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Abstract

While enabling fast implementation and reconfiguration
of stream applications, programmable stream processors
expose issues of incompatibility and lack of adoption in ex-
isting stream modelling languages. To address them, we
describe a design approach in which specifications are cap-
tured in UML 2.0, and automatically translated into Sys-
temC models consisting of simulators and synthesizable
code under proper style constraints. As an application case,
we explain real time stream processor specifications using
new UML 2.0 notations. Then we expound how our trans-
lator generates SystemC models and includes additional
hardware details. Verifications are made during UML ex-
ecution as well as assertions in SystemC. The case study
demonstrates the feasibility of fast specifications, modifica-
tions and generation of real time stream processor designs.

1 Introduction

Over the last few years, there is a remarkable increase
in the complexity of media-intensive products such as digi-
tal video recorder, DVD players, MPEG players and video
conference devices. The complexity stems from the heavy
computational workload and large data volume in the media
stream. Due to the complexity, designing streaming proces-
sors has become a complicated task. An approach to tam-
ing the complexity is to raise the level of abstraction to that
of system-level designs. This approach incurs the needs to
specify abstract models of systems.
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Because of specific application domains, existing
stream programming languages such as StreamIT [14],
StreamC [12], and NVIDIA Cg [11] with many differences
which result in an incompatibility issue to specifications and
design reuse. More importantly, they are programming lan-
guages and do not meet the requirements for high level ab-
straction, description and modelling.

The Unified Modelling Language (UML) is gaining pop-
ularity from real time system designers. UML has been
widely accepted in both software design and system ar-
chitecture community since its invention. UML has also
been evolving to meet the needs of real time embedded sys-
tems [7]. UML 2.0 incorporates more modelling abstraction
notations in the real time software domain and designers can
expect to use these notations in their initial specifications,
consisting of class diagrams, state diagrams and structure
diagrams, which are available in products such as Rational
Rose Real Time and I-Loigx’s Rhapsody [5].

However, real time UML may not suffice for stream pro-
cessor designs because of their special needs. On stream
processors, a large amount of on-chip resources are allo-
cated to deliver long instruction and large data packets.
Stream processor architectures also have to adapt to dif-
ferent stream applications. Although programmable stream
processors [6] provide the hardware for quick implementa-
tion, it is still not clear for designers if UML 2.0 can be used
to specify streaming features clearly and easily. This is one
of the aims of this paper.

Since there is a huge gap between UML-based descrip-
tions and their implementations, it is clear that such descrip-
tions need to be refined to a number of more detailed ones
in order to get the final implementation level specifications.
SystemC is a design language that allows designs to be ex-
pressed and verified at sufficiently high levels of abstraction
while at the same time enabling the linkage to hardware
implementation and verification. Furthermore, SystemC,
when viewed from a programming perspective, is a collec-



tion of class libraries built on top of C++ and so is natu-
rally compatible with object oriented design methodologies.
Therefore, creating a flexible and fully automated transla-
tion mechanism from the UML-based design language at
the top layer to SystemC appears to be a promising strategy.

2 Our Scope of Work and Related Work

In the domain of UML for real time systems, a large body
of work has been reported. Some UML extensions from
UML 1.x are proposed in [7]. Two instances of UML ex-
tension and translation are [2, 15]. Some studies exploited
the possibility to describe a synchronous dataflow model [4]
and a model for incremental designs [3] in UML. A previ-
ous effort [13] focused on hardware generation from UML
models without explicit UML specifications of stream pro-
cessing. Another recent work [10] mainly studied the model
driven architecture approach via SystemC using UML 1.x.

In this paper, we explore the suitability of UML 2.0 for
system-level designs of stream processors. For this pur-
pose, we establish a design workflow that starts with UML
2.0, then SystemC as an intermediate language. Using this
workflow, we specify stream processors and applications in
UML at an abstract level with Rhapsody. From the UML
specifications, a stream processor simulator in SystemC is
generated. Here are the distinct features of our work: (a) to
ensure the maximum reusability and compatibility, we sim-
ply use existing UML 2.0 notations without introducing any
new ones; (b) in our UML specification, we explicitly de-
scribe real time stream application features; (c) due to the
asynchronous nature in video and audio stream processing,
data packets are processed at various rates by multiple pro-
cessing elements. Our SystemC simulator generated from
UML designs supports the behavior of asynchronous flows.
This is in contrast to a recent study [4].

