
tmPVM - Task Migratable PVM

C. P. Tan, W. F. Wong, and C. K. Yuen

ftanchung|wongwf|yuenckg@comp.nus.edu.sg

School of Computing

National University of Singapore

Lower Kent Ridge Road

Singapore 119260

Abstract

In this paper we introduce an implementation of PVM that exploit the homogeneity
of a MPP network with user-level task migration. The target machine is the Fujitsu
AP3000. It is basically a network of Sun workstations connected by a high-speed network.
Furthermore, we explore the possibility of allowing the PVM host con�guration to expand
dynamically so as to include idle nodes into the virtual machine. The result is tmPVM,
which allows the virtual machine to redistribute workload dynamically with low overhead.

1 Introduction

Parallel Virtual Machine (PVM) constructs a single large parallel platform using a collection
of heterogeneous computers [1, 2] This allows large computational problems to be solved more
cost e�ectively through the aggregated processing power and memory of many computers. The
portability and exibility of PVM allow the use of existing computer hardware to face the
challenge of larger problem size.

The Fujitsu AP3000 is a Massively Parallel Processors (MPP) machine comprises of com-
plete workstation nodes and a high-speed torus backplane [3, 4]. Each computing node is
installed with a fully-functional Solaris operating system. The nodes can be used as standalone
workstations or collectively as a cluster bene�ting from existing distributed applications and
the high-speed interconnection network.

The nodes are grouped into one or more partitions to support user applications in the
AP3000 machine [4]. It is not uncommon for user applications to have parallel tasks which
have di�erent amount of computation work. Consequently, some nodes in the partition are
usually idle while waiting for the slower processes (in other nodes). Therefore, we implemented
a task-migration tool for PVM on the AP3000 machine to improve the utilization of the cluster
as well as speed up certain applications.

1.1 Motivations

Each AP3000 node can be reserved for exclusive use or shared among multiple users [4]. The
performance of a parallel application is a�ected by those tasks of it that run on overloaded nodes.

To alleviate the situation, we proposed and implemented a mechanism which can transfer load
from one node to another to achieve dynamic load balancing.

The AP3000 machine provides a system-single image environment [4] through a shared �le
system. This allows a process to start and communicate without knowledge of its physical
location. The shared �le system presents a medium to preserve the process context for subse-
quent actions. The remote node can be instructed to restart the frozen process given the right
environment. Since nodes in the AP3000 are homogeneous, binary compatibility is ensured.

2 Related Work

2.1 Process migration

Process migration is the act of transferring a process between two machines during its execution
[5]. The transferred state includes the process address space, execution point (register contents),
communication channels (open �les) and other operating system dependent state. During
migration, two instances of the migrating process exist: the source instance is the original
process, and the destination instance is the new process created on the remote node. After the
migration, the remote instance becomes a migrated process.

Migration can be classi�ed according to the level at which it is implemented [5]. User level
migrations are generally easier to implement but su�ers from reduced performance although
they are usually used for load distribution. Application level migrations have poor reusability as
they requires duplicating most mechanism for each subsequent application, frequently involving
e�ort beyond relinking the migration part with the application code. Lower-level migration is
more complex to implement but has better performance, transparency and reusability.

2.2 PVM with task migration

SNOW MpPVM supports PVM process migration the migration points only [6, 7]. A pre-
compiler modify the PVM source code to support the migration mechanism while the user may
also select the migration points manually to suit their applications. The migration operations
are performed at a high level by executing a set of programming language statements so that
a process can migrate without any architectural restriction.

NSRC MPVM migrate a process by start a new PVM process with checkpoint data prepared
by the old process itself [8]. Before migration, a process needs to freeze communication, handle
pending messages, and pack checkpoint data. The new process will then unpack the data and
resume the computation. It is implemented by a set of library over PVM. One problem of
MPVM is the loss of messages during the migration. The MPVM users are also required to
add the migration calls into the application codes.

