
A Model for Hardware Realization of Kernel Loops

Jirong Liao, Weng-Fai Wong, and Tulika Mitra

Department of Computer Science, School of Computing
National University of Singapore

3 Science Drive 2, Singapore 117543
{liaojiro, wongwf, tulika}@comp.nus.edu.sg

Abstract. Hardware realization of kernel loops holds the promise of accelerat-
ing the overall application performance and is therefore an important part of the
synthesis process. In this paper, we consider two important loop optimization
techniques, namely loop unrolling and software pipelining that can impact the
performance and cost of the synthesized hardware. We propose a novel model
that accounts for various characteristics of a loop, including dependencies, paral-
lelism and resource requirement, as well as certain high level constraints of the
implementation platform. Using this model, we are able to deduce the optimal
unroll factor and technique for achieving the best performance given a fixed re-
source budget. The model was verified using a compiler-based FPGA synthesis
framework on a number of kernel loops. We believe that our model is general
and applicable to other synthesis frameworks, and will help reduce the time for
design space exploration.

1 Introduction

A standard practice in synthesis of application specific hardware is to focus attention at
kernel loops. In many applications, they account for the bulk of the execution time and
are thus natural candidates for hardware acceleration. A key difficulty in synthesizing
hardware for kernel loops is that there are many loop optimizations available and the
complex interactions among these optimizations make it difficult to predict the cost-
benefit of applying each. In particular, one cannot tell how much more or less resources
a particular optimization will take or what its impact will be on performance. This
means that one has to either settle for sub-optimal results or go through a costly process
of trial-and-error in order to arrive at the correct combination of loop optimizations that
fits the need of the user. Having a model of how a particular loop optimization will
impact resource and performance is therefore necessary.

Two important loop optimizations applicable to kernel loops areloop unrollingand
software pipelining. Loop unrolling is a technique to expand the loop such that a new
iteration consists of 2 or more of the original iterations. This is performed by a compiler
to expose more instruction level parallelism and reduce the overhead of updating index
variables. The number of times the loop is expanded is called theunroll factor. If the
loop iteration count is not a multiple of unroll factor, then the remainder of the loop
iterations needs to be executed at the end as it is.

Software pipelining [1] tries to achieve higher level of instruction level parallelism
by moving operations across iteration boundaries. This optimization achieves overlap

among the iterations by pipelining the execution of the iterations. The loop body is
scheduled such that (a) all iterations have identical schedule and (b) each iteration is
scheduled to start some fixed number of cycles later than the previous iteration. The de-
lay between the start cycles of two successive iterations is called theInitiation Interval
(II) . The modulo scheduling algorithm attempts to achieve the smallest value of II such
that no intra- or inter-iteration dependencies and resource constraints are violated.

As multiple iterations are executed in parallel, both loop unrolling and software
pipelining increase register pressure and resource requirement but in different ways.
Furthermore, it is possible to use them in combination, i.e. it is possible to software
pipeline unrolled loops. The complex interaction between the two optimizations makes
it difficult to decide how they should be deployed in optimizing a loop given a particular
resource constraint. Often the only way to tell is to exhaustively try various combina-
tions of these two optimizations to obtain the optimal one.

In this paper, we propose a model for the performance and resource requirement for
the hardware realization of unrolled and software pipelined loops. The novelty of our
model lies in the use of the compiler to extract certain key parameters of the loop in
question that characterize the code including the data dependences present for a given
hardware. For example, the platform we use allows at most four parallel reads to mem-
ory and only if they do not hit the same memory bank. Such characteristics are hard to
model. So instead we rely on the instruction scheduler of a compiler to capture these.
From these parameters reported by the compiler, the model will inform the user if given
a certain resource constraint, unrolling alone, or software pipelining used in combi-
nation with loop unrolling would deliver the better performance. It will also output the
optimal unrolling factor that should be used. The contribution of this model is that with-
out exhaustively trying a large number of possibilities, it can very quickly recommend
a solution that we believe is optimal or very near it.

