
The Performance Model of SilkRoad -
A Multithreaded DSM System for Clusters

LiangPeng,Weng-Fai Wong,andChung-KwongYuen
Departmentof ComputerScience
NationalUniversityof Singapore

3 ScienceDrive2, Singapore117543�
penglian,wongwf,yuenck � @comp.nus.edu.sg

Abstract

Distributed Shared Memory (DSM) is a highly desir-
able programming model for cluster basedcomputing.
Eventhougha number of software DSMshavebeende-
veloped with their performance evaluated, few of them
have a theoretical performance model. In this paper, we
propose and analyzethe performance modelof the soft-
ware DSM of SilkRoad, a multithreadedruntime system
for cluster computing. SilkRoad is built on the Cilk sys-
temwith an extended memoryconsistencymodelwhich we
call RCdag consistency. Extending Cilk’stheoreticalperfor-
mancemodel,weshowthatwith theRCdag consistentDSM,
theexpectedexecutiontime ��� of a partially strict multi-
threaded computation on � processors is ���	�
���
������������ ����������� ��!"� , where �#�$�%�&�'�(� is thetotal workof com-
putation, ��! is thecritical path,

�
is thenumber of lock

acquisitions, � is theservicetimeof a cache miss,and �
is theheightof memory. Finally, we presentexperimental
evidencethatverify theperformancemodel.

Keywords: SoftwareDistributedSharedMemory, memory
consistencymodels,theoretical performance model.

1. Introduction

Therearemany memory consistency modelsandparal-
lel programmingsystemsthatmodelthebehavior of mem-
ory andprocessorin parallelarchitectures. Someof them
focus on specifying what happens whena processorper-
forms someoperations on memory and hencethey are
called processor-centric memory models. While others
focus on the computation and not on the schedule,and
hence arecalledcomputation-centric memory models[9].
The philosophyof the computation-centricapproachis to
separatethelogicaldependenciesbetweeninstructions(the
computation)from the way that instructions are mapped

to the processors(the schedule) [8]. One example of a
computation-centricmemory modelis theDagConsistency
or LocationConsistencymodel[8, 4, 3] thatwasdeveloped
for Cilk-lik emultithreadedcomputations[6, 7, 10, 14]. Cilk
usesa randomizedwork-stealing scheduler and achieves
performancecloseto thelowerboundsof fully strict multi-
threadedalgorithmswithout usinguser-level sharedmem-
ory. In a fully strict multithreadedalgorithms a thread
may only synchronizewith its children. In Cilk, a multi-
threadedprogramdefinesa partial execution orderon its
instructions and the partial order can be viewed as a di-
rectedacyclic graph(dag). In the theory of fully strict
multithreadedcomputation,the work of computation,de-
noted �)� , is the number of instructions in the dag. This
corresponds to the amount of execution time on a single
processor. Thecritical-path lengthof thecomputation,de-
noted �)! , is themaximum number of instructionson any
directedpathin thedag. Thiscorrespondsto theamount of
executiontime required on a systemwith an infinite num-
ber of processors. Specifically, for any suchalgorithms
and any � number of processors,the randomizedwork-
stealingscheduler(which is maintained by an algorithm
calledthe BACKER algorithm[4]) executesthe algorithm
in expectedtime � �+* ���	�
� � ���������	�'�$�,�-��� � ! � [8],
where � � �%�&�'�(� is the total work of thecomputation, � is
thelatency of apagefault, � is thecachesize,and � is the
cacheline size, � * ���$� is theheight of thecache.

The above result is the analysisof the execution time
of “fully strict” multithreadedalgorithmsthatuseLocation
Consistentsharedmemory. A multithreadedcomputation
is fully strict if every dependency edgegoesfrom a proce-
dure to eitheritself or its parent procedure[5, 8]. However,
for the multithreadedcomputations which are not fully
strict,thesituationis complex becausethedatadependency
andsynchronizationmayalsohappen betweenincompara-
ble children. In this paperwe extendthe memorymodel
anditsperformanceboundsto thatfor partially strict multi-

