. For each atomic proposition, we consider both the tightness of
the value range, and how precisely it describes the behaviour of the trajectories.



For each atomic proposition api, we define the tightness as (ui− `i)/(maxi−
mini), the range normalized to the maximum value range of the variable in
trajectories. The idea is to keep the value range as small as possible.

Besides the tightness, we also measure the fitness of the atomic propositions
in ψ̂ to the trajectories based on the constraints. Essentially for each constraint of
the form uj < `k attached to the atomic propositions apj and apk, the estimated
levels of apj is expected to be lower than apk. This information is also used to

optimize ψ̂. To this end, we compute the mean value of api as ( `i+ui

2 ). The
weight wi associated with each api is evaluated as follows. We first initialize
the set of weights WAP for all the atomic propositions in ψ̂ to 0. Then for each
constraint uj < `k, we decrease wj by 1 and increase wk by 1. The fitness of an

atomic proposition is thus
(
`i+ui

2

)wi

. Intuitively, the level of apj tends to be in

the lower range of value space while apk to be in higher range.
Combining these two factors, we define the loss function component due to

the propositional variables as

LAP =
∏

api∈VarAP

(( ui − `i
maxi −mini

)( `i + ui
2 ·maxi

)wi

)
.

Finally, in each iteration of the simulated-annealing procedure, if the Bayes
factor Bψ̂ is larger than a pre-defined threshold h (in our case it is set to 100),
we apply the loss function and continue with the iterations according to the
search procedure. Otherwise, the loss is set as ∞ and the current combination
of parameters is rejected. The search then continues with another combination
of parameters.

Thus

Lossψ̂ =

{
LAP · LT , Bψ̂ > h

∞, otherwise
.

We use the multiplicative form of the loss function since we found that the
additive form performs badly. For instance, if two temporal variables and one
propositional variable appear in a formula the search gets biased towards opti-
mizing just one the three variables while fixing a trivial value for the other two
variables. Admittedly the current formulation of the loss function is just a first
and preliminary step. A systematic study of the various possibilities -including
other notions of quality of satisfaction- needs to be carried out in the future.

5 Experimental Evaluation

We applied our method to six bio-pathway models taken from the Biomodels
database [23]. For the purposes of experimentation we fixed ±5% range around
the nominal values as the initial interval of values of each species and we assumed
a uniform distribution over the resulting set of initial states. Using the convolu-
tional neural network and randomly generated trajectories using the model, the



most suitable BLTL template was then identified followed by a concrete instan-
tiation for this template to a high satisfaction probability, namely, r ≥ 0.9.

Table 2 shows |x|, the number of system variables and |Θ|, the number of rate
constants of the ODEs systems associated with the six models. The time unit
for the F and G operators is ‘minutes’. Furthermore, the number of time points
to simulate (i.e. tK) for each of the models was fixed using the literature of the
respective models [5,6,11,14,20,25]. We next present the synthesized properties
for the important species in each of the bio-pathway models. Across all the six
case studies, there is a total of 13 such species.

Bio-pathway Segmentation MAPK CD95
models EGF-NGF Clock Cascade Atorvastatin Va Factor Signalling

|x| 32 16 8 18 30 23

|Θ| 48 71 22 30 9 17

Table 2: Characteristics of the models

Validation In the six case studies we present here, we compared the synthesized
properties against the observed qualitative trends of species documented in [5,
6, 11, 14, 20, 25]. For one of the models we provide further validation by using
the synthesized properties in the context of rate constants estimation problem
as explained in Section 5.3.

5.1 Template recognition

We first generate 20 trajectories from the model and use these as inputs to
the CNN. For each trajectory and for each species (variable) of interest the
CNN returns the confidence level in classifying the trajectory to each of the four
templates and the template with the highest confidence is chosen. Finally, the
template with most votes from all the trajectories is chosen as the template to
be the candidate for synthesizing a concrete formula.

For each of the case studies in Section 5.2, we observed that the CNN returns
the same template overwhelmingly for all the 20 trajectories with high confidence
(above 98%). This data is reported in [31].

5.2 Case Studies

EGF-NGF Pathway The EGF-NGF signalling pathway [5] captures the dif-
ferential response of PC12 cells to two growth hormones, EGF and NGF. EGF
induces cell proliferation while NGF stimulates cell differentiation. It has been
reported that the signal specificity is correlated with different Erk dynamics. A
transient activation of Erk has been associated with cell proliferation, while a
sustained activation has been linked to differentiation. The model has 32 ODEs
and 48 kinetic rate parameters. We simulated this model for 60 minutes.