2 Related Work

Hardware realization of kernel loops has been actively studied by many research groups.
However, the focus has been mainly on automatic synthesis of kernel loops from high
level language constructs. The exploitation of compiler optimizations such as loop un-
rolling and modulo scheduling has largely remained unexplored. Even a few commer-
cial synthesis tools that apply these compiler optimizations depend on user feedback
to choose unroll factor or decide between unrolling and modulo scheduling. Our work
bridges this gap in automatic hardware realization of kernel loops.

There are two main approaches towards hardware synthesis from high level con-
structs. One approach is to design new languages for hardware design which are at
much higher level than traditional hardware description languages such as Verilog and
VHDL. The claim is that the productivity gap will be reduced as software program-
mers can easily learn these new languages. An example is Handel-C [2] programming
language which has C-like syntax with support for explicit hardware parallelism, com-
munication, and hardware structures such as memory, bus etc.

The other approach attempts to map a subset of commonly used software program-
ming languages such as C to hardware automatically. These efforts include SA-C [3],

PipeRench C Compiler [4], Garp C compiler [5], work by Weinhardt et. al. [6] [7],
Babb et. al. [8] and Snider et. al. [9]. The PACT project [10] at Northwestern University
performs C to hardware synthesis by taking power/performance trade off into account.
The PICO project [11, 12] performs static timing analysis to identify chain of operators
to minimize number of cycles while maintaining cycle time constraints.

The only existing tool that allows application of high level compiler optimizations
in hardware synthesis is Monet [13]. However, it requires user feedback in deciding
unroll factor for example. Among research projects, Derien et. al [14] have developed
an analytical model to choose a tiling strategy that will minimize loop execution time.
The closest to our work is So et. al. [15]. They perform fast and automatic design space
exploration to choose the right loop unrolling factor that satisfies the area constraints
and maximizes performance. However, they do not use other compiler optimizations
such as software pipeline which can potentially improve the performance significantly.

3 Our Model

In this section, we will present our proposed model. The novelty of the model lies in the
use of key parameters supplied by the compiler in characterizing aspects of the kernel
loop as well as the machine that are hard to model correctly.

3.1 Model for Performance

For the discussion below, we will assume a loopL that is executedN times. LetS1 be the
schedule lengthof the loop. In our model,S1 is a quantity reported by the compiler as it
performs instruction scheduling. As we are realizing the loop in hardware, we assumed
infinite registers by skipping the traditional register allocation phase. In the quantityS1,
various complex issues such as the machine’s configuration, instruction type distribu-
tion, data dependencies etc. are encapsulated. The user, for example, can choose to use
the machine configuration to constraint the amount of parallelism or number and types
of functional units to be realized in hardware. We will also generalizeS1 to Su which
is the schedule length of the kernel when it is unrolledu times. The following formula
gives the total number of cycles the unrolled kernel will take to executeN iterations.

Cunrolled(u)≈
⌊

N
u

⌋
×Su +

(
N−

⌊
N
u

⌋
×u

)
×S1 (1)

After unrolling, the loop size isbN/uc and the schedule length isSu. Therefore the
first term in Eq. 1 accounts for the total number of cycles executed by the unrolled loop.
However, ifN is not divisible byu, a compensation loop of sizeN−bN/uc×u and a
schedule length ofS1 will be generated. In practice, we would not want to have to get
all Su’s from the compiler as that requires multiple runs. Rather, we estimateSu given
S1. In particular, we assumed that

Su = Su−1 +cS (2)

wherecS is a constant. From the experience gained from our experimentation, we chose

cS =
(S3−S1)

2

This is because we found that there may be a case where it so happens that empty
resource slots available at the end of the instruction schedule can be filled up by a new
instance of the loop.