DynamicPVM is an enhanced PVM with a PVM task migration facility using an extended
version of Condor [9, 10]. Checkpoints are created and stored into a shared �le system. For co-
operating tasks, checkpoint requested while a task is in critical section will be postponed. The
task migration protocol guarantees transparent suspension and resumption and an extended
routing mechanism ensures that no message is lost. The PVM daemon (which the task is
started) will reroute messages to the restarted PVM task at another node.

MIST MMPVM is a multi-user PVM system which is capable of transparent process migra-
tion and application checkpointing/restart [11, 12, 13]. Its migration protocol assumes that all

2

binaries are available on a global �le system. Each node has a single PVM daemon which main-
tain global knowledge about all PVM tasks not restricted to any particular user. Its protocol
preserves message ordering by ushing all messages before the actual checkpoints are created.

Our migration mechanism includes the following features:

1. the process state is created directly from the /proc �le system instead of relying on core
dumps;

2. the process state is saved only at migration instead of checkpointing;

3. other than linking with the modi�ed PVM library, the user can use all existing system
libraries as system call wrappers are not required;

4. dynamically linked libraries are supported;

5. �le I/Os are handled through runtime rewriting of the I/O routines to capture information
for restart purposes;

The above distinguish our approach from that of MMPVM or DynamicPVM.

3 tmPVM

Our objective is to implement a PVM task migration tool to study the potential bene�ts of
run-time load redistribution for a cluster of homogeneous nodes. Homogenety means that all
the nodes in the PVM virtual machine (or at least those participating in the migration exercise)
must be binary compatiable with one another. Our focus is the migration of CPU-bound PVM
tasks which are most likely to bene�t by being moved from heavily-loaded nodes to lightly-
loaded nodes.

The implementation started with an user-level tool to migrate non-interacting Solaris pro-
cesses across UltraSPARC nodes. For these processes, we only need to maintain their UNIX
process context and associated I/O descriptors. An extended version of the tool was then
implemented to capture both the UNIX process context and PVM task context in the PVM
environment. Complications from inter-task communications result in some design decisions
which imposes some limitations.

For a static group of PVM hosts, load balancing may be achieved by ensuring that load
on each participating node are relatively similar. Consequently, the amount of waiting time
between the faster workers and the slower workers will be reduced. We propose a scheme
to exploit the task migration mechanism by allowing the set of PVM hosts to expand when
some nodes are consistently heavily overloaded. Unlike the static virtual machine, the initial
load balancing strategy here is to transfer the loads from the heavily overloaded nodes to the
available slack nodes. After which, the previous strategy of spreading the load is exercised
where appropriate. The migration process is automated by binding the load monitor modules
with a centralized load balancer. Depending on whether the virtual machine is dynamic or
static, di�erent load balancing strategies may be adopted.

3

4 Implementation Issues

4.1 Process freeze and remote restart

A process is de�ned as an operating system entity that runs a program and provides an execution
environment for it [14]. We implemented a mechanism to store the process state and use the
information to restart the process at a remote node. The complete migration protocol for
tmPVM tasks is illustrated in Figure 1.

ask PVMd
to update
the directory

retain all message
for the process

��
��
��

��
��
��

retain all message
for the process

���
���
���

���
���
���

notify the other
PVMd

register as
a new PVM task

���
���
���
���

���
���
���
���

send shutdown
message

���
���
���
���

���
���
���
���

forward all
packets in its
procession

forward all
packets in its
procession

update the
directory

forward all
packets in its
procession

update the
directory

Source
PVM daemon

Migrating Process
(Destination Instance)

Destination
PVM daemon

Migrating Process
(Source Instance)

T
im

e

prepare the
frozen state

loop mxfer()
until shutdown

spawn memory
segment extractor

with new arguments
start the executable

��
��
��

��
��
��

��
��
��

��
��
��

�����������
�����������
�����������
�����������

��
��
��

��
��
��

����������
����������
����������
����������
����������

����������
����������
����������
����������
���������� ���

���
���

���
���
���

������������
������������
������������
������������

������������
������������
������������
������������

����������
����������
����������

����������
����������
����������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

����������
����������
����������

����������
����������
����������

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

����������
����������
����������

����������
����������
����������

��
��
��
��

��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

send SIGUSR2

shutdown

LEGENDS Task Migration Events

Event Triggers

Figure 1: Process migration protocol

Figure 2 illustrates the migration process. The process state capture process is fairly straight
forward. First, the process installs a signal handler during its startup. When the process
receives a (SIGUSR2) signal, the signal handler will spawn an external agent to extract memory
segments of itself from the /proc �le system. This mechanism di�ers from that of the Condor
checkpoint system [15] which relies on core dumps.

