

A Co-simulation Study of Adaptive EPIC Computing

 Valentin Stefan Gheorghita Weng-Fai Wong, Tulika Mitra Surendranath Talla
 Politehnica University of Bucharest Department of Computer Science Agere Systems
 Bucharest National University of Singapore Altanta, GA

 Romania Singapore U.S.A
 septica@cs.pub.ro {wongwf | tulika}@comp.nus.edu.sg talla@agere.com

ABSTRACT

Reconfigurable computing offers the embedded

systems designers the flexibility of application specific
optimizations on a generic platform. In this paper, we are
concerned with a fine-grain, tightly coupled, dynamically
reconfigurable architecture we call Adaptive EPIC. A
generic EPIC architecture is augmented with a
dynamically reconfigurable structure. In this paper, we
describe an experimental setup to evaluate the
performance of such a processor. Our results show that
such architecture can offer significant performance
improvements for low frequency, and hence low power,
core processors.

1. INTRODUCTION
In the context of embedded processing, there are two
main ways to improve performance. In the first approach,
one first selects a processor that meets macro constraints
such as cost, footprint etc. and then optimizes the
intended application for such a processor. In the current
state-of-art, this often entails assembly programming the
core sections of the code. Alternatively, given the
application, one can optimize the hardware to be used to
execute the application. This allows the designers better
control over the design and in better meeting the
optimization criteria. However, engineering a new
processor is often a very expensive proposition.

The introduction of tightly coupled reconfigurable
processors offers a new degree of freedom in the design
space. They give the designs the cost-effectiveness of
using off-the-shelf silicon with the flexibility of
optimizing parts of the hardware for specific applications.

In an earlier work, we introduced a dynamically
reconfigurable processor architecture we called Adaptive
EPIC (Explicitly Parallel Instruction Computing) [20].
The basic design consists of a segmented reconfigurable
array that is tightly coupled with an EPIC processor. The
AEPIC architecture combines the advantages of the EPIC
with its simpler architecture backed by well-known

compiler technology, and that of programmable logic that
exploits fine-grain parallelism through explicit control
over micro-architectural features. In the paper, we
described the brief design of the processor and the
compiler considerations that are needed to work with
such a processor. The contributions of the present work
are as follows:

• We describe a simulation infrastructure that
realistically simulates both the main EPIC core and
reconfigurable component. We use the state-of-the-art
FPGA technology to obtain realistic measurements for the
latter.

• We present simulation results on embedded
benchmarks that show that the concept significantly
benefits embedded computing especially when the
processor needs to operate at lower power and hence
lower frequencies.

2. PREVIOUS WORK
The earliest known computing system based on
reconfigurable devices was proposed and implemented by
Gerald Estrin at UCLA [8]. It is a hybrid machine
consisting of a general-purpose processor interconnected
with high-speed logic devices, which were reconfigured
manually. The introduction of Field Programmable Gate
Array (FPGA) devices by Xilinx in the mid 80’s [22, 25]
spurred research in FPGA based reconfigurable
computing engines. PRISM [1], PAM [24], and
SPLASH-2 [9] are some pioneering efforts in this
direction. More recently, researchers have explored
variations of FPGA architectures and also some radical
architectures, which combine programmable processor
with reconfigurable logic. Some examples of the former
are DPGA and MATRIX [5]; while RAW [23],
PipeRench [10], Garp [13], PRISC [18], RaPiD [6],
Cameron [11] and Chimaera [12] exemplify the latter. A
survey of some of the past work can be found in one of
the author’s thesis [20].