In the rest of the paper, we will discuss the UML model
of system level stream processing, describe the design
workflow, present the translator which can produce Sys-
temC code from restricted Rhapsody designs, and illustrate
the workflow with a case study. Some concluding remarks
will follow the discussions.

3 Requirements of Real Time Stream Models
& UML 2.0 Notations Needed

We view stream applications as operations on flows.
Flows of stream packets undergo processing at different
stages of calculation. Representations of flow are manda-
tory in stream modelling.

Modelling Requirements: Flows require entrances and ex-
its at processing elements. These gateways are also to be
represented in abstraction with distinct attributes.

There is also a need to hierarchically specify the compu-
tation complexity inside processing elements. Since video
and audio stream protocols have become very sophisticated,
the complexity of calculation grows so hard that a non-
hierarchical representation would be not manageable.

We further consider real time constraints in stream pro-
cessing. In classic real time systems, real time constraints
are usually applied to system response time. Other than
classic logic constraints, constraints on stream processing
are often in the form of quality of service, which ensures a
processing rate of the stream. For example, an MPEG-2/4
video clip requires a minimum playback rate at 25 frames
per second (fps). The number of pixels per frame depends
on the resolution settings during sampling. Similarly, for
MP3 audio clips, the choices of playback rates usually range
from 64 Kilo bits per second (Kbps) to 256 Kbps depending
on the requirements of playback quality.

The implication of the guarantee of the playback rate is
there are enough data stored in the buffer in front of the
playback device which is a real time client. Let By denote
the buffer fill level of the playout buffer, z(¢) to denote the
input stream of this buffer, Dy represent the initial decoding
delay, and C' denote the consumption rate of the real time
client assuming the initial buffer fill level is 0. Then the
constraint on the playout buffer underflowing is stated as:

z(t) > C(t) — Bo, Vt> Dy (1

Similarly to the above limit on the minimum amount of

the stored data, there is constraint on the maximum amount
to avoid overflow.
UML 2.0 Notations Used: To address the needs of abstract
representations of stream processors in UML, we resort to
a few new notations introduced in UML 2.0, namely flow,
composite classes, port, structural diagram and hierarchi-
cal statechart.

stream_storage

Figure 1. Functional Block Modelling of a
Stream Processor

In Fig. 1, a functional block model of a stream proces-
sor is shown. The model illustrates the exchange of infor-
mation “flow”s at the highest abstract level. Streams are
represented in tokens which flow into and out of process-
ing elements. The blocks in the functional block model are
“composite classes” which decompose hierarchically into
standard classes. The concept of composite class is similar
to the definition of “Metaclass” proposed by the UML for
SoC forum. We expect these two notations will be merged
in the final version of UML 2.0.

The notation of “port” is new in UML 2.0. It is used
in defining complicated incoming and outgoing interfaces.
In Rhapsody’s terminology, the interface for incoming mes-
sages is called a “provided interface”, similarly the interface
for outgoing messages is termed a “required interface”.



To decompose hard computation complexities, “hierar-
chical statecharts” are needed. Nested statecharts are al-
lowed to represent sub-machines as part of the parent chart.

The “structural diagram” is usually a detailed description
of functional block models. It emphasizes the structure of
the objects in a system, including types, relationships, at-
tributes and operations. We will show an example in Fig. 5.

A stream processor needs stream traces to drive its ex-
ecution. The relationship is shown as a dependency from
processing blocks to the stream storage package in Fig. 1.
In the stream storage package, a trace manager manages
stored trace files and delivers necessary stream attributes to
the processing blocks. The description of the stream storage
package is an abstraction of memory management mecha-
nisms. The memory can be either physically centralized
RAM blocks or logically assembled cache lines associated
with each processing element.