threadedcomputationby considering thesynchronizations
betweensibling threads. This is a modeof programming
that is commonly found in parallel multithreadedcompu-
tations. This extensionsignificantly enlargesthe applica-
bility of computation-centricmemory model. We will also
show awayto generalizeouranalysisresults.In thispaper,
we will only considersynchronizationwith lock-like mu-
tual exclusion,which canbemodeledas(acquire,release)
pairs,andtheresultantextensionof thedag of a computa-
tion. Our previous work formally defineda new memory
consistency model, i.e. RCdagconsistency, on thebasisof
the extendeddag. Given the above dag computationand
the memory model, we proposeda stealingbasedcoher-
encealgorithm. In thispaper, weshow thatfor thepartially
strictmultithreadedcomputationexecutedon � processors,
usingthe work-stealingscheduler in conjunction with the
stealingbasedcoherencealgorithm, theexpectedexecution
time is �����.� � �%�&�'�(�/� � �'�$�-�0��� � ! � , where

�
is the

numberof lock acquisitionsin thecomputation.
The restpart of this paper is organizedas follows. In

Section2, theRCdagconsistentmemory model of SilkRoad
is introduced. In Section3, we proposeandanalyzethe
performance modelof the DSM in SilkRoad. Section4
give someexperimental resultsandthe discussionon the
performance. Somerelatedwork are also introduced in
Section5. Finally, wegiveaconclusionin Section6.

2. SilkRoad and RCdag consistent memory
model

SilkRoad [12, 13] is a variation of Cilk. Its
RCdagmemory consistency model is anextensionof Cilk’s
Location Consistency (LC). Oneof themaindifferencebe-
tweenSilkRoadandCilk is thatSilkRoadprovidesashared
memory at the userprogramming level anddoes not use
thebackingstore(which is a “home” of the virtual mem-
ory space)of Cilk at runtime systemlevel. In SilkRoad,a
conceptof stealingbasedcoherence (SBC) is proposedto
implement RCdagconsistency. The SBC alsousesthe ba-
sic operations in Cilk: fetch (get the mostup-to-datedata
from the backing store),reconcile(write the most up-to-
datadatabackto thebacking store),andflush(remove lo-
cal datawhich is obsolete). Theseoperationsin SilkRoad
arealsotriggeredby threadstealingandreturnlike in Cilk,
but the difference is that in SBC a fetch operation copies
diffs from thenode (oneof its ancestor)who did themod-
ification,not from thebacking store;a reconcile operation
just save the diffs locally andpropagateswhen required,
insteadof copying themfrom local cacheto backingstore.
Thatis to say, in SilkRoad,thememory consistency is kept
by threadstealingandreturnoperations.

Theexecution of a multi-threadedcomputation in Cilk
canbe viewed asa directedacyclic graph (dag). The use

i

v
u

k
j

1

Figure 1. In theextendeddag,threadscansynchronize
with their siblings. i, j, andk aretheproceduresin parent
thread;u andv areproceduresin child threads.Thedotted
arrow 24365%7
8 is a synchronizationedge.

SC (non-strict

9
computation)
:

less paradigms

weaker memory models
;

RC_dag (partially

strict computation)
<

LC (fully strict

computation)
:

Figure 2. The =&> ?$@$A consistency is strongerthan B)>
but weaker than C#> .

of somesynchronizationmechanismsto provide for con-
trol accessto sharedvirtual memory is a popular tech-
nique in parallelprogramming. Unfortunately, this is not
supportedin Cilk. Cilk’s computationdagis extendedin
SilkRoadby the introduction of locks, i.e. (release,ac-
quire) pairs. A lock canbe modeledasa synchronization
edge andthusextending thedagof thecomputation(Fig-
ure1). In RCdagconsistency, thevaluescanbetransferred
not only via the threading stealing/return, but alsovia the
global synchronizationlike lock acquiring/releasing.

Along with extending the dag, the corresponding
memory consistency model is also changed. The
RCdagconsistency is developedbasedon the LC consis-
tency model under thegeneral computationcentrictheory.
RCdagconsistency is a morestringentmemory consistency
model thanthe LC consistency, but it is weaker thanSe-
quential Consistency (D�E). Their relationship is shown in
Figure 2.

In order to support morecomputationby extending the
dagof computation, the semanticsof lazy releaseconsis-
tency(LRC) [11] areintroducedinto locationconsistency
model. LRC is tightly coupled with somesynchroniza-
tionmechanismssuchaslocksandbarriers. Sointroducing
LRC means that the dagof computation will be extended
to includethefeaturesof mutualexclusionandglobal syn-

chronization.With theseextensions,thecomputationis no
longer fully strict sincethesiblingsin thedagcanalsoin-
teractthroughsynchronizationedges.Wecall thispartially
strict computation.