In the last two-three years, even some FPGA
manufacturers have shown interest in combining FPGA

with standard processor cores. These devices are being
targeted for the embedded market, and this is reflected in
the choice of the processor cores chosen to go with the
programmable logic (from 8 bits microprocessor at
40Mhz up to 32bits RISC processor at 166Mhz). Some
released or announced devices are: Triscend’s E5 and A7,
Atmel’s FPSLIC and Chameleon Systems’ CS2000. All
these devices, except Chameleon ones, use fine-grained
reconfigurable array; the FPGA logic blocks operates on
one or two bit wide data. The exception, CS2000,
contains up to eighty-four 32-bit datapath units (DPUs)
each of which includes a 32-bit arithmetic-logic unit
(ALU). Enzler and Platzner [7] presented the current
products in this domain and the future trends.

Figure 1. AEPIC architecture

3. ADAPTIVE EXPLICITY PARALLEL
INSTRUCTION COMPUTING
The AEPIC architecture provides a dynamically varying
EPIC style architectural interface to the executing
process. This means the interface observed by the
executing program in any machine cycle is that of an
explicitly scheduled EPIC architecture [16, 19]. The
variation can be in terms of the number and types of
instructions that can be executed on any given machine
cycle. A machine that implements AEPIC architecture
may be composed of hardwired functional units and some
programmable logic that can be reconfigured to
implement application specific instructions. On an AEPIC
machine, the running program also controls the
adaptation. However, the decisions of when and how to
reconfigure are pre-determined by the compiler and
embedded into the code generated for the given
application.

3.1. Key features of the architecture
The AEPIC architecture is motivated by a desire to (1)
enable efficient reconfiguration of the processor data-path
at runtime, (2) allow compiler to determine the

reconfiguration decisions in a flexible and efficient
manner and, (3) allow AEPIC researchers to study a wide
variety of AEPIC machine configurations. In order to
achieve these goals, the AEPIC architecture proposes the
following novel features.

Compiler specified resource allocation. Here we are
referring to resources that are intended for hosting
Configured Functional Units (CFU). AEPIC delegates to
the compiler the task of specifying which regions of the
program code will execute on the programmable logic
and when they are allocated (de-allocated) to (from) the
programmable resources on processor.
Architecturally transparent resource assignment.
Although the AEPIC compiler decides which particular
piece of the computation should be performed on the
programmable logic each cycle, the processor determines
which region of the programmable logic resource is
utilized for hosting that computation.
Support for efficient context switching and modular
software development. AEPIC architecture allows
multiple CFUs to be instantiated simultaneously and
groups them into distinct sets so that on any cycle, a
particular set of CFUs is considered active. These active
CFUs are the ones on which operations can be executed.
The architecture also provides special instructions to alter
these CFU sets or to switch between sets to make a
different one active.
Explicitly controlled configuration cache hierarchy.
AEPIC provides architectural mechanisms to explicitly
control the data placement in the configuration cache
hierarchy. This feature is a natural extension of the
explicitly controlled data cache hierarchy mechanisms
provided in some EPIC architectures [16]. It is expected
to play an even more significant role in AEPIC
processing where the costs of configuration cache misses
can be more expensive than the costs of conventional data
cache misses. Since applications are expected to have a
much smaller number of configurations than the number
of program values (which go through the traditional cache
hierarchy), explicit control of configuration data
placement is expected to be feasible and advantageous.
Implicitly specified operands for configured functional
units. Unlike typical RISC operations, some of the
operations performed by CFUs may take a large number
of input/output operands. In order to simplify the
instruction decode logic and to keep the instruction
format simple, operands for CFU operations are not
specified as part of the instruction itself. Instead, AEPIC
architecture specifies operand assignment operations that
associate specified registers as sources (destinations) for
input (output) operands for CFU operations.

PE
1
3

.

.

.
…

PE
1
3

.

.

.
…

MRLA

active
context = 3

ARF

C-cache

slice

execution
context

active context

PE
1
3

.

.

.
…PE

1
3

.

.

.
PE

1
3

.

.

.
…

PE
1
3

.

.

.
…PE

1
3

.

.

.
PE

1
3

.

.