Table 3(a) shows three properties that describe the sustained activation of
Erk*, bound-EGFR and C3G*, rising rapidly (within 10 minutes) to a high



level. It has been verified from experimental data that under NGF stimulation,
sustained activation of Erk* is induced by the phosphorylation of C3G. The syn-
thesized property captures this behaviour: ([0 ≤ Erk∗ ≤ 0]∧F≤5G≤55([477401 ≤
Erk∗ ≤ 571121])) returned that the concentration level of Erk* rises from an ini-
tial level [0 ≤ Erk∗ ≤ 0] to a peak level [477401 ≤ Erk∗ ≤ 571121] and stays at
that level for 50 minutes.

Segmentation Clock Network Formation of segments in vertebrate embryos
is controlled by coupled oscillations in the Notch, Wnt and FGF signalling path-
ways governed by a segmentation clock network that periodically activates the
segmentation genes [11]. The model consists of 16 ODEs and 71 kinetic rate
parameters. We simulated this model for 250 minutes.

From Table 3(b), one can find that both properties characterize the oscil-
lation of Lunatic fringe-mRNA and cytosolic NicD, capturing the peak values.
Although the search space of 11 parameters is large, the mined properties are
closed to the nominal ones from literature. For example, the Lunatic fringe-
mRNA property is close to the one observed in [27]:

(([Lunatic fringe mRNA ≤ 0.4]) ∧ (F≤40([Lunatic fringe mRNA ≥ 2.2] ∧
F≤40([Lunatic fringe mRNA ≤ 0.4] ∧ F≤40([Lunatic fringe mRNA ≥ 2.2] ∧
F≤40([Lunatic fringe mRNA ≤ 0.4])))))).

Simulation profile Synthesized property
(a) EGF-NGF Pathway Model

p1 ∧ F≤5G≤55p2
p1 : 0 ≤ Erk∗ ≤ 0

p2 : 477401 ≤ Erk∗ ≤ 571121

p1 ∧ F≤3G≤57p2
p1 : 0 ≤ C3G∗ ≤ 0

p2 : 111035 ≤ C3G∗ ≤ 138166

p1 ∧ F≤2G≤58p2
p1 : 0 ≤ bound-EGFR ≤ 0

p2 : 81639.9 ≤ bound-EGFR ≤ 86368.9

(b) Segmentation Clock Network Model

p1 ∧ F≤58(p2 ∧ F≤23(p3 ∧ F≤75(p4)))
p1 : 0.096 ≤ Lunatic fringe mRNA ≤ 0.102
p2 : 2.42 ≤ Lunatic fringe mRNA ≤ 2.68
p3 : 0.000 ≤ Lunatic fringe mRNA ≤ 0.008
p4 : 1.83 ≤ Lunatic fringe mRNA ≤ 2.65



p1 ∧ F≤40(p2 ∧ F≤56(p3 ∧ F≤26(p4)))
p1 : 0.199 ≤ cytosolic NicD ≤ 0.207
p2 : 1.11 ≤ cytosolic NicD ≤ 1.23
p3 : 0.25 ≤ cytosolic NicD ≤ 0.46
p4 : 0.86 ≤ cytosolic NicD ≤ 1.03

(c) MAPK Pathway Model

p1 ∧ F≤4(p2 ∧ F≤13(p3 ∧ F≤15(p4)))
p1 : 9.50 ≤ Mos-P ≤ 10.50
p2 : 81.38 ≤ Mos-P ≤ 88.97
p3 : 0.00 ≤ Mos-P ≤ 5.13
p4 : 44.24 ≤ Mos-P ≤ 68.94