3. Analysis of Execution Time

In softwareDSM systems,theexecution time of appli-
cations consistsof thefollowing constituents:computation
time, scheduling overhead,andsynchronizationoverhead.
Computation time is the actualtime spentin computing,
andthis is determinedby theapplication andthehardware
of the nodes. The schedulingoverheadis the overhead
in distributing computationto eachnode. In the systems
with dynamic scheduling(suchasCilk andSilkRoad),the
scheduling overheadexists throughout theentirelengthof
anapplication’s execution. Thesynchronizationoverhead
is theoverheadin performing synchronizationoperations,
for example, lock acquisition for a critical sectionor bar-
riersynchronization. In theRCdagconsistency, thesynchro-
nizationoverheadis tractablebecauseof thesemanticprop-
erty of thereleaseconsistency: themaintenanceof consis-
tency of datais delayeduntil releasesandacquiresoccur.
The total execution time � � of an applicationrunning on
a softwareDSM systemwith � nodescanbeexpressedas
follows:

� �F* �HGI�F��JK�L� syn

where ��G is the computation time, �MJ is the schedul-
ing overhead,and � syn is the overheadbecauseof global
synchronization.

In Cilk, for a multi-threadedcomputationwhich has ���
total work (the execution time on oneprocessor)and �N!
critical-path length(theexecution time on infinite number
of processors),theexpectedexecution timeon � processor
is ���
� � �������(�'�$�-�O��� � ! � , where � is cachesize, � is
the line sizeof the cache,� * ���$� is the cacheheight,
and � is theservicetime for a cachemisswithout conges-
tion [8, 3]. ��G and �#J arealreadyfound in Cilk’s model.
SinceCilk doesnot support global mutual exclusion, the� syn portion doesnot exist in Cilk. With theextendeddag,
for thepartially strict computation,the � syn partshould be
consideredin SilkRoadbecausetheremay be global syn-
chronizationbetweenthreads.

In this section,we bound theexecution timeof partially
strict multithreaded algorithms with a RCdagconsistent
memory model when the parallel execution is scheduled
by the work-stealingschedulerandthe RCdagconsistency
is maintainedby theStealingBasedCoherencealgorithm.
We employ the terminologies introduced by Frigo [8].
Specifically, for a givenpartially strict multithreadedalgo-
rithm, let � denotesthesizeof localcachewith thelinesize

of � andheight of � * ���$� . Let � be the servicetime
for a cachemiss assumingno network congestion. Sup-
posecomputationhas� � computationalwork, P"�%�&�'�(� se-
rial cachemisses,� � �������(� * � � �Q�#P"�%�&�'�(� total work,
and � ! critical-path length. In this section,we show that
the expected execution time is ���	�
� � �������(��� � �'�$�R���� � ! � , where

�
is the number of lock acquisitionsin

during the computation. The exposition of the proofs in
this sectionmakesheavy useof theresultsandtechniques
of Frigo[8].

Frigo[8, 3] proved that for any S"TVU , with probability
at least W�XYS , thetotalnumberof stealrequestsandrelated
page transfersis at most ���Z�I�[��!V�0�Y�Y\^]6�	W_��S`��� . This
Lemma is basedon multithreadingwith a work-stealing
scheduler, so it still holds for whenthestrictnessof com-
putation is relaxedin SilkRoad,becausetherandom work-
stealingscheduleris still used. This observation will be
usedin proving thefollowing theorem.

Theorem 1 Consider any partially strict multithreaded
computation executedon � processors, each with an��acb���������� -cache of height � , using the work-stealing
scheduler (like in Cilk and SilkRoad) in conjunction with
the Stealing BasedCoherence(SBC)algorithm. Let � be
the servicetime for a cache miss assumingno network
congestion,and assumethat accessesto the main mem-
ory arerandomandindependent. Supposethecomputation
has �#� computation work, P"��������� serial cache misses,���$�������(� * ���&�O�#P"��������� total work, and ��! critical-
path length. Thenfor any SdTeU , the executiontime is���	�.�#���������(�f� � �����g�[��� ��!��h�[\i]��g�h���j\i]k�lW$�$Sf�	� with
probability at least W[XQS , where