A constraint is a condition or restriction expressed in
text. It is generally a Boolean expression that must be true
for an associated model element for the model to be con-
sidered well-formed. To check the validity of a design in
simulation of the model of the design, a constraint is an as-
sertion rather than an executable mechanism. It does not
exist in the final description for hardware synthesis.
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Figure 2. A UML 2.0 Based Design Workflow

4 A UML 2.0 Based Design Workflow

We propose and implement a design workflow based
on UML 2.0 with SystemC as its intermediate language in
Fig. 2. In this design workflow, our own efforts include
the steps of UML specification, transaction level modelling
(TLM) style translation, register transfer level (RTL) style
translation and SystemC simulation.

The translator is based on the XML Metedata Inter-
change (XMI) format of UML representations made with
Rhapsody. From XMI representations, the translator gener-
ates SystemC code in both TLM and RTL style.

To use the workflow, designers usually work with the
UML specifications only as the rest steps of the workflow
are automated. The major work of the designers is to vi-
sually specify the processor architecture parameters and

stream application parameters in UML 2.0. The UML mod-
els can be executed as early verifications.

The UML specifications are exported to XMI format files
which are translated by our translator to SystemC simulator
models in TLM and RTL styles. The simulator code under
proper coding constraints [13] can be compiled by the Syn-
opsys CoCentric SystemC compiler into gate level netlists
in Verilog, which are synthesizable into programmable ar-
chitecture implementations. The coding constraints such
as using static memory instead of dynamic memory, struct
rather than union, and call by value instead of call by refer-
ence, are imposed by the synthesizable subset of SystemC.

In the meantime, verifications are carried out at multiple
levels, i.e., UML specification, TLM style translation, RTL
style translation and SystemC simulation.
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5 The UML2Code Translator

UML 2.0 is closer to SystemC than its predecessor since
some of the new concepts have direct counterparts in Sys-
temC. For example, a meta-class corresponds to a mod-
ule in SystemC. During the code generation, we apply the
following mapping rules: (a) all components in the struc-
tural diagram, which are meta-classes, are translated into a
“sc_module”; (b) the port type is determined by the nam-
ing convention of the port; (c) the statechart in each ac-
tive object is translated into a process whose method name
is “entry”. In this method, we map each statechart into
an unclocked “sc_thread” for TLM style translation. For
RTL style translation, the mapping is a clocked process
“sc_method”, which will be synthesizable; (d) the defini-
tions of message structures are encapsulated in flow whose
counterpart is sc_interface.

Besides the above general rules, the translator also adds
platform dependant hardware details such as considerations
of reset, clock, and variable types. Additional constraints
such as cache and memory configurations can be added to
make the translator generate more hardware features.

Figure 3 shows the translation workflow of UML2Code.
We start with a UML 2.0 model in Rhapsody. The design
model is accepted by Rhapsody’s XMITookit to generate
corresponding XMI documents as inputs to our translator.
XMITookit preserves all the model information, and it is
a textual representation of the UML model. The generator
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Figure 4. An Abstract Stream Processing SoC

parses the XMI documents and builds the internal represen-
tation of the model. The syntax tree is further processed to
compute and store some relations. The syntax tree holds all
the data required to build different levels of code. By using
different templates, the same model can be used to generate
code at different levels: TLM, Behavioral and RTL level.
Behavioral and RTL code can be further synthesized into
gate-level netlists in Verilog/VHDL.

6 A Case Study

Video and audio decoders are typical streaming applica-
tions. Examples include the MPEG2 video decoder [9] and
MPEG Audio Layer 3 (MP3) decoder [8]. As a case study,
we shall map these applications into an abstract SoC archi-
tecture, then implement it using our design workflow.
Experimental Setup: The process to decode MPEG2 video
streams consists of 4 major steps, namely variable length
decoding (VLD), inverse quantization (IQ), inverse discrete
cosine transition (IDCT) and motion compensation (MC).
We map VLD and IQ to the first processing element in the
SoC, IDCT and MC to the second element.