The frozen process state includes all the memory segments that are attached during the
point of migration. For the remote restart, the process is started using the same binary with
additional arguments that indicate where to retrieve the frozen process state. The restarted
process retrieves and loads all relevant memory segments. Once all the segments are installed,
the process will continue the execution at the remote site from the point of interrupt using the
longjmp/setjmp protocol.

4

source instance
invoke the memory
segment extractor

1.

2.

the shared file system

SEG extracts the load segments
from the source instance onto

PVM TASK
EXECUTABLE

3. the original PVM
executable is started
with new arguments

4. load segments belong
to the source instance
are re-mapped in the
destination instance

source
instance

destination
instance

SIGUSR2
Delivered

SEG

SEGMENT

Figure 2: Unix Process Migration

Upon initialization, the open and close system routines are dynamically rewritten so that
any calls to them are noted. This is necessary because one important piece of information,
namely the �le names, are not kept as part of the �le descriptor data structure and subsequently
after �les are opened, are unavailable. During the process migration, the states of all opened �le
descriptors are captured. The �le descriptors are restored by reopening the corresponding �les
with appropriate �le mode relative to the state at the point of migration. Thus the restoration
of �le I/O is transparent to the user. This process assumes that the same �le is available via the
same path from any node within the system. This is possible because of NFS on the AP3000.
This approach di�ers from that of MMPVM or Condor which requires the user to use their
version of the system I/O libraries which have the necessary wrapper. Users can therefore make
use of the latest version of the system libraries.

Each PVM task has two independent states - as an UNIX process (as described above)
and in relation to the PVM application [13]. The UNIX process has a well-de�ned context
which comprises of all the information needed to describe the process [14]. As part of a PVM
application, the state of task includes its task ID and the message sent from/to that task. To
implement the PVM task migration, all state information and messages should be captured,
transferred and reconstructed.

Our approach is to make use of TID alias directory by supporting only the indirect routing
for inter-task communication. This allows us to retain the encoding of the location information
found in the original PVM TID format. The high-speed back-plane allows the directory update
to be performed readily. Any message for the migrating task will be detained by the PVM
daemon. The PVM daemon will then ush the detained message when the task has restarted.
For routing of messages to migrated PVM tasks, the alias directory will be consulted so as to
obtain the TID of the current instance.

5

4.2 Load Balancing

Load information is collected to implement a high level policy (see Figure 3) [5]. The decision
to select a process for migration is based on the information gathered from the local and remote
nodes.

Distributed
Scheduling

information
dissemination

Migration

Load
Information

Management

load
information

from kernel statistics factility
gather local load information

to remote nodes

local node

Figure 3: Load information management module

A load monitor module is spawned on each node to collect local load information (see
Figure 4). In tmPVM, a centralized resource manager gathers and maintains load information
for each partipating node.

The system instrumentation gathers and maintains load information for each machine (or
each process). The processor load is represented by one or multiple statistics. Statistics of inter-
est include CPU utilization, amount of available physical memory, amount of paging activites
as well as the number of active processes.

For process migration, the frequency of load information gathering should be inversely
proportional to the migration cost [5]. Otherwise, the monitor of the system statistics and
process progress may introduce too much overheads. Our load monitor module samples and
sends load statistics to the resource manager at an interval of 2 seconds but otherwise it is
asleep. Therefore, the additional overhead is minimal. As migration is usually applied to
certain processes, it is also necessary to maintain a list of candidate processes within the node.