.
…

MRLA

active
context = 3

ARF

C-cache

slice

execution
context

active context

Figure 2. Structure of MRLA & multiple-context

MRLA

3.1.1 AEPIC Architecture
Figure 1 shows the abstract architecture of an AEPIC
machine. The core component consists of a standard
EPIC machine. The adaptive component of the AEPIC
processor consists of the Configuration Cache Hierarchy,
Multi-context Reconfigurable Logic Array (MRLA) and
Array Register File (ARF) connected together via bus
interconnect. Configured Functional Units (CFU) are
implemented using the programmable MRLA.
Configurations are cached in the C-Cache. The C-Cache
merges into the standard memory hierarchy thus
providing a rapid means of instantiating CFU whose
configurations are held as data in the standard memory
hierarchy of the system. The Configuration Register File
(CRF) consists of a set of configuration registers (CR).
Each CR names a CFU, which may be instantiated or held
in the C-Cache. Most of the AEPIC instructions use a
configuration register as an operand to refer to a (virtual)
CFU. The full details of the proposed instruction set can
be found in Talla’s thesis [20].

We shall now describe a little more detail about the
Multi-context Reconfigurable Logic Array (MRLA). The
structure of the MRLA is shown in Figure 2. Like a
typical Field Programmable Gate Array (FPGA), the
MRLA is a two dimensional structure that is composed of
programmable logic and interconnect blocks. We shall
use the term Programmable Element (PE) to refer to both
the programmable logic block as well as the
programmable interconnect block. The behavior of each
PE is determined by a configuration instruction. Just as is
the case for FPGA, any given logic design can be
emulated on the MRLA by supplying suitable
configuration instructions for all the programmable
elements of the array. CFUs are none other than sets of
logic designs implemented by means of configuration
instructions.

To allow for rapid and dynamic reconfiguration, the
MRLA permits multiple contexts to be present in the
logic area. In a standard FPGA each programmable

element can only take a single configuration instruction.
This implies that only one logic design can be resident on
the array until it is reconfigured by re-associating a new
set of configuration instructions. In the MRLA, each
programmable element can be associated with multiple
configuration instructions. This allows multiple logic
designs (CFUs) to be simultaneously resident on the
MRLA. Selecting the appropriate configuration
instruction for each of the programmable element can
activate the desired logic design.

Configuration instruction slots for each PE (called the
configuration memory) are stored in an ordered sequence
and all PEs have the same number (D) of configuration
instruction slots. MRLA takes an input called context_id
that can take values from 1 to D. A value of k to the
context_id input selects the kth configuration instruction
from the configuration memory as the instruction for each
PE. The kth configuration instruction is referred to as the
active configuration instruction for that PE.

The set of configuration instructions with identical
index in the configuration memory of a PE is referred to
as an execution context. The execution context that is
associated with currently active configuration is called the
active context. MRLA can be effectively viewed as an
array of FPGA, one array per execution context; and the
context_id serves as the index into this array. Selection of
an execution context makes all the CFUs of that context
available for instruction processing by subsequent
instructions.

In addition, AEPIC inherits several of the innovative
features of EPIC architectures such as MultiOp,
speculative and predicated execution, decoupled
branches, efficient boolean reductions, compiler
controlled cache behavior [16].

3.2 Programming AEPIC
In this subsection, we will describe how the CFUs can be
used by means of pseudo-code. Programming the CFUs
consists of two parts: the configuration and the usage.

The CFU configuration code is as follows:
Line Code
1 calloc cr, reg
2 malloc cr, cid
3 incr cr
4 inp cr, ar, lit
5 outp cr, ar, lit

The above code will allocate space and registers for a
configuration as well as load it in the C-cache and
MRLA. The calloc in Line 1 allocates adequate number
of blocks in the C-cache for the configuration located at
memory address pointed to by reg. It also associates
configuration register cr with the configuration. The
malloc instruction in line 2 allocates the required number
of slices on MRLA on context specified by literal cid for
the configuration associated with cr. The number of slices

required by the CFU is obtained from the information
stored in configuration cr. At line 3 the configuration data
associated with cr is transferred from C-cache to MRLA.
The instructions inp and outp (lines 4 and 5) associate
array registers files as input and output registers for the
cr. There can be several input and output register, with
the base given by ar and the count given by the literal lit.
Also several configurations can be associated with the
same register. This is because there can only be one
configuration call at a time and it is only during the input
and output of the computation implemented with the
configuration that this association takes meaning.