To model software pipelining, we assumed the technique ofiterative modulo schedul-
ing given by Rau [1] that usespredicated executionandrotating registers[16]. It is char-
acterized by two important parameters also obtained from the compiler, the initiation
interval, II , and the epilog countere. The initiation interval is the gap (in machine cy-
cles) between two successive software pipelined iterations. In effect, after a successful
modulo scheduling, each iteration of the software pipelined kernel loop takes exactly
II cycles. The epilog count is the number of iterations in the epilog of the software
pipelined loop. Again, inII ande, the complexity of machine configuration, resource
requirements, and data dependencies are hidden away. Since we would like to combine
software pipelining with unrolling, we will introduceIIu andeu which are theII and
e for a software pipelined loop that has been unrolledu times. We have the following
formula for the total number of cycles a software pipelined loop that has been previous
unrolledu times will take:

Cswp(u)≈
(⌊

N
u

⌋
+eu

)
× (IIu +1)+3+

(
N−

⌊
N
u

⌋
×u

)
×S1 (3)

A constant of 1 is added toIIu because at the end of each iteration, it is necessary
to perform a shift of the content of the rotating registers so as to prepare for the next
iteration. These shifts can be done in parallel in hardware and thus cost one cycle.
The constant of 3 is needed because in our scheme, we needed one clock cycle at the
beginning of the loop to set up the rotating registers, another clock cycle to initiate the
loop and epilog counters, and one more at the end of the loop to copy out the content of
the rotating registers.

Prolog

Kernel

Epilog

Su

eu

IIu

Fig. 1.Relationship betweenSu, IIu andeu.

Su is obtained from Eq. 2. As is the case forSu, we do not redo modulo scheduling
over all possibleu’s for IIu andeu. Given a machine configuration,M, and a loop,L,
the following holds:

IIu = IIu−1 +cII (4)

eu =
⌈

Su

IIu

⌉
−1 (5)

wherecII is dependent onM andL. However, we also found that the simple recurrent
relation forIIu do not necessarily end with the unroll size of 1. In particular, for software
pipelining, if there is sufficient resources, thenII i = II i−1 and the recurrent relations are
not established until resource over-subscription comes into play. In our experiments, we
used a machine that has only four memory port but otherwise has unlimited resources.
The former condition is to reflect the limitation of the FPGA board that we are using.
We used the following strategy: we perform software pipelining withII1, II2, ... until
II i 6= II i−1.

eu can be derived fromSu andIIu through Eq. 5. This relationship is apparent once
we see the idealized diagram for software pipelining shown in Fig. 1. In this example,
Su = 4, andIIu = 1, givingeu = 3. SinceSu > IIu, eu ≥ 1.

Estimating FPGA Frequencies.The total running time of an implementation of a loop
in a FPGA is given by the product of the number of cycles it takes to execute the code
and the frequency of the FPGA which permits the safe operation of the realized design.
It turns out that it is difficult to use static compiler information to obtain an accurate
model of the final realizable frequency. In order to overcome this problem, we use the
following strategy. We run place and route for three instances of the loop, namely the
loop unrolled two, three, and four times. These three runs are also used in our resource
estimation process described in the next section. Let the actual frequencies obtained
from the three runs befl (2), fl (3) and fl (4), respectively wherel is either ‘unrolled’ or
‘swp’. We set the predicted frequency as follows:

Fl (u) =

max(fl (2), fl (3), fl (4)) if u = 1
fl (u) if u = 2, 3, or 4
min(fl (2), fl (3), fl (4)) if u > 4

(6)

Using these equations, we can finally approximate the time taken to execute the
realized design to be

Tunrolled(u1) = Cunrolled(u1)×Funrolled(u1) and Tswp(u2) = Cswp(u2)×Fswp(u2)

3.2 Model for Resource Usage

While we can easily count the various operators emitted by the compiler, optimizations
further down the synthesis chain, in particular, the place and route pass, introduce non-
trivial relationships between the high level hardware description our compiler output
and the final resource usage. From experimental results, we found this to be especially

true for the case of software pipelined loops. From the same three place and route runs
used to obtain the frequencies, we also obtained the resource consumption information
by means of linear regression. In particular, for a machineM and loopL, we model
resource usage as:

Runrolled(u) = munrolled×u+cunrolled (7)

Rswp(u) = mswp×u+cswp (8)

wheremunrolled, cunrolled, mswp, andcswp are constants obtained from the linear regression.

