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Abstract. Linear scan register allocation is an attractive register alloca-
tion algorithm because of its simplicity and fast running time. However,
it is generally felt that linear scan register allocation yields poorer code
than allocation schemes based on graph coloring. In this paper, we pro-
pose a pre-pass instruction scheduling algorithm that improves on the
code quality of linear scan allocators. Our implementation in the Tri-
maran compiler-simulator infrastructure shows that our scheduler can
reduce the number of active live ranges that the linear scan allocator
has to deal with. As a result, fewer spills are needed and the quality of
the generated code is improved. Furthermore, compared to the default
scheduling and graph coloring allocator schemes found in the IMPACT
and Elcor components of Trimaran, our implementation with our pre-
pass scheduler and linear scan register allocator significantly reduced
compilation times.

1 Introduction

Instruction scheduling and register allocation are one of the most important
phases in compiler optimization. In compilers for machines with instruction-
level parallelism, the phases of instruction scheduling and register allocation can
be antagonistic. This is the well-known phase ordering problem [7] as shown in
Fig. 1. One of the ways to solve that problem is to combine instruction scheduling
and register allocation such that these two phases can be performed together to
generate efficient code. In current optimizing compilers, a compromise consist-
ing of a phase of instruction scheduling (pre-pass scheduling) is first performed.
This is followed by register allocation and another phase of instruction schedul-
ing (post-pass scheduling). The linear scan register allocator proposed by Poletto
and Sarkar [13] is very simple and significantly faster than algorithms based on
graph coloring approaches. The performance of a linear scan register allocator
is affected by the maximum number of active live intervals. If we can reduce
the maximum number of active live intervals, the linear scan register allocator
can generate a more efficient code by reducing the amount of spill code inserted.
Thus, we propose a pre-pass local instruction scheduler which can reduce si-
multaneously live ranges so as to decrease the maximum number of active live



intervals. We combined the our proposed scheduler with a linear scan register al-
locator and evaluated the overall performance. Some previous experimental eval-
uation and improvements to the linear scan register allocation can be found in [6]
and [14]. Previous studies [13], [6] and [14] investigated the linear scan register
allocator in isolation rather than its combination with instruction scheduling. In
addition, most previous works on phase ordering problem [7], [1], [12], [10], [2]
and [4] had focused on combining the instruction scheduling phase with register
allocator based on graph coloring approaches. In this paper, we focus on a co-

operative approach that solves the phase ordering problem between instruction
scheduling and linear scan register allocation. In order to evaluate the perfor-
mance of combining our proposed scheduler with linear scan register allocation,
we have implemented our proposed scheduler and linear scan register allocator
in Trimaran. Trimaran [16] is a compiler infrastructure for supporting state of
the art research in compiling for Instruction Level Parallel (ILP) architectures.
The system is oriented towards EPIC (Explicitly Parallel Instruction Comput-
ing) architectures, and supports compiler research in what is typically considered
to be “back end” techniques such as instruction scheduling, register allocation,
and machine-dependent optimizations. In our framework, we first perform our
proposed scheduler, followed by linear scan register allocation and finally the
Trimaran-Elcor list scheduler. The results show that performing our proposed
pre-pass scheduler can reduce the maximum active live intervals of the linear
scan register allocator. This can decrease the amount of spill code inserted by
the linear scan register allocator thereby increasing the quality of the generated
code. Moreover, it also shows that combining our proposed pre-pass scheduler
with linear scan register allocator is significantly faster than Trimaran’s pre-pass
scheduling, register allocation, and post-pass scheduling scheme using either the
IMPACT or the region-based register allocator.
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Fig. 1. Example of the phase ordering problem. (a)Sample code in a pseudo inter-
mediate language with live ranges. (b)After instruction scheduling with live ranges.
(c)Register allocation first. (d)Instruction scheduling first. Memory access operations
are assumed to take two cycles while all other operations take one cycle. Comparing
(a) and (b) we see the increase in the number of overlapping live ranges after instruc-
tion scheduling. If the register allocation is executed first, it would require eight cycles
although only two registers is enough for register allocation. However, if instruction
scheduling is done first, then although it would require only six cycles, four registers
would be needed to avoid spilling. Which of these two orders is better depends upon
the number of available registers and functional units.



The rest of the paper is organized as follows. In Section 2, we give the overview
of our proposed scheduler. Section 3 discusses register allocators in Trimaran,
followed by the experimental result and discussion of cooperative our proposed
pre-pass scheduler with linear scan register allocator (Section 4). Section 5 con-
cludes the paper.