�
is the number of lock

acquisitions in the computation. Moreover, the expected
execution timeis �����.� � �%�&�'�(��� � �����0�L��� � ! � .
Proof: We shall usethe sameaccounting argumentgiven
byFrigo[8, 3] toboundtherunningtime.Duringtheexecu-
tion,ateachtimestep,eachprocessorputsapieceof silver
into oneparticular bucketsaccording to its activity at that
time step.However, for partially strict multithreadedcom-
putation, we mustconsidertwo more buckets: LOCK and
LOCKWAIT. In addition, unlike Frigo [8], sincetheSBC
algorithm is not usingthebacking store asa sharedvirtual
memory for the run-time system,thereis a little change
with thebucketsXFERWAIT.

m WORK. A silver is put in this bucket if the proces-
sor executes a task. So this bucket contains exactly�#� dollars, because thereareexactly ��� tasksin the
computation.

m STEAL. A silver is put in this bucket if the proces-
sorsendsastealrequest.Sincethereare ���
�I�[� ! ��I�n\i]k�lW$�$S`oi��� stealrequests(seeLemma26in Frigo’s
thesis[8]), thereare ���Z�I�[�/!p���I�n\i]k�lW$�$S`oi��� pieces

of silver in theSTEAL bucket. This portion is deter-
minedby therandomwork-stealing scheduler.

m STEALWAIT. A silver is putin thisbucketif thepro-
cessorwaitsfor a responseto astealrequest.Accord-
ing to the recycling game[5], if

�
requestsaredis-

tributed randomly to � processorsfor service,with
at most � requestsoutstanding simultaneously, the
total time waiting for the requeststo complete is��� � �F�q\^]��O�F�q\i]6�lW$�$S`o^��� with probability at leastWgXrS o . Sincethereare ���
�I�[� ! �j�I�q\^]6�	W_�$S o �	�
steals,thenthetotal time waiting for stealrequestsis���
�I�[��!s�r�q\^](�t�j�Y�Y\^]6�	W_��S'o^�	� with probabil-
ity at least WNXLS`o [8]. However, in this case,sincefor
theSBCalgorithm, thereareno reconciliation with a
backing store for SBC algorithm, we do not needto
account for the time spentin reconciling. With the
considerationof the idle stepsto avoid too frequent
stealrequests[8, 3], the total number of silver in this
bucket is ���
���I�[� ! �p�n\^]��u�p�I�Y\^]k�lW_��S`oi�	� .

m XFER. If theprocessorsendsa line-transfer request,
it putsa pieceof silver into this bucket. Eventhough
in SBCalgorithm therequestis sentto thelastvictim
insteadof thebacking store, thenumber of piecesof
silver in thisbucket is still ���.�#P"�%�&�'�(�v�����Y�[� ! ����I�n\i]k�lW$�$S`oi��� [8].

m XFERWAIT. If the processorwaits for a line trans-
fer to complete, it puts a piece of silver into this
bucket. The recycling game shows that there are���.�#P"�%�&�'�(�v�����Y�[�H!d�����n\i]��w�����I�n\^]6�	W_�$S`o^�	�
piecesof silver in this bucket with probability at leastW&XqS`o .

m LOCK. If the processorexecutes an acquire opera-
tion, it puts a pieceof silver into this bucket. This
resultsfrom theextendeddagfor partially strict mul-
tithreaded computation. The number of lock acqui-
sitionsdepends on the applicationandthe scheduler.
Wemaysupposethereare

�
lock acquireoperations.

m LOCKWAIT. If the processorwaits for the lock re-
quest to be granted, it putsa pieceof silver into this
bucket. Also according to recycling game,the to-
tal waiting time for the lock acquirementis ��� � ��Y\^](�,�-�n\i]k�lW$�$S`oi��� with the probability of at leastW&XqS`o .