In the basic PVM system without migration capability, load balancing may be achieved
with process creation based on the collected load information from the participating nodes.
The original PVM creates processes in a round-robin fashion. Using the information provided
by the load monitor modules, the schedule can be sensitive to the load on each node. By
dispatching of new PVM tasks to the idle nodes in a greedy fashion, we are more likely to do
better than the simple round-robin policy.

Once augmented with the process migration mechanism, we can do even better than the
above. Through careful decision of which process to migrate, it is possible to achieve a speed
up over the greedy load sensitive, task dispatch scheduling. We can either try to balance the
workload at each node, or acquire idle nodes to relieve the heavily loaded nodes. In both cases,
the overall execution time of the parallel application will experience a speedup as long as the
cost for migration is relatively small compared to the life span of the process.

The option of process migration is exercised when there is a serious disparity among the load
of the participating nodes. Once the decision is committed, the load monitors at the selected

6

Node 0

Load Information

Migration ProtocolResource Manager

PVM daemon

Load Monitor

Node i Node j
overloaded node least loaded node

RM

LM

PVMd

PVMd PVMd

LM LM

PVMd

LM
RM

Figure 4: tmPVM virtual machine con�guration

hosts are responsible to execute the process migration.
At the user-level, the available statistics are limited. Most statistics are gathered using the

kstat facility of the Solaris operating system.
The following system statistics are captured:

� average number of process using the CPU in the last second;

� free physical memory available;

� probability of thrashing;

� number of migratable PVM tasks.

The cost of statistics gathering is relatively low as the load monitor module can retrieve
the relevant data by refering to the appropriate symbols. Within the load monitor module, a
thread is created to sample the data at �xed interval of one second. The statistics are averaged
over a set of samples to reduce noises.

To crater for the growth of Unix process space over time, we decide to monitor the amount
of available physical memory. When the available physical memory drops below some preset
level, the load monitor module will warn the resource manager and avoid sending new PVM
tasks to the node.

The probablity of thrashing is tied to the amount of page swapping activities. When there
are many pages being swapped, the node may not have su�cient physical memory to support
all its processes.

7

4.3 Modi�cations to Public Domain PVM

We modi�ed the initialization and termination of PVM tasks. PVM tasks are linked with
additional libraries and invoke an initialization routine during their startup. In this routine,
the signal handler is installed, control structures are created and the local PVM daemon and
load monitor module is informed of the existence of a new and migratable PVM task. The load
monitor module will also be noti�ed when the corresponding task terminates.

tmPVM can utilize the input from the resource manager to decide the target host when new
tasks are spawned through pvm spawn() calls. It can also use it for dynamic load balancing
through the exercise of process migration.

Currently, tmPVM only supports indirect message routing. The TID alias directory is
implemented as two separate tables on each PVM daemons. The first TID of a PVM task
is considered as its unique identi�er and TID of migrated instances are treated as aliases.
Thus, application programs can assume that the task IDs involved are not modi�ed during the
execution time. For a migrated PVM task, the �rst table will map its current TID into its
first TID while the second table will provide the TID of the latest instance.

4.4 Extensions to the Basic Migration Tool

We started with a migration tool for isolated Solaris processes on the UltraSPARC workstation
node. To extend it to the PVM environment, we have to take care of messages on transit
during the migration. Messages should not be lost since they are the synchronisation tools in
the message-passing model.

The basic migration tool will shutdown the source instance once the memory segments are
captured. If the PVM task is shutdown abruptly, message in transit may be lost due to broken
sockets. Thus, the source instance does not terminate until the destination instance broadcast
its presence in the tmPVM virtual machine. Between the point of migration to the termination,
the source instance retains messages and forwards them to the destination instance.

For the basic migration tool, it is possible to have multiple destination instances of the
process. Each instance restart the execution from the point of migration. In the tmPVM
environment, however, this is not allowed as the restarted instance may inuence other PVM
tasks through inter-task communication.

By forwarding and disallowing multiple restart instances, tmPVM ensures that there is no
message loss during task migration. However, as there may be messages forwarded by the source
instance after the activation of the destination instance, message order during the migration
cannot be guaranteed.