3.3 Putting it together

The model is used as follows. The user will decide on a certain amount of resource,
Ruser, that he would like to use for realizing the loop in hardware. Using Equations 7
and 8, we obtained two maximal unroll factorsu1 andu2 such that

Runrolled(u1)≤ Ruser and Rswp(u2)≤ Ruser

Next we examine all unroll factors less thanu1 andu2 to look for au′1 ≤ u1, and a
u′2≤ u2 such thatTunrolled(u′1) andTswp(u′2) are the respective minimum. IfTunrolled(u′1) >
Tswp(u′2) then we will get better performance by using software pipelining with the loop
unrolledu′2 times and vice versa.

4 Compilation Framework

We used the Trimaran [17] compiler infrastructure to experiment with the model. The
compiler targets for a parameterized Explicitly Parallel Instruction Computing (EPIC)
architecture called HPL-PD [16]. We modified the compilation framework as follows:

– An EPIC machine with infinite resources except for four memory ports was defined.
The four memory port was a constraint of the FPGA board which we used in our
experiments. It has four banks of memory that can be simultaneously accessed with
only one access to a bank at any time. Consequently, we also had to modify the
instruction and modulo schedulers of Trimaran. We assumed that an entire array is
stored in a single bank. Thus any two access to the same array has to be performed
in different machine cycles.

– Trimaran uses some heuristics to guide unrolling. Furthermore, it does not always
emit compensation loops during unrolling as these can be folded into the unrolled
loop using predicated execution. For our purpose, we forced unrolling to be per-
formed as per our requirements.

– Finally, we added a phase to generate Handel-C [18] code for Trimaran’s Elcor
intermediate representation. Handel-C is a C-like behavioral hardware description
language. The Handel-C compiler compiles our output into a EDIF [19] file for the
FPGA vendor’s synthesis tools to process.

In the resultant design flow, we are able to utilize the advanced features used by Tri-
maran including predicated execution and rotating registers and translate them into
Handel-C. From Handel-C’s EDIF output, we synthesis the bitmap for a Xilinx XCV1000
FPGA and execute it on a Celoxica RC1000 board.

5 Results

We used six kernel loops to verify our model:

– Edge detection.A 32×32 mask is computed over 128×128 image to detect edges.
– Matrix multiplication. Integer multiplication of 160×320 and 320×40 matrix.
– Finite impulse response filter.A 128-tap FIR filter on 256 integer data values.
– Livermore Loop 1. Hydro fragment loop of size 1001.
– Jacobi.4-point stencil averaging computation over an array with loop size of 100.
– Histogram. Mapping from the old to the new grey levels with loop size of 1024.

The accuracy of our performance model is given in Table 1. The first set of columns
present the result for loop unrolling and the second set of columns present the result for
unrolling and software pipelining. “Est.” is the predicted execution time, i.e.Tunrolled(u)
andTswp(u). “Act.” is the actual execution time taken to execute the loop. This is ob-
tained from multiplying the actual frequency obtained after place and route with the
actual number of cycles executed. “DiffT” represents the percentage difference be-
tween “Est.” and “Act.” while “Diff C” represents the percentage difference in esti-
matingCunrolled(u) andCswp(u). The average value for “DiffC” for loop unrolling and
loop unrolling with modulo scheduling are 2.84% and 2.19%, respectively. In addition,
the values forSp

u, II p
u and ep

u in Table 1 were computed using Equations 2, 4 and 5
while Sa

u, II a
u andea

u were obtained from the actual compilation. The average relative
error for “Diff T” are 3.6% and 8.4% respectively for loop unrolling alone and soft-
ware pipelining with unrolling. Given that the average relative difference between the
actual execution time of the two strategies is 36%, we conclude that our performance
estimation model is within the necessary margin and is accurate.

Fig. 2 shows the accuracy of our resource model. Due to space limitation, we will
show the results for two benchmarks: Edge and LM1. The results for other benchmarks
are similar. “Unroll” and “SWP” show the actual resource usage due to unroll and unroll
with software pipeline respectively. These points are obtained from the reports of the
FPGA synthesis tool. The “Linear of Unroll” and “Linear of SWP” show the estimated
resource usage using linear regression ofu= 2,3 and 4. As can be seen from the figures,
the estimated resource usage closely follows the actual resource usage.