Now weaddupthesilver in eachbucketanddivideit by �
to get the running time. With probability at least W[Xdx�S
o ,
thesumof all thepiecesof silver in all thebucketsis � � ����.�#P"�%�&�'�(�v�����I�[� ! � ���q\i]��w�����I�n\^]6�	W_�$S`o^�y� � �
with probability at lease WhXOx�Szo . Dividing by � , we can
obtain runtime �)�0{|�����.�#�(�L�#P"�%�&�'�(�	�'�$�u�p��� ��!}��~\^]��n�����j\i]6�lW_��S`o^�y� � �$�c� with probability at leaseW�X

x�S`o . Using the identity �/�$�%�&�'�(� * �#�N�r�#P"�%�&�'�(� and
substitutingS * x�S�o yieldsthehigh-probability bound. The
expectedbound followssimilarly. �
4. Experimental Results

4.1 Experiments

In this sectionwe will useempiricalmeasurements on
an implementationof SilkRoadto verify the correctness
of our model. The test-bedfor our experiment is an 8-
node PC cluster. The processorof eachnodeis Pentium-
III 500MHz CPU.Thememory size256MB (or 512MB
for thenode actingastheNFS/NISserver). Nodesarein-
terconnectedwith 100MbpsFastEthernetnetwork in astar
topology througha100baseTswitch.Theoperating system
of eachnode is RedHatLinux 6.1with theversion2.2.12-
20kernel.

In ourtests,six applicationswereused:matrixmultipli-
cation, theN-queenproblem,Barnes-Hut, ��b decomposi-
tion, theTravelingSalesmanProblem,andanembarassing
parallel benchmark.

Matrix multiplication (matmul) is a basic application
which is widely usedin benchmarking. The matmulpro-
grammultiplies two �L�I� matricesA andB andputsthe
resultsinto another matrix C. It fits well into the divide-
and-conquer paradigm: recursively splitting the problem
into eight �)�
xI�d�)��x matrix multiplication subproblems
andcombining the resultswith one �Q�n� addition. This
programneedsthe DSM support at runtime level because
thethreematricesaresharedamong thespawnedthreads.

The objective of the
�

queen(nqueen) program is to
place � queenson an �F� � chessboardsuchthat they do
not attackeachother. Theprogramfindsall suchconfigu-
rations for agivenchessboardsize.TheSilkRoadprogram
exploresthe different columnsof a row in parallel,using
a divide-and-conquer strategy. The chessboard is placed
in theDSM suchthatchild threadscangetthechessboard
configurationfrom theirparent thread.

The barnes-hutprogram simulatesthe interactionof n
point massesunderthe interactionof gravity. This simu-
lation is usedin astrophysics to explore the dynamics of
galaxiesandgalaxy formation.In barnes-hut, many distant
massesareapproximatedby a single large massin order
to reduce thenumberof forcecalculations required. In the
SilkRoad,a singlephaseof thecomputation,theforcecal-
culations,is parallelized.

The tspprogramsolvesthetraveling salesmanproblem
usinga branchandboundalgorithm. In this program, a
number of workers (i.e., threads) arespawnedto explore
differentpaths.Theactualnumberof workersdependson
thenumber of availableprocessors.Unexploredpathsare
storedin a global priority queue in theDSM. All workers

will retrievethepathsfromthepriority queue.Thebound is
alsokept in theDSM, andeachthreadaccesses(i.e., reads
or writes) thebound through a lock, in order to ensurethe
consistency.

The ��b programperformsthedivideandconquer form
of a blocked ��b decompositionof a densematrix �
� *��bh� . ��b factorizationis themosttime consuming stepof
a common methodof solvinga systemof linearequations.
The dense�0�w� matrix is divided into an

� � � array
of ����� blocks to exploit temporal locality of sub-matrix
elements (� * � �). In our experimentalprogram lu, the
block sizeis setto be16.

The Embarrassingly Parallel (ep) accumulates two-
dimensional statisticsfrom a large number of Gaussian
pseudo-randomnumbers whicharegeneratedaccording to
a particularschemethat is well-suitedfor parallelcompu-
tation.

Table1 lists theexperimentalresults.

4.2 Modeling Performance

In Section3, we proposedthe performance model of
SilkRoad.Now weshalltry toverify themodel onthebasis
of the experimentaldata. Specifically, we usethe nqueen
and tsp to show that with the work �M� , critical path �)!
andglobal synchronizationcost � J � � � (N is the number
of lockings), the runtime of an application on � proces-
sorscanbeapproximatelymodeledas ���u�t���$�.�#�z�$�c�/���!���!r�p�[� J � � � (�z� and ��! areconstants).