4.5 Abstract Implementation

Our mechanism does not require the replacement of any system-level libraries. This provides
more exibility for the users. Implemented at the user-level, the mechanism is abstracted
from the underlying system-level libraries. On the other hand, checkpointing systems (such as
Condor [15]) require the user to recompile the modi�ed system libraries and relink the PVM
application whenever the system libraries have changed. Furthermore, in systems supporting
dynamic linking, system routines are allowed to supersede one another. For example, the Solaris
thread library rede�nes all the basic I/O routines of the libc library.

In our approach, the association between the application and the system-level libraries is
captured at the point of migration. As long as the system libraries are not modi�ed during

8

the migration, the association remains valid. The mechanism works for both memory segments
mapped from the static and dynamic system libraries.

We feel that this level of abstraction for the migration tool is important for the user. If the
migration tool is tightly coupled with the lower level system libraries, the usage of the user-
level migration tool may require further support from the system administrators for example
in managing the dynamic link paths.

4.6 Limitations

Our decision to implement the mechanismat the user level introduces several limitations. These
limitations are also present in other process migration and checkpointing systems.

The process freeze facility assumes relevant directories are mounted identically across all
the participating nodes. For instance, the scratch pad in the $PVM ROOT/TM directory must
be accessible on all of the nodes. Some debuggers may not work with the migrated processes
since there are additional low level codes which bring in the frozen process state of the source
instance. The current mechanism does not honours timer routines. Also, multithreading is not
supported.

The scheduler which is implemented in the resource manager supports only one task mi-
gration at any one time. It also assumes that the user has su�cient disk space to store the
segment �les on the scratch pad for the subsequent subsequent process to restart. All load
monitor modules are assumed to be active till the shutdown of the tmPVM virtual machine.

tmPVM is currently available for clusters of UltraSPARC workstation on the Fujitsu AP3000
machine. User are required to include a call to TCP TM init() before any statements. The
routine will setup the necessary mechanism, data structures and notifcaition to the load monitor
modules. The current implementation does not support direct message routing in the public
domain PVM.

5 Performance Evaluation

The evaluation of tmPVM was conducted on the Fujitsu AP3000 at the National University of
Singapore. The machine has a total of 32 143-MHz UltraSPARC nodes which has a total of
256 MB of physical memory each. The nodes are connected by a 200MB/s backplane known as
the AP-Net. The backplane is a two-dimensional torus-network which guarantees reliable and
in-order message transfers. The Public Domain PVM (or PD PVM) used refers to the version
3.3.11 distribution.

5.1 Overhead of Basic Communication

The communication overhead is measured by using the ping-pong program against some number
of migrated tasks in the tmPVM virtual machine. For this purpose, we modify the nntime
program in the Public Domain PVM distribution to improve the timing acccuracy. To conform
with the limitations of tmPVM, the PvmDirectRoute option was also disabled.

Table 1 suggests that our implementation impose a penalty of about 7.7% for inter-task
communication over the original version even when there is no task migration. We attribute
this overhead to the additional codes in the modifed PVM daemons.

The TID directory is active when at least one PVM task has migrated and remain active.
The directory is consulted for the routing of all messages. A maximum cost of 12.2% and 18.0%

9

message PD PVM tmPVM
size (Indirect) with # Migrated Process

(in bytes) 0 5 10

0 2515 2524 (0.4%) 2666 (6.0%) 2776 (10.4%)
80 2736 2904 (6.1%) 3028 (10.7%) 3228 (18.0%)
800 2904 3129 (7.7%) 3258 (12.2%) 3381 (16.4%)
8000 5941 6048 (1.8%) 6137 (3.3%) 6273 (5.6%)
80000 48141 48348 (0.4%) 49612 (3.1%) 49814 (3.5%)
800000 466856 469541 (0.6%) 484688 (3.8%) 486051 (4.1%)

Table 1: Overhead of Basic Communication (in microsec)

0

5

10

15

20

25

1 10 100 1000 10000 100000 1e+06

S
lo

w
do

w
n

in
 R

ou
nd

-t
rip

 T
im

e
(in

 \%
)

Message Size (in bytes) {logscale}

tmPVM - 0 migrated task
tmPVM - 5 migrated tasks

tmPVM - 10 migrated tasks

Figure 5: Overhead in Basic Communication (Log Scale)

for 5 and 10 migrated task entries respectively. As the number of active migrated PVM tasks in
the tmPVM virtual machine increases, so too will the communication overhead. Thus, we should
only exercise the process migration option when the bene�t from the improved communication
and reduced CPU contention outweight this penalty.