Each time that a CFU is activated, the following code
sequence is performed.

Line Code
1 /*transfer data to input registers */
2 setctx cid
3 exec cr, opid
4 wtc cr
5 /* transfer data out of output registers

*/
Before the call the necessary input data must be

transfered to the CFU input registers using standard
instructions such as register moves or memory loads. At
line 2, the context with the configuration to be executed is
set as the current context. This is done by the setctx
instruction. This instruction must be present only if the
required configuration is not in the current context. The
instruction in line 3 call the operation opid on the CFU
associated with cr. This effectively triggers the execution
of the CFU on the given input. The next instruction (wtc)
waits for the execution on the CFU to complete. It
effectively stalls the processor. Finally, the output from
the CFU’s computation is removed.

4. AEPIC SIMULATOR
The AEPIC simulator used for this study is based on the
cycle level simulator of the HPL-PD EPIC architecture
[16] that is distributed with the Trimaran ILP Compiler
infrastructure [21]. Though a paper design, HPL-PD has
significant influence on the definition of the Intel IA-64
architecture [14].

The infrastructure was re-engineered to accept the
AEPIC instruction set. The simulator generates run-time
information such as clock cycles taken for execution,
average number of operations executed per cycle, static
instruction counts, configuration register allocated
overheads, as well as detailed information about
execution profile on the adaptive component of AEPIC
such as time spent for data-path reconfiguration,
computation time (cycles) on MRLA, as well as the
effectiveness of configuration cache (C-Cache and C1,
the second level configuration cache).

The AEPIC simulator is composed of five key
modules (Figure 3). Each of these modules processes a

different subset of the AEPIC ISA. The AEPIC
Interpreter (which is essentially the original Trimaran
simulator shown in Figure 4) reads the AEPIC code and
processes the instructions in sequence as dictated by the
compiler generated Plan of Execution (POE). The
interpreter processes the non-memory related AEPIC
instructions from EPIC subset of AEPIC ISA. The Data
Cache Manager processes the non-configuration data
related memory operations. The Configuration Manager
processes the adaptive extension instructions. Among
these instructions, Configuration Cache Manager
processes those dealing with the configuration cache
hierarchy while Array Manager processes those that deal
with MRLA reconfiguration.

Figure 3. AEPIC Simulator Components

An important issue is how the application can be

optimized to exploit the AEPIC features. For this purpose
we need to identify the parts of an application that are
most suited to run on the MRLA. Although ideally the
compiler should do this automatically, we still do not
have good compiler algorithms for this automatic
partitioning. Therefore we did this partitioning manually.
Using runtime information from the EPIC simulator, we
identified the compute intensive parts of the application.
By considering the speedup gained by performing the
computation on the CFU, the estimated time to
reconfigure the MRLA, and the estimated time needed to
transfer input/output data to/from the CFU, we select
sections of the code to be performed in the CFU.

To obtain realistic estimations of the cycle time and
number of execution cycle, we used FPGA technology to
approximate the MRLA. The chosen parts of the
applications are implemented in Xilinx Vertex XCV1000
FPGA using a high-level hardware language Handel-C
[2]. We decided to use Handel-C instead of more efficient
hardware description language because of the ease of
converting C code to Handel-C. What is generally
involved is the insertion of parallel constructs to the C
code. An example of this conversion is shown in the
Appendix. Note that even though Handel-C has a very
well defined statement-based timing model that makes it

easy to calculate cycle count of execution, we still need
the FPGA to measure reconfiguration time.