For the nqueenproblem, sincethereis no global syn-
chronization, the performancemodel is actually Cilk’s
model: � ��* � � �
� � �$�c���}� ! � ! . For example, in 13
queenproblem, � � and � ! (measuredby run-timesystem)
are79.64sand0.03s respectively, ��J#� � � is 0. According
to the result data,we can calculatethe constants� � and� ! , which are 1.03 and 10 respectively. So the perfor-
mance of 13 queenproblem on � nodescanbe modeled
as �H�|�sW
� U
���.�#���$�c�/�-WzU
��! . Figure3 shows thecom-
parison betweentheestimatedperformanceandtestedper-
formance.To measurehow well theexperimentalresultsfit
thepredictedperformance,we usethecoefficient of deter-
mination ac� , which is definedasfollows:

a � * W�X}� �.��Xq�yo�� �
� �
�KX ��� �

�
Thecloser a � is to 1, the bettertheprediction. Basedon
theexperimentaldatain Table1 andthepredictedresults
(82.32s,41.31s, 20.81s, and10.55son 1, 2, 4,and8 nodes
respectively), wegot a �N* U�� ���
� , which is verycloseto W .
This shows that our proposedRCdagconsistency doesnot
destroy LC’s initial performancemodel.

For the TSP 19b problem, ��� is 11.94s, �)! is 2.35s,�z� is 0.962, � � is 0.085, and � J � � � is 0.421. So theper-

Figure 3. Theperformanceof NQueenproblem

formanceof tsp 19b on � nodescan be approximately
modeled as �)����U�� �
��x��.�#�����c�&�}U�� U
���$��!s�,U�� ��xvW�� .
However, since� J � � � (whichmeanstheoverheadof lock-
ing) of tsp is large, it is hard to achieve goodspeedups.
This shows that the implementation of the SilkRoadrun-
timesystemneeds improvementin orderto reduce �&J�� � � .
Figure 4 shows thecomparisonbetweentheestimatedper-
formanceandtestedperformance.Similarly, wecalculated
thecoefficient of determinationbasedon theexperimental
results(see Table1) andpredictedresults(12.08s,6.78s,
4.75s, and4.99s on 1, 2, 4, 8 nodesrespectively) andwe
got a �N* U�� ��� .

Theperformancemodeling providesinformationto an-
alyzeandevaluatethesystem.To someextent,it is helpful
to find out wherethe possiblebottlenecks are (for exam-
ple, in computation, scheduling, or synchronization),and
hence make improvements according (suchasbetternet-
work, fasterprocessors,etc.).

5. Related Work

Some performance models have been proposed for
DSMs. DonaldYeunget al. [15, 16] startedfrom a clus-
tersof SMPswith a relatively simpleprotocol. Blelloch
andGibbonset al. studiedtheperformanceof planar DAG
scheduling. Their model supports synchronizationbased
on write-once synchronization variables[2]. Bilas [1] an-
alyzedthe performanceof sharedvirtual memoryon net-
works from communicationlayer, protocol layer, andap-
plicationlayer. Our performancemodelis basedon Cilk’s
initial model andtheeffectof DSM operations.

Applications sequential execution 2 processors 4 processors 8 processors

�vW�xg� �vW_x 9.81s 5.79s 5.03s 4.73s
matmul WzU�x$���qWzU�x�� 84.66s 38.41s 28.08s 24.75s

12 14.64s 6.99s 3.61s 2.15s
nqueen 13 76.61s 39.94s 19.75s 10.82s

14 528.34s 310.31s 155.03s 81.98
lu ��W�xg����W�x 18.16s 5.23s 4.82s 4.77sW�U�x$���qWzU�x$� 83.56s 28.28s 21.74s 16.27s

barnes-hut 16384 144.2s 112.4s 96.68s 81.53s
tsp 19b 11.58s 6.85s 5.49s 4.75s
ep x �	 23.02s 11.66s 6.01s 3.15s

Table 1. Timing of the SilkRoad applications.

Figure 4. Theperformanceof TSP

6. Conclusion

In this paper, we discussedthe performancemodelof
RCdagconsistency in SilkRoad. The analysis of the per-
formancemodel is basedonCilk’s theoreticalperformance
model. We showed that by extending Cilk’s LC consis-
tency to RCdag, the expected execution time �M� of a par-
tially strict multithreadedcomputationon � processorsis���	�.� � �������(��� � �����}�|��� � ! � , where � � �%�&�'�(� is the
total work of computation, � ! is the critical path,

�
is

the number of lock acquisitions.Our experimentsshows
theresultspredictedby performancemodelarecloseto the
thoseof realexecution. Themodelalsohelpedus in ana-
lyzing our implementationsoasto locateperformancebot-
tlenecks.