It seem that in most cases, unrolling alone yields better performance under the same
resource constraints. However, if we setRuser = 100,000, then for the Lm1 bench-
mark, the unroll factor to be used for unrolling and software pipelining are 7 and 5,
respectively. Using these unroll factors, our model predicts that we should use software
pipelining instead of unrolling. The actual execution time given in Table 1 confirms that
our prediction is correct.

Table 2 shows the various constants of Equations 7 and 8 obtained in our model.
The results show that our model is fairly accurate and can significantly cut down the
design space exploration time.

Benchmark Unrolling Only Unrolling + SWP
(u) Sp

u Sa
u Est. Act. Diff T Diff C II p

u II a
u ep

u ea
u Est. Act. Diff T Diff C

msec msec (%) (%) msec msec (%) (%)

1 4 4 0.4210.391 7.46 -2.38 1 1 3 3 0.2210.223 -1.09 -4.11
2 5 4 0.2820.296 -4.90 -4.90 2 2 2 2 0.1770.189 -6.75 -6.75
3 6 6 0.2270.244 -7.01 -7.01 3 3 1 1 0.1720.188 -8.52 -8.52

Edge 4 7 7 0.1840.201 -8.38 -8.38 4 4 1 1 0.1450.161 -9.65 -9.65
5 8 8 0.1970.207 -5.00 -9.86 5 5 1 1 0.1660.178 -7.05 -8.82
6 9 9 0.1870.201 -7.25 -10.36 6 6 1 1 0.1660.198-16.46 -7.22
7 10 10 0.1970.199 -0.77 -9.86 7 7 1 1 0.1840.218-15.37 -5.03
8 11 11 0.1550.158 -1.68 -12.22 8 8 1 1 0.15 0.226-33.49 -4.24
1 4 4 731.5743.4 -1.60 -0.16 1 1 3 3 411.0382.2 7.53 -0.47
2 5 5 483.4485.2 -0.38 -0.34 2 2 2 2 318.8322.1 -1.03 -1.03
3 6 6 368.0370.3 -0.62 -0.63 3 3 1 1 291.2295.2 -1.36 -1.36

MM 4 7 7 361.2363.8 -0.72 -0.72 4 4 1 1 258.4262.2 -1.47 -1.47
5 8 8 330.3308.6 7.00 -0.78 5 5 1 1 260.7281.8 -7.50 -1.52
6 9 9 312.8289.8 7.97 -1.23 6 6 1 1 258.0298.5-13.54 -1.54
7 10 10 303.2275.0 10.24 -1.27 7 7 1 1 253.4290.3-12.70 -1.57
8 11 11 283.8283.5 0.12 -1.36 8 8 1 1 243.4310.9-21.70 -1.63
1 3 3 4.4314.499 -1.51 -1.29 1 1 2 2 3.2363.115 3.89 -1.89
2 4 4 3.0393.098 -1.93 -1.94 2 2 1 1 2.4962.567 -2.75 -2.74
3 5 5 2.4922.559 -2.59 -2.58 3 3 1 1 2.3912.476 -3.45 -3.45

FIR 4 6 6 2.4202.503 -3.30 -3.30 4 4 1 1 2.0672.133 -3.09 -3.09
5 7 7 2.3192.390 -2.96 -3.41 5 5 1 1 2.2192.330 -4.77 -3.09
6 8 8 2.1932.250 -2.51 -4.09 6 6 1 1 2.1532.340 -7.99 -2.58
7 9 9 2.1182.283 -7.23 -4.21 7 7 1 1 2.1272.312 -8.01 -2.00
8 10 10 2.0172.044 -1.36 -4.37 8 8 1 1 2.0612.108 -2.26 -1.42
1 8 8 0.7540.779 -3.22 -0.06 2 2 3 3 0.3030.286 6.05 -0.13
2 9 9 0.4410.441 -0.29 -0.29 3 3 2 2 0.2090.209 -0.1 -0.70
3 10 10 0.33 0.332 -0.6 -0.60 4 4 2 2 0.1780.177 0.36 -1.07