Figure 4. EPIC Simulation

The final step is to add the AEPIC instructions into the

application to reconfigure data-paths and control the
CFU. The resulting AEPIC application is compiled and
ran with the same input. As the FPGA setup runs on
Microsoft Windows while Trimaran runs on Linux, we
use a remote FPGA server that offers RPC-like service to
the AEPIC simulator. The FPGA server will load and
execute the compiled Handel-C code and report back the
execution cycles to the AEPIC simulator. The whole
process is shown in Figure 5. This co-simulation
framework gives us a more realistic picture of the
AEPIC’s performance.

5. RESULTS
We used four benchmarks to evaluate the AEPIC
architecture. These four benchmarks consist of two
encryption algorithms, IDEA [15] and Pegwit, and two
audio decoders algorithms, G721 and ADPCM. The last
three benchmarks are from the MediaBench suite [17].

We used RC1000 development board from Celoxica
[3] with Xilinx Virtex XCV1000 FPGA [26] to simulate
the MRLA. The AEPIC core with 4 integer units and 2
load-store units was simulated on Pentium III processor.

5.1. Basic Speedups
The speedup obtained for each application is presented in
Table 1. This speedup was computed by assuming that the
EPIC main processor and the reconfiguration unit run at
the same frequency. Read another way, it tells us that an

AEPIC processor running at a lower frequency can
achieve the same performance of an EPIC processor
running at a higher frequency. In the Table, we also show
the number of FPGA gates used to implement the
application CFU. As can be seen, the CFUs are relatively
small. We therefore assume that the configuration can be
loaded in the cache and the CFU configured way ahead of
its usage.

Table 2. Number of Input and Output

Registers

Benchmark Input
Registers

Output
Registers

ADPCM Decoder 4 3
G721 Decoder 2 1
G721 Encoder 2 1
Idea Encrypt 2 1
Pegwit Encrypt 4 4

Table 2 shows the total number of input and output

registers needed for each benchmark. It should be noted
that with our current implementation of stalling the main
processor when the CFU executes ensures that the CFU is
the sole bus master should it be necessary to obtain data
from memory.

Figure 5. AEPIC Evaluation

Table 1. Performance of the benchmarks

 Benchmark EPIC
Cycles

AEPIC
Cycles

FPGA
Cycles

FPGA
Freq (Mhz)

AEPIC
Speedup

FPGA
Gates

 ADPCM Decoder 5,708,383 2,266,857 411,280 15 2.52 15,645
 G721 Decoder 323,269,902 122,676,715 8,528,970 20 2.64 18,531
 G721 Encoder 85,343,654 34,996,803 2,173,124 20 2.44 18,531
 Idea Encrypt 21,384,752 12,352,755 1,413,568 15 1.73 15,788
 Pegwit Encrypt 66,071,148 36,967,445 186,591 30 1.79 77,483

5.2. Performance trade-off between Core and
CFU frequencies
Using the simulation data, we performed further study by
assuming that the core processor runs at a higher
frequency than the reconfigurable unit. This is not an
unlikely situation if we project the speed difference
between the current generation of embedded processors
and FPGAs onto the AEPIC architecture. The key
question is then where is the break-even point, in other
words, at what kind of speed differentiates will it no
longer be useful to have a reconfigurable unit because the
main core processor is fast enough to handle the
computation. The simulator will report on the total
number of cycles the execution took, CyclesAEPIC that
assumes that the core and the reconfigurable component
are running at the same frequency. To adjust for the
difference in core and reconfigurable component, we re-
compute the executable cycles as follows. Let CyclesFPGA
be the component of CyclesAEPIC that is the estimated
number of cycles consumed by the reconfigurable
component. We obtain this from the FPGA
implementation of the computation core using Handel-C.
The same implementation, after placement and routing,
will also report the number of gates needed to implement
the logic as well as the clock frequency (fFPGA) with which
the circuit can be executed. From the execution logs of
the simulations, we used the following formula to
compute the AEPIC execution cycle count for a specific
main core processor frequency f.