p1 ∧ F≤6(p2 ∧ F≤24(p3 ∧ F≤11(p4)))
p1 : 9.50 ≤ Erk2-PP ≤ 10.50

p2 : 275.68 ≤ Erk2-PP ≤ 328.35
p3 : 1.77 ≤ Erk2-PP ≤ 40.22

p4 : 263.68 ≤ Erk2-PP ≤ 299.09

(d) Atorvastatin Pharmacokinetics Model

p1 ∧ F≤160(p2 ∧ F≤434p3)
p1 : 0 ≤ ASc ≤ 0

p2 : 42419.6 ≤ ASc ≤ 45998.8
p3 : 15109.7 ≤ ASc ≤ 15314.1

p1 ∧ F≤245(p2 ∧ F≤352p3)
p1 : 0 ≤ ASLc ≤ 0

p2 : 739.05 ≤ ASLc ≤ 773.13
p3 : 520.33 ≤ ASLc ≤ 526.39

(e) Va Factor Inactivation Model

p1 ∧ F≤7G≤33p2
p1 : 1.9× 10−7 ≤ Va ≤ 2.1× 10−7

p2 : 0 ≤ Va ≤ 6.72−9

p1 ∧ F≤8(p2 ∧ F≤32p3)
p1 : 0 ≤ Va5 ≤ 0

p2 : 1.02× 10−7 ≤ Va5 ≤ 1.11× 10−7

p3 : 0 ≤ Va5 ≤ 7.96× 10−9

(f) CD95 Signalling Model

p1 ∧ F≤143(p2 ∧ F≤139p3)
p1 : 0.00 ≤ C8∗ ≤ 0.00
p2 : 4.53 ≤ C8∗ ≤ 4.63
p3 : 0.789 ≤ C8∗ ≤ 0.832



p1 ∧ F≤27(p2 ∧ F≤132G≤204p3)
p1 : 0.000 ≤ NF-κB-IκB-P ≤ 0.000
p2 : 0.021 ≤ NF-κB-IκB-P ≤ 0.024
p3 : 0.000 ≤ NF-κB-IκB-P ≤ 0.000

Table 3: Properties synthesized for the six case studies.

MAPK Cascade From yeast to mammals, mitogen activated protein kinase
(MAPK) cascades are bio-molecular networks widely involved in signal transduc-
tion of extracellular stimulus from the plasma membrane to the cytoplasm and
nucleus. They play a major role in processes involving cell growth, mitogenesis,
differentiation and stress responses in mammalian cells. The MAPK pathway [20]
consists of three levels where the activated kinase at each level phosphorylates
the kinase at the subsequent level down the cascade. It has been shown that
a negative feedback loop of MAPK cascade results in sustained oscillations in
MAPK phosphorylation [20]. This ODEs model of this MAPK cascade consists
of 8 species and 22 rate parameters. We simulated the model for 60 minutes.

Table 3(c) illustrates the properties for the two species, namely, phosphory-
lated Mos (Mos-P) at the initial level of the cascade, and biphosphorylated kinase
Erk (Erk-PP) at the terminal level of the cascade. With the increased production
of Erk-PP, the negative-feedback due to Erk-PP affects the phosphorylation of
the initial level kinase, Mos. This in turn affects downstream phosphorylation of
intermediate kinases, and ultimately the concentration of Erk-PP is decreased.
Thus an oscillation cycle is triggered. The two properties synthesized by our
method reflect this behaviour.

Experimental findings [22] indicate that “dual serine/threonine phosphoryla-
tion of SOS by Erk has been found to cooperatively inhibit MKKK phosphory-
lation”. When the ODEs model is updated to reflect this change in the network,
our method synthesized the following property:

[9.5 ≤ Erk2-PP ≤ 10.5] ∧ F≤17([251.30 ≤ Erk2-PP ≤ 262.66]

∧F≤15([0 ≤ Erk2-PP ≤ 42.74] ∧ (F≤14[173.20 ≤ Erk2-PP ≤ 192.45]))).

From this synthesized property, one can infer that the amplitude of the oscilla-
tions has decreased compared to the nominal model presented in Table 3(c).

Atorvastatin pharmacokinetics Drug metabolism of statins inside the liver
cells plays an important role in reducing cholesterol synthesis, and the stimu-
lation of the uptake of LDL-cholesterol from the blood [6]. This ODEs model
describes the pharmacokinetics of transport processes and metabolic enzymes
in the biotransformation of atorvastatin. It consists of 18 ODEs and 30 rate
parameters and the model was simulated for 600 minutes.