7. Acknowledgments

We would like to thankCharlesLeisersonandMatteo
Frigo of MIT for their suggestionsanddiscussionson the
problemswe presented in thepaper.

References

[1] A. Bilas. Improving the Performanceof Shared Virtual
MemoryonSystemAreaNetworks. PhDthesis,Department
of ComputerScience,PrincetonUniversity, Nov. 1998.

[2] G. E. Blelloch,P. B. Gibbons,Y. Matias,andG. J.Narlikar.
Space-efficient schedulingof parallismwith synchroniza-
tion variables.In Proceedingsof the9th AnnualACM Sym-
posiumon Parallel Algorithmsand Architectures (SPAA),
pages12–23, June1997.

[3] R. D. Blumofe,M. Frigo, C. F. Joerg, C. E. Leiserson,and
K. H. Randall. An Analysisof Dag-ConsistentDistributed
SharedMemoryAlgorithms. In Proceedings of the8th An-
nualACM SymposiumonParallel AlgorithmsandArchitec-
tures(SPAA), Padua,Italy, June1996.

[4] R. D. Blumofe,M. Frigo, C. F. Joerg, C. E. Leiserson,and
K. H. Randall. Dag-consistentdistributedsharedmemory.
In Proceedingsof the 10th International Parallel Process-
ing Symposium(IPPS), pages132–141,Honolulu,Hawaii,
Apr. 1996.

[5] R. D. Blumofe and C. E. Leiserson. Schedulingmulti-
threadedcomputationsby work stealing.In Proceedingsof
the 35th Annual Symposiumon Foundations of Computer
Science(FOCS), pages 356–368, SantaFe, New Mexico,
Nov. 1994.

[6] Cilk-5.2 ReferenceManual. Available on the website
http://supertech.lcs.mit.edu/cilk.

[7] Distributed Cilk - Release5.1 alpha1. Available on the
websitehttp://supertech.lcs.mit.edu/cilk/
release/distcilk5.1.html.

[8] M. Frigo. PortableHigh-PerformancePrograms. PhDthe-
sis, Departmentof Electrical Engineeringand Computer
Science,MassachusettsInstituteof Technology, June1999.

[9] M. Frigo andV. Luchangco. Computation-centricmemory
models. In Proceedingsof the 10th AnnualACM Sympo-
siumonParallel AlgorithmsandArchitectures(SPAA), June
1998.

[10] M. Frigo, K. H. Randall,andC. E. Leiserson.The imple-
mentationof the Cilk-5 multithreadedlanguage. In Pro-
ceedings of the ACM SIGPLAN’98 Conferenceon Pro-
grammingLanguage Designand Implementation(PLDI),
Montreal,Canada,June1998.

[11] P. Keleher. Lazy ReleaseConsistencyfor Distributed
Shared Memory. PhDthesis,Departmentof ElectricalEngi-
neeringandComputerScience,RiceUniversity, Jan.1995.

[12] L. Peng, W. F. Wong, M. D. Feng, and C. K. Yuen.
SilkRoad:A MultithreadedRuntimeSystemwith Software
DistributedSharedMemory for SMPClusters.In Proc. of
the2ndIEEEInternationalConferenceonClusterComput-
ing (CLUSTER2000), Nov. 2000.

[13] L. Peng,W. F. Wong,andC.K. Yuen.SilkRoadII: A Multi-
ParadigmRuntimeSystemfor ClusterComputing.In Proc.
of the4ndIEEEInternationalConferenceon ClusterCom-
puting(CLUSTER2002), Sept.2002.

[14] K. H. Randall. Cilk: Efficient MultithreadedComputing.
PhDthesis,Departmentof ElectricalEngineeringandCom-
puterScience,Massachusetts Instituteof Technology, May
1998. Available as MIT TechnicalReportMIT/LCS/TR-
749.

[15] D. Yeung. The scalabilityof multigrain systems.In 13th
AnnualInternational Conferenceon Supercomputing, June
1999.

[16] D. Yeung,J.Kubiatowicz, andA.Agarwal. Mgs: A multi-
grain sharedmemorysystem. In 23th AnnualSymposium
on ComputerArchitecture, pages44–55, May 1996.