5.2 Migration Cost

The migration cost is essentially the sum of the obtrusiveness cost and the cost of restarting
the process[12]. Originally, the obtrusiveness measures how fast a workstation owner can regain
exclusive access to the local machine [16, 12]. In our context, it represents how fast the frozen
process state is available on the shared �le system. We obtain a lower bound of the migration
cost by monitoring the process migration within a single node.

While ideally the time di�erence should be determined by executing the process migration
across two di�erent nodes, this measurement is complicated by the problem of clock synchro-
nisation and the associated message propogation delays. The result denotes the lower bound
as the network �le transfer and additional messages are ignored. Other overheads have to be
considered for practical situations.

10

A PVM task which obtain memory reserved for a two-dimensional array of double data
item of a speci�c size is `migrated' to the same node. The aim of the experiment is to obtain
the cost of freezing and unfreezing a process of particular sizes within the same machine.

Matrix Frozen Obtrusiveness Restart Time Minimum Migration
Size Process Size Cost (in sec) (in sec) Cost (in sec)

(# double) (in KB) (a) (b) (c) = (a) + (b)

20 x 20 1680 0.509 0.131 0.640
40 x 40 1712 0.546 0.131 0.677
80 x 80 1776 0.582 0.123 0.705
100 x 100 1840 0.627 0.132 0.759

200 x 200 2304 1.042 0.134 1.176
300 x 300 3088 1.662 0.135 1.797
400 x 400 4176 2.747 0.147 2.894
500 x 500 5584 4.024 0.137 4.161
600 x 600 7312 5.397 0.135 5.532
700 x 700 9344 6.934 0.139 7.073
800 x 800 11680 8.886 0.145 9.031
900 x 900 14336 11.121 0.168 11.289
1000 x 1000 17312 13.638 0.191 13.829

Table 2: Migration cost vs Process state size

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18

O
bt

ru
si

ve
 C

os
t (

in
 s

ec
on

d)

Frozen Process Size (in megabytes)

Figure 6: Migration cost vs Process state size

Table 2 summarizes the average of the best 10 observations for each test con�guration.
The result is an important factor for the decision whether a suggested process migration will
improve the overall execution time of the application. Pro�les of the active tmPVM task may
be considered together with the migration cost during decision making.

The data suggests that process may be migrated in less than 1 second. The graph also
suggest that the cost is approximately linear with respect to the size of frozen process state.
The restart of the process involved the mapping of the memory addresses to the segments in
the frozen process state. The cost of this mapping operation is relatively stable at less than 0.2
second.

11

5.3 CPU-Bound Tasks

We constructed an \embarassingly parallel" application to evaluate the e�ectiveness of migra-
tion using 5 U-143 nodes. With the information supplied by the load monitor modules, the
resource manager can use the load information to dispatch the worker tasks to the nodes. Once
the execution has started, the tmPVM virtual machine can apply process migration to redis-
tribute the workload. For this expertiment, we did not allow the virtual machine to expand
when there are overloaded nodes.

The test application consists of a group of worker synchronized by the master PVM task.
Each worker has given a work that runs for approximately 600 seconds. The execution time of
the application is dominated by that of the slowest worker. Table 3 summarizes the results ob-
tained from 20 samples for each con�guration. The best observed timings are highlighted. The
theoretical optimal execution time is computed assuming that task migration has no overhead.

The results compare the execution time with and without the resource manager. With the
resource manager, the tmPVM virtual machine bene�ts from load-sensitive task dispatch and
process migration capabilty. For the case without the resource manager, the new PVM tasks
are dispatched to the test nodes by the default round-robin policy [1].