Table 3(d) shows two requirements synthesized for the atorvastatin pathway.
AS (a hydrophilic hydroxyl-acid) and ASL (a very lipophilic lactone), the two



forms of atorvastatin are transported into the cell and converted into different
metabolites. The properties: [0 ≤ ASc ≤ 0]∧F≤160([42419.6 ≤ ASc ≤ 45998.8]∧
F≤434([15109.7 ≤ ASc ≤ 15314.1])) and [0 ≤ ASLc ≤ 0] ∧ F≤245([739.05 ≤
ASLc ≤ 773.13] ∧ F≤352([520.33 ≤ ASLc ≤ 526.39])) describe this behaviour.
The estimated value bounds [42419.6 ≤ ASc ≤ 45998.8] and [739.05 ≤ ASLc ≤
773.13] are close to the peak observed in the system. The subsequent fall in the
concentration due to the conversion of ASc and ASLc to their corresponding
para- and ortho-hydroxy metabolites is also captured accurately by the value
bounds [15109.7 ≤ ASc ≤ 15314.1] and [520.33 ≤ ASLc ≤ 526.39].

Va factor pathway The regulation of Va factor plays a crucial role in hemosta-
sis. As studied in [14], activated-protein-C (APC) causes inactivation of bovine
factor Va and this model involves bond cleavage and dissociation of Va and its
associated intermediate complexes produced in the process. The model consists
of 30 ODEs and 9 kinetic rate parameters and was simulated for 20 minutes.

The two properties synthesized by our method characterizes the behaviour
of the three species, namely Va and Va5 are shown in Table 3(e). In particular,
the properties synthesized using our method captures the rapid dissociation of
Va by APC within 7 minutes.

CD-95 Signalling Activation of CD-95 [25] in some situations results in cell
death, and, in some other situations, induces activation of the NF-κB pathway.
This has been found to be due to the cleavage of an anti-apoptotic protein,
cFLIPL and Procaspase-8. This model has 23 variables and 17 parameters and
was simulated for 360 minutes.

The properties synthesized in Table 3(f) show the activation of Caspase-8
and the NF-κB-IκB-P by CD-95. Our method was able to mine the properties
which characterize the rise and fall of the two proteins. More specifically, the
third property mined for NF -κB-IκB-P reflects transient activation within 150
minutes. It has been reported that CD-95 results in parallel – and not mutually-
exclusive – transient activation of NF-κB and the Death Inducing Signalling
Complex (DISC). This is in agreement with our findings.

5.3 Rate Constants Estimation Based on the Synthesized Properties

To further demonstrate the efficacy of the property synthesis procedure, we
used the synthesized properties to estimate the unknown rate constants w of a
pathway model in the context of the method developed in [27]. In this method
both time course experimental data and known qualitative trends are encoded
as BLTL formulas and the rate constant estimation problem is solved through
evolutionary search combined with statistical model checking. In the present
setting, we use the synthesized properties ψsyn as sole inputs (ie. no experimen-
tal data) to this estimation procedure. We then compared the quality of the
rate constants obtained using our synthesized properties with the rate constants
reported in the literature [25].



We applied our method to the CD-95 signalling pathway. We assumed 10 (k2,
k3, k5, k6, k7, k11, k12, k14, k15, k17) out of 17 rate constants to be unknown.
The inputs to the estimation procedure of [27] consists of 7 BLTL properties
synthesized by our method. Figure 3 shows the simulation profiles generated
using the predicted rate constant values. More precisely, 1, 000 trajectories were
generated using the rate constants estimated by our method and plotted against
trends observed using the constants reported in [25].
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Fig. 3: Parameter estimation results for the CD-95 pathway using the synthesized
properties

6 Conclusion

We have proposed an automated method to mine dynamic properties from ODEs
based models of bio-pathways. Using simulated trajectories, our method first
identifies a BLTL template matching their behaviour with the help of a convo-
lutional neural network. A simulated-annealing based procedure combined with
statistical model checking is then applied to this template to mine a concrete
property. By checking the synthesized properties against the ones given in the lit-
erature as well as using them to do rate constants estimation of biopathways we
have provided strong evidence that the mined BLTL formulas faithfully describe
the behaviour of various species in our case studies.

In this preliminary study we have started with four templates. It will be
useful to expand this templates library. Equally important, we have considered
here only templates involving a single system variable. It will be challenging but
very fruitful to learn properties that involve (at least) two system variables. This
will enable for instance, to learn regulatory trends; for instance how an upstream
variable representing a perturbation generates a pathway response in terms of a
downstream variable.

Here we have focused on synthesizing properties for biological pathways mod-
elled as a system of ODEs. However, our technique can be applied to ODEs
systems arising in other settings as well.

To improve computational scalability, it will be important to port our current
implementation to a GPU platform and exploit parallel search strategies such
as parallel simulated annealing [26]. Finally it will be interesting to extend our
method to the setting partial differential equations based models that capture
spatial aspects of biopathways dynamics.
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