To play back MP3 audio streams, we usually need 8
steps, namely (1) synchronous and error checking, (2) Huff-
man decoding, (3) re-quantization, (4) reordering, (5) alias
reduction, (6) Inverse Modified Discrete Cosine Transform,
(7) frequency inversion, and (8) synthesis polyphase filter.
We assign the earlier 4 steps to the first processing element
in the SoC, and the rest 4 steps to the second element.

Another important design factor, scheduling, is also con-
sidered in our model. In our case study, we implemented the
TDMA scheduling policy as the scheduler. We summarize
the above settings as the abstract architecture in Fig. 4.

To obtain the requirements of execution cycles at differ-
ent stages, we use one of SimpleScalar’s [1] tools, “sim-
profile” configured to the default values, to run reference
implementations of MPEG2 decoder and MP3 decoder sep-
arately without scheduling. For each macroblock, processor
cycles at different execution stages are captured and stored
into trace files. For each video or audio stream, there are
a set of trace files consisting of records for stream tokens.
Each record contains a token index number and token at-
tributes such as the execution cycles.

To support real time applications, I-Logix Rhapsody is
preferred to Rational Rose Real Time (RT) since the lat-
est Rhapsody provides more support for UML 2.0 notations
than Rose RT such as functional block modelling, flow and
concurrent state charts. Moreover, Rhapsody can produce

representations in XML Metadata Interchange (XMI) for-
mat which is not supported by Rose RT.
UML Specifications: To detail the descriptions of “flow”
driven activities in Fig. 2, we use a structural diagram in
Fig. 5 which describes the activities of instances of objects
whose realistic roles are shown in Fig. 4.

In Fig. 5, the ports belonging to object instances form the
communication channels for streams. The video and audio
streams are tokenized into token flows. Token IDs are ini-
tiated from video source or audio source, then pass through
processing elements to reach the video sink or audio sink.
Each processing element queries the trace manager for de-
tailed attributes of tokens. The processing elements take the
proper actions in accordance to the attributes of tokens.

In UML 2.0, there is no need to inherit explicitly the
interface definitions, as was the case in UML 1.x, for the
ports where token IDs go through. The interface definitions
are built into the ports in UML 2.0.

The abstract operations in Fig. 5 represent a typical de-
sign in stream processing. Some streams consist of large
packets of data. Each processing element does not need all
the data in a packet. It is hence inefficient in hardware to
transfer complete packets through the processing elements.
In our example, only token IDs are passed through process-
ing elements, and each processing element only fetches nec-
essary data for its processing from the trace manager. The
hardware costs will be reduced by this means.
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Figure 6. A Stream SoC’s Class Diagram

In Fig. 6, we use a traditional class diagram to specify
the inheritances and association among the components of
the SoC and management of stream traces. These entities
are classes which inherit or aggregate attributes from other
classes or interfaces.

UML 2.0 supports hierarchical and concurrent state-
charts. We use traditional or single-layer statecharts to
specify simply calculation logic flows inside each object.
To describe complicated tasks, we use these new features
to describe hierarchical states and concurrent calculations.
For example, a hierarchical state containing concurrent sub-
machines in the “trace_manager” is shown in Fig. 7.
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Similar to assertions, constraints have to be checked con-
stantly during processing of the streams. A constraint ex-
ample is shown in Fig. 8 for illustration. The constraint has
a dependency relationship with the object. A violation of
the constraint incurs a pause in the playback client, conse-
quently, users observe breaks in the playback video or audio
clips. The number of constraint violations is recorded as a
metric of quality of service.

As shown in the example, designers only need to deal
with structural diagrams, class diagrams and statecharts for
specifications in UML. It is straight forward to reuse the
specifications and quickly modify designs in UML 2.0.
UML Execution: UML models are executable in the Rhap-
sody runtime environment. This feature allows designers to
verify their designs at very early stage of design workflow.