2 Overview of our proposed scheduler

Our proposed scheduler is based on convergent scheduling [11]. As in the con-
vergent scheduler, we used a weight matrix to compute the schedule time of an
operation. However, while the convergent scheduler schedules the instructions at
the earliest cycle, our proposed scheduler schedules the instructions in the latest
cycle possible while maintaining optimal instruction scheduling length which we
assumed to be the critical path of a basic block. In order to get our proposed
schedule, we use a weight matrix to calculate the optimal schedule length. In
particular, the weight Wi,t of instruction i at time slot t is a value between zero
and one.

Our heuristic is based on the earliest completion time (the longest path from
the root node to the current node) and latest completion time (i.e., the critical
path length - the longest path from the current node to a leaf node) of the
dependence graph. The operation nodes exist either on the critical path (the
longest path of the root node to leave node) or non-critical path of the DAG.
The optimal schedule length can be assumed as the length of the critical path
length if the available resources are not in conflict. Normally, we can only reorder
the operation nodes which are not on the critical path length in order to get
more efficient codes. This is especially in the case when there are two kinds
of non-critical paths: one that starts with a node which has no dependence
predecessor and ends at a node on the critical path, or a second kind that starts
at a node on the critical path and ends with a node which has no dependence
successor. We should schedule the operation nodes which are on the first kind
of non-critical path at the latest cycle possible to reduce the simultaneously live
ranges. In contrast, the second kind of non-critical paths should be scheduled at
the earliest cycle possible. In [15], Chen reported that real dependence graphs
of programs have more of the first kind of non-critical paths than the second.
Therefore, our proposed scheduler applies as late as possible schedule. If le is the
earliest completion time and ll is the latest completion time, the instruction can
be scheduled only in the time slots between le and ll. If the instruction could not
be scheduled between le and ll due to insufficient parallel functional units, we
increase ll by one and reschedule again. To begin, the value of Wi,t is initialized
as follows:

Wi,t =

{

0 if t < le or t > ll;
1/I(t) if t ≥ le and t ≤ ll.

where I(t) is the number of instructions that has its (le, ll) crossing time t.



We give more weight to a specific instruction to be scheduled in a given time
cycle by multiplying the weight with a constant value. Then, we normalize our
weights:

∀i, t, Ŵi,t ←
Wi,t

∑

t′ Wi,t′

The schedule time for each instruction is then maxt{Ŵi,t}. The full algorithm
of our proposed scheduler is given in Fig. 2.

1.Compute the earliest completion time and latest completion time
2.Initialize the weight matrix
3.Mark the scheduling is not finished
4.While scheduling is not finished
5. While the latest completion time is greater than zero
6. For (each operation within a basic block)
7. If (resource is available and weight matrix is not zero)
8. Multiply weight matrix by 1.2 and put back into weight matrix
9. Mark the operation with schedule
10. Increase the number of current resources by one
11. if the current resources reach the maximum resource limit
12. Decrease the latest completion time by one
13. Initialize the number of current resources by zero
14. endif

15. endif

16. endfor

17. endwhile

18. Mark the scheduling is finished
19. For (each operation within a basic block)
20. If one of the operations within a basic block is not scheduled
21. Mark the scheduling is not finished
22. endif

23. endfor

24.endwhile

23.Normalize the weight matrix by dividing each weight with the
total weights for each operation

24.Choose the cycle time which has the maximum weight for each
operation as schedule time

Fig. 2. Our proposed scheduler

3 Register allocators in Trimaran

Global register allocation based on graph coloring was first proposed by Chaitin
et al. [3]. A graph-coloring register allocator iteratively builds an undirected



graph called an interference graph that shows the overlap in live ranges. A node
in an interference graph is a live range that is a candidate for register allocation
and an edge connects two nodes when the corresponding live ranges overlap.
The standard graph coloring method heuristically attempts to find a k-coloring
for the interference graph. A graph is k-colorable if each node can be assigned
to one of k-colors such that no two adjacent nodes have the same color. If the
heuristic can find a k-coloring, then k registers are sufficient to hold the content
of all the live ranges. Otherwise, some candidates are chosen to be spilled, and the
interference graph must be rebuilt after a spill decision is made. Another attempt
is then made to obtain a k-coloring. This whole process is repeated until a k-
coloring is finally obtained. In practice, the cost of graph-coloring approach can
be expensive by repeatedly constructing a register interference graph until the
heuristic succeeds. However, the graph-coloring based register allocators have
been used in many commercial compilers to obtain significant improvements
over simple register allocation heuristic. In Trimaran, there have been two global
register allocators: the IMPACT register allocator [8] and region-based register
allocator [9], adapted from Chow and Hennessy graph-coloring framework [5].
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Fig. 3. Control Flow Graph (CFG) with long instructions within each basic block from
Trimaran. (a) without instruction reordering. (b) with instruction reordering.