(/)
(/ 1)

f AEPIC FPGA

FPGA FPGA

AEPIC FPGA FPGA

Cycles Cycles Cycles
Cycles f f

Cycles Cycles f f

= − +
×

= + × −

Table 3. AEPIC Speedup relative to Core

Frequencies

CPU
Freq

ADPCM
Decoder

G721
Decoder

G721
Encoder

Idea
Encrypt

Pegwit
Encrypt

60 1.63 2.31 2.17 1.29 1.78
120 1.11 1.96 1.86 0.96 1.76
180 0.84 1.69 1.63 0.77 1.74
240 0.68 1.49 1.45 0.64 1.73
360 0.49 1.21 1.19 0.48 1.69

After the above recalibration, we compute the

speedups for various core frequencies. The results are
shown in Table 3. They show that AEPIC is particularly
effective when the main core processor is running at a
low frequency.

5.3. Multiple, Smaller CFU
The clock frequencies we obtained after placement and
routing of the portion of the code identified for execution
in the reconfigurable part of the processor is typically
between 15 to 30 MHz. The realizable clock frequency is
determined by the complexity of the circuit that affects
the critical path of the circuit. Since the design of AEPIC
allows for a number of CFU slices to be dynamically
loaded, we experimented with splitting the code (and
hence the circuit) to be realized in the CFU into smaller
pieces. We need to recalibrate the counting of execution
cycles reported by the simulator. Using AEPIC simulator,
we counted the number of CFU calls and the number
AEPIC cycles. In our applications, the main core
processor will wait for the CFU to complete its operation
before proceeding. Therefore we can compute the number
of cycles spent by the main core processing in waiting for
the CFU to complete its work as follows:

of CFUs

/
CFUi

i i

i

Calls

CFU FPGA j
j

f CFU
i

TotalCycles f f Cycles

WaitCycles TotalCycles

 = ×

=

∑

∑

where f is the frequency of the main core,
iFPGAf is the

frequency of CFU slice i estimated using FPGA
technology, and

iCFUTotalCycles is the total number of

cycles executed by CFU i. This is the sum of all cycles
executed by CFU i for each call to it.

We split the code for the reconfigurable unit in both
audio decoder applications that was tested in first
experiments. The total number of gates in the split CFUs
is about the same as that for a single CFU. In fact, in
some cases, because of further circuit simplifications, it is
slightly lower than the single CFU case. The code for the
CFUs of the other benchmarks is too simple to be split.
For ADPCM the total number of CFU cycles is
121,228,705 for eight CFU. In Table 4 we show the
number of calls for every CFU and the attained
frequency.
The speedups obtained are presented in Table 5.

For the G721 benchmark the total number of CFU
cycles is 2,266,857 for three CFU. Table 6 presents the
number of calls for every CFU and its frequency. The
speedups for G721 are presented in Table 7.

Table 4. Splitting the CFU for ADPCM

Freq 56 60 120 35 27 37 120 60
Call 1,180,160 267,850

Table 5. ADPCM Speedup

Main CPU

Freq
AEPIC 1 CFU

Speedup
AEPIC 8 CFU

Speedup Improvement

60Mhz 2.31 2.43 5.17%
120Mhz 1.96 2.27 16.31%
180Mhz 1.69 2.12 25.12%
240Mhz 1.49 1.98 32.79%

Table 6. Splitting the CFU for G721

Freq 24 15 59
Call 147,520 116,240

Table 7. G721 Speedups

Main
CPU
Freq

AEPIC 1 CFU
Speedup

AEPIC 8 CFU
Speedup Improvement

60Mhz 1.63 1.62 -1%
120Mhz 1.11 1.26 14%
180Mhz 0.84 1.00 20%
240Mhz 0.68 0.85 26%

For both benchmarks, it shows that splitting the CFUs

resulted in smaller CFUs that can be realized with higher
frequencies. This extended the speedups afforded by
AEPIC by closing the gap between the core’s and the
CFU’s frequencies.