UML 2.0 visualizes the communication with a new fea-
ture message sequence chart(MSC). Fig. 9 is the screen shot
of a MSC generated during the execution of UML models.
In this MSC, tokens trigger events which are represented as
messages passed among SoC modules. We can trace the ex-
ecution of video tokens 3, 5 and audio tokens 12, 14. The
example shows another clear benefit of UML 2.0 for system
level design of stream processing SoC.

To achieve a faster execution, we can also disable the
MSC generation during execution. The option is observed
to save the execution time by about 30%.

SystemC Code Generation: To facilitate the translation
synthesis, we apply an intuitive naming conventions to the
port names. The names of outgoing ports start with “out-
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Figure 9. Communications among Modules

port”; incoming ports have names beginning with “inport”;
bi-directional ports are identified as “inoutport*” in Fig. 5.

Regarding the code efficiency, for the settings in the ex-
ample, the size of the generated SystemC code is around
3100 lines. The code generation time for both RTL style
and TLM style is less than 10 seconds. It is also interesting
to note that the RTL style code may have a smaller size than
TLM style code, but always a longer execution time.

To illustrate the mapping results, we take the RTL style
declaration part of the SystemC of the first processing ele-
ment “pe_stagel” as the example.

SC_MODULE ( pe stagel) {
//define default ports

sc_in clk CLK;

sc_in<bool> reset;
//define the outgoing ports
sc_out<bool>

trace manager query send pel;
sc_out<int >

trace manager_ query send pel gTokenNum;
sc_out<bool>

pe stage2 in token pe2;
sc_out<int >

pe _stage2 in token pe2 tokenNum;



//define incoming ports
sc_inout<bool> in video pel;
sc_in<int > in video pel vTokenNum;
sc_inout<bool> query reply pel;
sc_in<int > query reply pel execTime;
//token attributes
public:
int vTokenNum;
public:
int vExecTime;
//processing status
public:
int buflevel;
private:
int state; ......
//clock and process definitions
public: SC _CTOR (pe stagel) ({
//define the clocked thread
SC_METHOD (entry) ;
sensitive pos<<CLK;

To represent the semantics of assertions, we propose
constructs AFTER, ALWAYS, EVENTUALLY and NEVER,
which are new to SystemC standards. An intuitive imple-
mentation of an assertion in SystemC is as follows:

//AFTER (t>itsVideo_ sink.D)
// ALWAYS (itsVideo_ sink.B>0)
if ((t>itsVideo_ sink.D) &&
! (itsvideo sink.B>0)) {
cout<<"Assertion 1 violated!"<<endl;
cout<<"Tot. # of violation:"
<<vcount<<endl; vcount++;

These descriptions in SystemC are synthesizable with
the Synopsys CoCentric SystemC compiler in a behavior
description style. After the compilation process, descrip-
tions in Verilog at the gate level are generated, which are
acceptable to further FPGA design workflows.

Though the generated design is synthesizable, we would
like to stress that the design generated by far is not a full-
fledged processor; instead, it is an implementation of the ab-
stract SoC model in UML 2.0. To generate a more complete
design, we should specify additional hardware constraints
in the UML model, e.g. bit widths of attribute variables, and
existing IP cores as architectural choices for processor com-
ponents. These additional specifications can be processed
by our translator to generate more details in SystemC mod-
els, and consequently further hardware particulars.

7 Concluding Remarks

In this paper, we outlined an approach to modelling
stream processing SoC at a system level. A translation
mechanism that produces SystemC code from UML 2.0 de-
signs was also presented. With these completions, speci-
fications of real time stream processing SoC platforms in
UML 2.0 become intuitive and generating simulator de-
scriptions via SystemC is feasible. The simulator in Sys-
temC we produced from the UML model explicitly reflects

the spirit of stream applications by emulating the processing
of tokenized streams. A case study shows SystemC imple-
mentation is also synthesizable with Synopsys tools. As the
future work, we will extend our work by modelling addi-
tional hardware features of stream applications in UML 2.0
to enable generation of full-fledged processor designs using
our framework.
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