No. Execution Time with tmPVM (in sec)
of without RM/migration with RM/migration

worker average min max average min % speedup max
(a) (b) [(a)-(b)] � (a)

5 618.5 616.4 624.3 654.5 631.4 (-2.4%) 694.0

6 1225.2 1219.0 1233.6 997.7 994.0 (18.5%) 1000.3
7 1225.2 1221.3 1228.1 999.5 996.4 (18.4%) 1004.9
8 1226.3 1221.5 1232.8 1213.4 1161.3 (4.9%) 1304.1
9 1226.7 1223.1 1239.2 1250.5 1246.5 (-1.9%) 1258.1
10 1226.0 1223.3 1229.9 1265.3 1253.2 (-2.4%) 1279.6

11 1829.9 1825.4 1836.5 1522.2 1515.1 (17.0%) 1528.6
12 1838.0 1827.0 1850.0 1591.8 1571.0 (14.0%) 1617.2
13 1833.2 1828.8 1837.2 1763.3 1733.9 (5.2%) 1809.8
14 1837.1 1829.5 1850.5 1805.6 1770.5 (3.2%) 1875.3
15 1835.7 1828.7 1849.5 1884.5 1876.2 (-2.6%) 1897.8

16 2435.2 2430.7 2440.0 2070.6 2055.0 (15.5%) 2096.1
17 2437.7 2430.8 2441.8 2209.4 2188.9 (10.0%) 2245.8
18 2468.9 2435.7 2575.5 2337.0 2310.5 (5.1%) 2402.0
19 2445.2 2435.0 2458.4 2511.0 2413.2 (0.9%) 2650.9
20 2450.4 2437.6 2490.8 2516.6 2496.5 (-2.4%) 2568.5

21 3044.0 3039.1 3058.4 2701.1 2683.1 (11.7%) 2711.7

Table 3: Performance of CPU-bound PVM tasks in tmPVM

From the results, the completion time for the tmPVM applications augmented by resource
manager are generally shorter. But, the collection and dissemination of load statistics by
the load monitor modules introduces overhead of not exceeding 2.5% of the total execution
time. When tmPVM's task migration mechanism is employed appropriately, the application
performance may be improved upto 18.4%.

The results also suggest that the variance in execution time of application with resource
manager is larger. Other than the noise introduced by the load monitor modules, the variance

12

0

500

1000

1500

2000

2500

3000

3500

4 6 8 10 12 14 16 18 20 22

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Number of processes

with RM/migration
without RM/migration

Figure 7: Performance of CPU-bound PVM tasks in tmPVM

can be attributed to the quality of the decision to do process migration. If the opportunity of
load redistribution is identi�ed promptly, the application may �nish the execution earlier. In
fact, the decision for this particular application is relatively simple since all worker are given
the same amount of work. Thus, the slower worker tasks are among those which are dispatched
to the overloaded nodes and redistribution of workload is only possible after the faster task
has completed.

5.4 Dynamic Recon�gurable PVM

This set of experiments is essentially the same as the previous one. However, in this case, we
allow the virtual machine to dynamically expand when there are some consistently overloaded
nodes. Probes are sent on a random interval to search for idle nodes in the cluster. When the
resource manager decides that load redistribution is unlikely to improve the execution time,
it can co-opt new hosts into the virtual machine. These chosen new hosts are those with low
loads and will be targets of subsequent process migration.

We compared the execution time of heavily overloaded nodes. In the experiment, twenty
workers were spawned on an initial con�guration of two PVM hosts. Each worker was given
a arti�cial workload of approximately 200 seconds. The comparison is based on the execution
time of static and dynamic tmPVM virtual machine. For the static virtual machine, we used
20 samples of the execution time to obtain the results shown in Table 4. The samples for the
dynamic virtual machine is plotted in Figure 8.

Execution Time (in seconds)
Con�guration Average Minimum Maximum

static 2057.0 � 51.2 2032.2 2261.5
dynamic 1376.2 � 261.5 867.1 1991.6

Table 4: Execution Time On Heavily Overloaded Nodes

13

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Number of hosts (inital set of 2 hosts)

static
dynamic

Figure 8: Execution Time On Heavily Overloaded Nodes

The results suggest that by coupling the migration mechanismwith the exibility of allowing
the virtual machine to expand, the user application can adjust its execution environment. This
is useful for users who are unable to maintain exclusive controls of computing resources.