6. CONCLUSION
In this paper, we described a simulation environment and
provided evaluation for a fine-grain, dynamically
reconfigurable processor that consists of an EPIC core
tightly coupled with a reconfigurable unit. Evaluation
using four embedded benchmarks using FPGA
technology to stand in for the CFUs shows that AEPIC
shows particular potential for low frequency, and hence
low power, systems. Under such assumptions, we were
able to achieve a speedup of up to 2.43 times in
performance.

As an extension of the current work, we would like to
investigate how we can automatically identify the part of
the application that is of the correct granularity and that
can be executed efficiently on AEPIC. We would also
like to explore issues relating to structuring applications
so as to operate the CFUs in parallel with the main core.

7. ACKNOWLEDGMENT
This project is funded by A*STAR research project 012-
106-0046.

8. REFERENCES

[1] P. M. Athanas and H. F. Silverman. Processor
reconfiguration through instruction-set metamorphosis. IEEE
Computer, 26(3), 11-18, March 1993.

[2] Celoxica. DK1.1. http://www.celoxica.com/home.htm

[3] Celoxica. RC1000 Product Information Brochure.
http://www.celoxica.com/products/technical_papers/datasheets/
DATRHD002_0.pdf

[4] K. Compton and Scott Hauck. Configurable Computing: A
Survey of Systems and Software. Technical report,
Northwestern University, Dept. of ECE, 1999

[5] A. DeHon. Reconfigurable Architectures for General
Purpose Computing.PhD thesis, MIT AI Lab, September 1996.

[6] C. Ebeling, D.C. Cronquist, and P. Franklin, RaPiD-
Reconfigurable Pipelined Datapath, 6th Annual Workshop on
Field Programmable Logic and Applications, 1996.

[7] R. Enzler and M. Platzner, Dynamically Reconfiguration
Processors. Telematik, Zeitschrift des Telematik-Ingenieur-
Verbandes, 7(1), 6-11, 2001.

[8] G. Estrin. Organization of computer system – the fixed plus
variable structure computer. In Proceedings of the Western Joint
Computer Conference, pages 33-40, 1960.

[9] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich,
D. Sweely and D. Lopresti. Building and using a highly parallel
programmable logic array. IEEE Computer, 24(1), 81-89,
January 1991.

[10] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi,
R.R. Taylor, R. Laufer. PipeRench: A Coprocessor for
Streaming Multimedia Acceleration. Intemational Symposium
on Computer Architecture, pp. 38-49, 1999.

[11] J. Hammes et.al. Cameron: High-level Language
Compilation for Reconfigurable Systems. International
Conference on Parallel Architectures and Compilation
Techniques (PACT), 1999.

[12] S. Hauck. The Chimaera reconfigurable functional unit. In
Proc. of IEEE Symp. on FPGAs for Custom Computing
Machines, Napa Valley, California, 1997, pp. 87–96., 1997.

[13] J. R. Hauser and J. Wawrzynek, Garp – A MIPS processor
with reconfigurable coprocessor. Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing
Machines, pp. 24-33. April 16-18, 1997.

[14] Intel Inc. Itanium Architecture.
http://developer.intel.com/design/itanium/manuals/index.htm

[15] International Data Encryption Algorithm.
http://www.eskimo.com/~weidai/cryptlib.html.

[16] V. Kathail, M. Schlansker, and B. Rau. HPL PlayDoh
Architecture Specification Version. Technical Report HPL-93-
80, Hewlett Packard Laboratories, Technical Publication
Department, 1501 Page Mill Road, Palo Alto, CA 94304, 1994.