Lm1 4 11 11 0.26 0.26 -0.22 -0.22 5 5 2 2 0.1530.153 -0.2 -0.60
5 12 12 0.2390.229 4.17 -0.25 6 6 1 1 0.1490.163 -8.33 -0.42
6 13 13 0.2180.208 4.52 -1.86 7 7 1 1 0.1450.152 -4.74 -1.04
7 14 14 0.198 0.19 4.52 -0.30 8 8 1 1 0.1370.163-15.97 -0.38
8 15 15 0.187 0.19 -1.75 -0.32 9 9 1 1 0.1340.164 -18.6 -0.32
1 10 10 5.7125.367 6.42 -0.30 8 8 1 1 6.3715.411 17.75 0.44
2 13 13 3.7133.736 -0.61 -3.21 8 8 1 2 3.29 3.249 1.29 1.29
3 17 17 3.3593.389 -0.87 -0.87 12 12 1 1 3.85 3.884 -0.89 -0.89

Jacobi 4 20.521 3.0953.125 -0.95 -3.31 16 16 1 1 4.6954.642 1.13 1.13
5 24 25 2.9483.186 -7.47 -4.95 20 20 1 1 4.6844.286 9.28 2.06
6 27.529 2.9723.139 -5.34 -5.70 24 24 1 1 4.8214.931 -2.23 0.43
7 31 33 2.8423.137 -9.42 -6.78 28 28 1 1 4.7585.405-11.97 2.26
8 34.537 2.8543.177-10.17 -7.16 32 32 1 1 4.8635.912-17.74 2.21
1 5 5 0.3130.312 0.36 -0.04 1 1 4 4 0.1220.126 -3.29 0.44
2 6 6 0.1880.188 -0.1 -0.10 2 2 2 2 0.0920.092 -0.19 1.29
3 7 7 0.1510.151 -0.17 -0.17 3 3 2 2 0.0910.092 -0.36 -0.89

Histogram 4 8 8 0.1260.126 -0.15 -0.15 4 4 1 1 0.1020.102 -0.23 1.13
5 9 9 0.1160.121 -4.43 -1.23 5 5 1 1 0.1 0.111-10.34 -1.24
6 10 10 0.1070.113 -5.09 -1.56 6 6 1 1 0.0970.109-11.18 -1.56
7 11 11 0.1020.105 -2.86 -0.31 7 7 1 1 0.0950.135-29.84 -0.31
8 12 12 0.0970.105 -7.57 -0.20 8 8 1 1 0.092 0.12 -23.07 2.21

Table 1.Accuracy of Performance Model.

Benchmark Unrolling Unrolling + SWP
munrolled cunrolled Max Min mswp cswp Max Min

Err. Err. Err. Err.
Edge 10,371 14,826 1.67% 0.53%13,47122,10411.67%0.92%
MM (large) 10,468 15,333 4.55% 1.52%13,36524,68620.86%0.71%
FIR 9,496 13,115 4.18% 3.91%11,70120,457 9.87% 0.32%
Lm1 11,112 19,995 5.78% 0.44%13,92628,955 1.42% 0.08%
Jacobi 6,604 12,157 2.02% 0.63% 9,039 25,908 4.08% 0.37%
Histogram 3,973 5,676 13.50%2.25% 3,714 1,6505 2.51% 0.01%

Table 2.Accuracy of Linear Regression.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1 2 3 4 5 6 7 8 9 10

unrolling factor

ga
te

s

Unroll
SWP

Linear of Unroll
Linear of SWP

EDGE

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 1 2 3 4 5 6 7 8 9 10

unrolling factor

ga
te

s

Unroll
SWP

Linear of Unroll
Linear of SWP

LM1

Fig. 2.Resource requirement for the benchmarks.

6 Conclusion

In this paper, we proposed a model that projects the data obtained from a small number
of compilation and synthesis runs to obtain a global picture of the tradeoffs the designer
faces in selecting between two loop optimizations, namely loop unrolling and software
pipelining. The novelty of our approach is in the use of key parameters reported by the
compiler to capture information about the machine configuration, data dependencies,
and resource requirement patterns. This allowed us to obtain a very accurate model of
the the cycle counts of the loops’ execution. In the worst case, we are less than 5% off
the actual cycle counts for larger loops.