3.1 Linear scan register allocator

Register allocation based on graph-coloring is generally considered the state-of-
the-art. However, the algorithm can be computationally expensive. In light of
this, Poletto and Sarkar [13] proposed an alternative algorithm for fast register
allocator called linear scan register allocation. Linear scan register allocation
works on the topological ordering of live ranges (also known as live intervals).
Live intervals of each temporary variable are computed and assigned registers.
A temporary variable with overlapping intervals can be assigned to different
registers and non-overlapping intervals can be assigned to same registers. A
linear scan register allocator performs the following four steps [6]:

1. sort all the instructions in topological order;
2. calculate the set of live intervals;
3. assign each temporary variable to physical register for each interval (or spill
into the memory) and finally

4. rewrite the code with the obtained allocation.

Ordering of instructions. The topological ordering of basic blocks required
by the linear scan allocator is not unique. In particular, the ordering may be (1)
depth-first, (2) preorder, (3) postorder, (4) breadth-first, (5) prediction, and (6)
random. An experimental study of the impact of these orderings can be found
in [6]. Among the different orderings, depth-first ordering was found empirically
to reduce the most amount of false interference between live intervals [13, 6].
However, there has been no discussion of reordering of instructions within a basic
block. The order of instructions within a basic block impacts the allocation and
the number of spill code insertions. Our proposed schedule described in Section
2 reorders instructions within a basic block to reduce simultaneously live ranges.
Fig. 3(a) and (b) show the original ordering and the ordering of instruction after
applying our proposed scheduler respectively.

Computation of live intervals. Live ranges are determined by a set of in-
structions within each basic block. Each live range has a start position with the
first definition of the temporary and an end position with the last use of the
temporary. Then, all live intervals are sorted in the order of increasing start-
points so as to make the allocation more efficient. The number of live intervals
with start position and end position in Fig. 3 are given in Fig. 4.
As shown in Fig. 4,without instruction reordering, BTR1, BTR3, BTR4 and

BTR5 are live at the same time. However, with instruction reordering, BTR1 is
only live at the same time with BTR3, BTR4 or BTR5.

Register assignment. After sorting all live intervals by their start points,
the allocation of registers to intervals can be done. In Trimaran, there are four
register types : general purpose registers (GPRs), floating point registers (FPRs),
branch target registers (BTRs) and predicate registers (PRs). We performed
linear scan allocation on all four types.



Register name Start position End position

BTR1 8 25

GPR2 11 15

BTR3 12 16

BTR4 13 20

BTR5 14 22

Register name Start position End position

BTR1 8 25

GPR2 11 12

BTR3 13 14

BTR4 15 19

BTR5 20 22

( a ) ( b )

Fig. 4. A number of live intervals for the data dependent graph in Fig. 3. (a) without
instruction reordering (b) with instruction reordering.

Code rewrite. After register assignment, the code is rewritten to bind the
temporary variables to physical registers.

Table 1. The maximum active live intervals of each procedure, which have long and
narrow data dependent graph, of several benchmarks in Trimaran.

GPR FPR BTR

Benchmarks(procedure) Act1 Act2 Reduce% Act1 Act2 Reduce% Act1 Act2 Reduce%
181.mcf( insert new arc) 16 11 31.25% 0 0 0% 1 1 0%
181.mcf( replace weaker arc) 17 12 29.41% 0 0 0% 1 1 0%
181.mcf( price out impl) 29 24 17.24% 0 0 0% 2 2 0%
181.mcf( suspend impl) 19 13 31.58% 0 0 0% 1 1 0%
181.mcf( global opt) 3 3 0% 0 0 0% 7 2 71.43%
101.tomcatv 69 65 5.80% 33 32 3.03% 7 2 71.43%
wc( main) 7 7 0% 0 0 0% 3 2 33.33%
bmm ( sumup) 6 6 0% 1 1 0% 3 1 66.67%
dag 11 11 0% 0 0 0% 1 1 0%
eight 8 8 0% 0 0 0% 2 1 50.00%
example bench( convert to int) 2 2 0% 0 0 0% 3 2 33.33%
fact2 3 3 0% 0 0 0% 3 2 33.33%
fib 4 4 0% 0 0 0% 3 2 33.33%
fib mem 6 6 0% 0 0 0% 3 2 33.33%
fir 11 11 0% 3 3 0% 3 2 33.33%
hyper 5 5 0% 0 0 0% 1 0 100.00%
ifthen 13 13 0% 0 0 0% 2 1 50.00%
mm double ( matmult) 11 11 0% 3 3 0% 2 1 50.00%
mm int 14 13 7.14% 0 0 0% 2 1 50.00%
mm 11 11 0% 3 3 0% 3 2 33.33%
nested 6 6 0% 1 1 0% 2 1 50.00%