[17] C. Lee, M. Potkonjak, W.H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communicatons Systems. . In Proceedings of
30th Annual IEEE/ACM Symposium on Microarchitecture
(MICRO-30), pp. 330--335, Nov. 1997.

[18] R. Razdan and M. D. Smith. A high-performance
microarchitecture with hardware-programmed functional units.
In Proceedings of 27th Annual IEEE/ACM Symposium on
Microarchitecture (MICRO-27), pp.172--180, Nov. 1994.

[19] M. Schlansker, B. R. Rau, S. Mahlke, V. Kathail, R.
Johnson, S. Anik and S. G. Abraham. Achieving High Levels of
Instruction-Level Parallelism with Reduced Hardware
Complexity. HPL Technical Report HPL-96-120. Hewlett-
Packard Laboratories, February 1997.

[20] S. Talla. Adaptive Explicitly Parallel Instruction
Computing. PhD thesis, New York University, 2000.

[21] Trimaran ILP Research Infrastructure, 1998.
http://www.trimaran.org.

[22] S. M. Trimberger. Field Programmable Gate Array
Technology, Kluwer Academic Publishers, 1994.

[23] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S.
Amarasinghe, and A. Agarwal. Baring it All to Software: Raw
Machines. IEEE Computer, pages 86--93, September 1997.

[24] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati
and P. Boucard. Programmable active memories:
Reconfigurable systems come of age. IEEE Transactions on
VLSI Systems, 4(1): 56-59, 1996.

[25] Xilinix Inc., San Jose, C.A. The Programmable Logic Data
Book, 1994.

[26] Xilinx Inc., San Jose, C.A. Virtex™ Data Sheet.
http://www.xilinx.com/partinfo/ds003-1.pdf

Appendix – Example of Conversion of a
procedure from application g721

Original C code
static int fmult(int an, int srn)
{ short anmag, anexp, anmant;
 short wanexp, wanmag, wanmant;
 short retval;

 anmag = (an > 0) ? an : ((-an) & 0x1FFF);
 anexp = quan15(anmag) - 6;
 anmant = (anmag == 0) ? 32 :
 (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
 wanexp = anexp + ((srn >> 6) & 0xF) - 13;
 wanmant = (anmant * (srn & 077) + 0x30) >> 4;
 retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
 (wanmant >> -wanexp);
 return (((an ^ srn) < 0) ? -retval : retval);
}

Handel-C equivalent
/* Handel-C requires explicit specification of bit width */
signed int 32 fmult(signed int 32 an, signed int 32 srn) {
signed int 32 rettmp, temp2, anmag,retval,wanmant,anmant;
signed int 6 wanexp,temp1, anexp;
signed int 5 retq;
unsigned int 6 shift;

anmag = (an > 0) ? an : ((-an) & 0x1FFF);
/* No procedure call in Handel-C – this is a macro call */
retq = quan15(anmag);
/* Concantenates 0 and retq to the length of 6 bits */
anexp = (signed int 6)(0@retq) - 6;
/* Statements 1 and 2 are to be executed in parallel */
par {
 if (anmag == 0) anmant = 32; /* 1 */
 else
 par { /* Statements 1.1 and 1.2 are executed in parallel */
 if (anexp >= 0) /* 1.1 */
 anmant = anmag >> ((unsigned int 6)(anexp)) ;
 if (anexp < 0) /* 1.2 */
 anmant = anmag << ((unsigned int 6)(-anexp));
 }

 wanexp = anexp + /* 2 */
 (signed int 6)(((srn >> 6) & 0xF) <- 6) - 13; /* take LSB 6 bits */
 }
 wanmant = (anmant * (srn & 077) + 0x30) >> 4;
 if (wanexp < 0)
 retval = wanmant >> ((unsigned int 6)(-wanexp));
 else
 retval = (wanmant << ((unsigned int 6)(wanexp))) & 0x7fff;
 return ((an^srn) < 0)?-retval:retval;
}