The big challenge has been in modeling the two key parameters obtainable only
after place and route, namely the circuit’s realizable frequency and the resource con-
sumption. For resource usage, we found good linear relations in the growth of resource
consumption as unrolling increases especially within the realistic unroll factors that we
studied.

Our approach is not very satisfying in modeling the frequency of software pipelined
loops. In the worse case for software pipelined loop with high unroll numbers, we are
can be off by 30%. Nonetheless, taken together as a whole, the average relative error in
estimatingTswp(u) is 8.4%. We would certainly like to improve this in future works.

Combining the resource model and the performance model, we have a methodology
for deciding the optimal unroll factor as well as predict whether software pipelining will

be beneficial given a certain resource constraint given by the user. We believe our model
will reduce the time for design space exploration.

References

1. Rau, B.R.: Iterative Modulo Scheduling. The International Journal of Parallel Processing24
(1996)

2. Page, I., Luk, W.: Compiling OCCAM into FPGAs. In: Proceedings of the International
Symposium on Field Programmable Logic (FPL). (1991)

3. Rinker, R., et al.: An Automated Process for Compiling Dataflow Graphs into Reconfigurable
Hardware. IEEE Transactions on VLSI Systems9 (2001)

4. Goldstein, S.C., et al.: Piperench: A Reconfigurable Architecture and Compiler. IEEE Com-
puter (2000)

5. Callahan, T., Hauser, J.R., Wawrzynek, J.: The Garp Architecture and C Compiler. IEEE
Computer (2000)

6. Weinhardt, M.: Compilation and Pipeline Synthesis for Reconfigurable Architectures. In:
Proceedings of the Reconfigurable Architecture Workshop (RAW). (1997)

7. Weinhardt, M., Luk, W.: Pipeline vectorization for reconfigurable systems. In: Proceedings
of the IEEE Symposium on Field Programmable Custom Computing Machines (FCCM).
(1999)

8. Babb, J., et al.: Parallelizing Applications into Silicon. In: Proceedings of the IEEE Sympo-
sium on Field Programmable Custom Computing Machines (FCCM). (1999)

9. Snider, G., Shackleford, B., Carter, R.J.: Attacking the Semantic Gap between Applica-
tion Programming Languages and Configurable Hardware. In: Proceedings of ACM FPGA.
(2001)

10. Jones, A., et al.: PACT HDL: A C Compiler Targeting ASICs and FPGAs with Power
and Performance Optimizations. In: Proceedings of International Conference on Compilers,
Architecture. and Synthesis for Embedded Systems (CASES). (2002)

11. Schreiber, R.: High-Level Synthesis of Nonprogrammable Hardware Accelerators. In: Pro-
ceedings of the IEEE International Conference on Application Specific Systems, Architec-
tures, and Processors (ASAP). (2000)

12. Sivaraman, M., Aditya, S.: Cycle-time Aware Architecture Synthesis of Custom Hardware
Accelerator. In: Proceedings of International Conference on Compilers, Architecture. and
Synthesis for Embedded Systems (CASES). (2002)

13. Mentor Graphics Inc.: Mentor Graphics Monet User’s Manual (release r42). (1999)
14. Derrien, S., Rajopadhye, S.: Loop Tiling for Reconfigurable Accelerators. In: Proceedings

of the International Symposium on Field Programmable Logic (FPL). (2001)
15. So, B., Hall, M.W., Diniz, P.C.: A Compiler Approach to Fast Hardware Design Space

Exploration in FPGA-based Systems. In: Proceedings of the International Conference on
Programming Language Design and Implementation (PLDI). (2002)

16. Kathail, V., Schlansker, M., Rau, B.: Hpl-pd architectural specifications: Version 1.1. Techni-
cal Report Technical Report HPL-93-80(R.1), Hewlett-Packard Laboratories (Revised 2000)

17. Trimaran Consortium: TRIMARAN : An Infrastructure for Research in Instruction Level Par-
allelism. (http://www.trimaran.org)

18. Celoxica Inc.: Handel-C. (http://www.celoxica.com/tech/handel-c/)
19. Electronic Industries Alliance: Electronic Design Interface Format. (http://www.edif.org)