Act1 - the number of active live intervals after Elcor pre-pass scheduler

Act2 - the number of active live intervals after our pre-pass scheduler

4 Experimental evaluation

We use Trimaran infrastructure to compare the performance of our linear scan
register allocator with the IMPACT register allocator and region based register
allocator. We also implemented our pre-pass scheduler in Trimaran.



1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

18
1.

m
cf

13
0.

li
da

g
eig

ht


ex
am

ple
_b

en
ch


fa

ct2


fib


fir


hy
pe

r
if-

th
en


m

m
_d

ou
ble


m

m


ne
ste

d
wav

e wc

List Scheduler + Region
Based

Our Proposed Scheduler +
Linear Scan

Benchmarks

T
o

ta
l S

im
u

la
te

d
 

E
xe

cu
ti

o
n

 C
yc

le
s
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4.1 Result and discussion

Table 1 gives the experimental results of combining our pre-pass scheduler with
linear scan register allocator. The result suggests that combining our scheduler
with linear scan register can significantly reduce the maximum active live in-
tervals of basic block. This in turn may reduce spill code insertion and remove
unnecessary dependencies. As a result, as shown in Fig. 5, the code generated
by our simpler scheme performs just as well as that generated by list scheduling
and graph-coloring based register allocation. In some cases, some minor gains
were even achieved.
Fig. 6 shows the actual compilation time observed for the various combination

of scheduler and register allocators. A linear scan register allocator attempts to
find the number of live intervals which are currently active at a certain program
point by visiting each lifetime interval in turn. The number of active live intervals
represent the number of register needed at this point in the program. If there are
insufficient number of free registers, then some active live intervals are chosen to
spill and the scan proceeds. Since a linear scan register allocator scans the whole
process linearly rather than repeating the process after spill code is inserted, it
can operate faster than graph-coloring method based register allocators such as
the IMPACT and region-based register allocators in Trimaran.
The list scheduler never unschedules already scheduled operations. Our pre-

pass scheduler, on the other hand, unschedules the operations when all the oper-
ations cannot schedule within critical path length due to a shortage of function
units. However, unlike the list scheduler, our proposed scheduler does not need
to recalculate le of successor ops after an op has been scheduled. Thus, the com-
pilation time of our pre-pass scheduler is comparable with the list scheduler.
As a result, combining our pre-pass scheduler with linear scan register alloca-
tor is significantly faster than combining Trimaran’s list scheduler with either
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C1 - Trimaran list scheduler with IMPACT register allocator

C2 - Trimaran list scheduler with region-based register allocator

C3 - Our pre-pass scheduler with linear scan register allocator

C4 - Trimaran list scheduler with linear scan register allocator
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C6 - Our pre-pass scheduler with region-based register allocator

Fig. 6. Actual compilation time on an 1.2 GHz AMD Athlon MP Linux system with
1 GByte RAM.

the IMPACT or region-based register allocator. Putting the above together, we
therefore argue that combining our pre-pass scheduler with linear scan register
allocation is the most cost-effective option.

5 Conclusion

In this paper, a cooperative approach utilizing our pre-pass local instruction
scheduling and linear scan register allocation has been presented. As far as we
know, this is the first study that combines instruction scheduling with linear
scan register allocation. The results show that combining our proposed pre-pass
scheduler with the linear scan register allocator can reduce the maximum number
of active live intervals. This in turn can reduce register pressure and spill code
insertion resulting in high quality code comparable to that generated by a list
scheduler and a graph-coloring register allocator. Moreover, compared with the
latter our scheme results in significantly lower compilation times. As a future
work, we will consider the problem of how to do cooperative global scheduling
with linear scan register allocation. Yet another approach is to fully integrate
instruction scheduling with register allocation.
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