6 Conclusion

We have demonstrated the feasibility of providing process migration at user-level for PVM
applications. Starting from a mechanism that migrate Solaris process during its run-time, we
extend the tool to work within the PVM. This remove one of the main advantages of PVM
which is heterogeneity. However, it is not clear if process migration on a heterogeneous network
is generally achievable and if the bene�ts derived are worth the added complexity.

Using the information gathered by load monitor modules, tmPVM can migrate processes
away from heavily loaded nodes. It is also possible to allow the virtual machine to expand its
con�guration temporarily so that load can be redistributed more e�ectively. Although the work
described was done on the Fujitsu AP3000 MPP, we see no problem in porting it to a network
of Sun-Solaris workstations. Indeed we believe it is also quite feasible to port the migration
mechanism to other avors of Unix.

References

[1] A. Geist, A. Beguelin, J. Dongarra, W.Jiang, R.Mancheck and V.Sunderam, PVM : Parallel

Virtual Machine - A Users Guide and Tutorial for Network Parallel Computing, MIT Press,
1994,

[2] V. Sunderam, \PVM: a framework for parallel distributed computing," Concurrency, Practice

and Experience, vol 2 no 4, pp 315-339, December 1990, http://www.netlib.org/ncwn/pvmsystem.ps

[3] H. Ishihata, M. Takahashi, and H. Sato, \Hardware of AP3000 Scalar Parallel Servers," Fujitsu

Scienti�c & Technical Journal, vol 33 pp 24{30, June 1997.

[4] H. Oyake, Y. Iguchi, and T. Yamane, \Operating System of AP3000 Series Scalar-Type Parallel
Servers," Fujitsu Scienti�c & Technical Journal, vol 33 pp 31{38, June 1997.

14

[5] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S.N. Zhou, Process Migration Survey,
The Open Group Research Institute, vol 5, March 1997.

[6] K. Chanchio, and X.S. He, \E�cient Process Migration for Parallel Processing on Non-Dedicated
Networks of Workstations," Institute for Computer Applications in Science and Engineering Tech-

nical Report TR-96-74, December 1996.

[7] K. Chanchio, and X.S. He, \MpPVM : A Software System for Non-Dedicated Heterogeneous
Computing," Proceedings of the International Conference on Parallel Processing, August 1996.

[8] J.J. Song, H.K. Choo, and K.M. Lee, \Application-level load migration and its implementation
on top of PVM," Concurrency, Practice and Experience, vol 9 no 1, pp 1-19, January 1997.

[9] L. Dikken, DynamicPVM : Task Migration in PVM, November 1993.

[10] L. Dikken, F. Linden, J. Vesseur, and P. Sloot, \DynamicPVM : Dynamic load balancing on
parallel systems," Lecture Notes in Computer Science, vol 797, pp 273-277, 1994.

[11] J. Casas, R. Konuru, S. Otto, R. Prouty, and J. Walpole, \Adaptive load migration systems for
PVM," Proceedings of Supercomputing '94, pp 390-399, November 1994.

[12] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole, \MPVM : A Migration
Transparent Version of PVM," Computing Systems, vol 8 no 2, pp 171-216, Spring 1995.

[13] J. Casas, D. Clark, P. Galbiati, R. Konuru, S. Otto, R. Prouty, and J. Walpole, MIST : PVM

with Transparent Migration and Checkpointing, ACM, 1993.

[14] U. Vahalia, UNIX Internals - The New Frontiers, Prentice Hall, 1996.

[15] A. Bricker, M. Litzkow, and M. Livny, Condor Technical Summary, Computer Sciences Depart-
ment, University of Wisconsin-Madison, October 1991.

[16] M. Litzkow, and M. Livny, \Experience With The Condor Distributed Batch System," Second

IEEE Workshop on Experimental Distributed Systems, pp 97-101, October 1990.

15

