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Abstract

We present a system level description mechanism based
on UML-notations from which one can automatically ex-
tract SystemC code. Our modelling framework is based on
a restricted set of UML diagram types and some standard
extensions influenced by the communication infrastructure
of SystemC. The system specifications are developed using
the UML-compatible tool, Rhapsody [18]. We then trans-
late the internal representation of the design generated by
Rhapsody into SystemC code. The extensions we have im-
plemented using the stereotype feature of the Rhapsody tool
pull up the communication infrastructure and timing feau-
res of SystemC to the UML-level. Consequently, we can
describe executable platforms at the UML-level as well as
translate UML-based application descriptions to SystemC
level.

1. Introduction

System level design methods seem inevitable given the
technological trends and the accompanying economic pres-
sures. In the recent past, a broad consensus has emerged re-
garding the basic principles that should govern system level
design methods. The main ones are:

• The design methodology should support component-
based design accompanied by substantial component-
reuse.

• There should be an intermediate representation level
with cleanexecutable semantics, at which both the ap-
plication and the platform on which the application is
to be realized can be captured and related.
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• Behaviors described at the intermediate level, should
clearly separate the computational aspects from the
communication features.

• This intermediate representation should be able to
serve as a common design document for the software
and hardware teams which can then independently
work towards a detailed implementations.

Given the wish-list above, two crucial choices to be made
concern the high level system description language and
the intermediate representation language. We claim that a
modeling language based onUML (Unified Modeling Lan-
guage)notations for high level system descriptions andSys-
temCas the intermediate representation language constitute
sound choices. The main goal of the paper is to substantiate
this claim.

UML is now widely accepted in the software engineer-
ing community as a common notational framework. It
supports object-oriented designs which in turn encourage
component-reuse. It can be used to provide multiple views
of the system under design with the help of a variety of
structural and behavioral diagrams. It allows standard ways
of extending the language to meet the demands of specific
application domains. Though it was originally created to
serve the software engineering community, UML is also be-
coming an attractive basis for developing system descrip-
tions in the (real time) embedded systems domain [13]. In
fact, many of the enhancements to the UML 2.0, the new
emerging standard, are geared towards easing the task of
specifying complex real time embedded applications.

On the other hand, SystemC allows both applications
and platforms to be expressed at sufficiently high levels
of abstraction while at the same time enabling the linkage
to hardware implementation and verification. Furthermore,
SystemC - viewed as a programming language - is a col-
lection of class libraries built on top of C++ and hence is
naturally compatible with the object-oriented paradigm that
UML is based on. Though SystemC is at present mainly



geared towards hardware descriptions, the enhanced version
in the making [9] will support software module descriptions
and run time features including scheduling. Hence SystemC
has the potential to provide a full-fledged description of an
execution platform which can serve as the target of a co-
design methodology. Thus SystemC is a viable intermediate
representation language.

One might wish to consider SystemC itself to serve as
the high level system description language. However, at
the application level one would like to have visual notations
for interacting with the end-users to capture requirements.
It is also important to be able to use standard models of
computation (MOCs) at the initial design stages. Further,
one may not wish to concretely specify the communication
mechanisms and instead leave it to be defined by the under-
lying operational semantics of the MOCs being deployed.
Finally, design reuse with the help of minor modifications
to an existing component as well as formal verification are
easier to carry out at higher level of abstraction than what is
offered by SystemC. Hence we propose a top layer of sys-
tem descriptions using UML notations.

Given these two choices, our initial goal has been to
build a flexible and fully automated translation mechanism
using which one can transform UML-based system descrip-
tions to SystemC code. A crucial step here is to develop
a coherent subsetof UML-notations since UML offers a
bewildering variety of diagrammatic notations and it is up
to the user to decide the combined roles of these various
diagrams. We select here the so called executable subset
of UML, namely class diagrams and state diagrams. The
other diagram types may well be useful for capturing user
requirements and for documenting important features of the
design, but they are unlikely to contribute to code gener-
ation and hardware synthesis. One important exception is
sequence diagrams. As we discuss later, they do have an
important role to play in system level designs but we do not
make use of them at present.

The linkage between the UML-layer and SystemC-layer
that we have constructed serves a dual purpose. On the
one hand, we use it for transforming applications described
at the UML-layer to SystemC code for initial simulation.
On the other hand, our translation mechanism also enables
us to pull up the platform description mechanisms to the
UML-layer. In this usage, we could consider both the ex-
ecutable platform description and the application models
to be available at the UML-layer where we can do formal
verification and analyze an abstract version of the mapping
problem. Using our translator, a designer can then translate
these two descriptions down to the SystemC level for more
detailed simulation and move towards a detailed implemen-
tation. Thus motivated, a substantial part of our work at the
UML-level consists of incorporating SystemC-compatible
entities.

In the current stage of our work, we are mainly con-
cerned with thetransaction level modeling(TLM) layer of
SystemC. At this level, the communication infrastructure is
specified using function calls and hence the performance
numbers reported will generally not be cycle-accurate. This
we feel is acceptable if the goal is to rapidly obtain a de-
sign document at the SystemC level that describes both the
application and the platform. Naturally, many other design
steps will have to be constructed in order to realize a vi-
able design flow. We feel that our modeling framework and
the translator will provide a sound basis for constructing the
missing steps.

We have formulated our UML-based modeling environ-
ment using the Rhapsody tool [18]. It supports state dia-
grams with concurrency and hierarchy (in other words, stat-
echarts [11]). It also provides access to the XMI [17] rep-
resentation of the design which is faithful and facilitates the
translation process.

In order to support UML-based platform descriptions,
we have incorporated stereotypes in the Rhapsody environ-
ment to capture the communication primitives of SystemC
such as interfaces and channels. It is worth noting that the
new version of Rhapsody [6] offers communication primi-
tives with a similar flavor as first class entities.

We have also incorporated the clock sensitivity features
and other timing aspects of SystemC at the Rhapsody level.
Consequently we can describe real time applications accu-
rately while being able to include timing constraints in the
UML-based platform descriptions.

As mentioned earlier, we use just class diagrams and
state diagrams at present. We feel that the simple sequence
diagrams in the Rhapsody version that we have been using
are not very useful, except for specifying test runs. How-
ever, in UML 2.0, these diagrams have been extended with
the powerful features of choice, iteration and conditions.
One of our immediate future goals is to use these extended
sequence diagrams to specify expressive test benches, trans-
late them into SystemC and use them for verification.

The need for system level design methods has been dis-
cussed more eloquently and in greater depth elsewhere[15,
16, 10]. The role of SystemC in this context has also been
explored in detail [15, 10]. What UML may have to offer
towards system level design methods for real time embed-
ded systems has been studied from a number of perspec-
tives as reported in [13]. For basic material on SystemC,
the UML (especially the forthcoming UML 2.0 standard)
and the Rhapsody tool, we refer the reader to [21, 10],
[22, 4] and [18, 6] respectively. Our programme, initiated
here, could also have been based on system description lan-
guages such as SpecC , Rosetta or SystemVerilog [7, 1, 8].
Our preference for SystemC over these related languages
has been mainly influenced by accessibility and familiarity.



An earlier effort that translates UML to SystemC is
YAML[19]. However, YAML uses UML merely to cap-
ture thestructural aspects of the system under design. In
contrast, our approach provides for the full-fledged use of
state diagrams - including C++ code associated with the ac-
tions - and hence can capturesystem behaviors, in partic-
ular, concurrency, at the UML-level. YAML also does not
take advantage of TLM modeling in SystemC.

In the next section, we recall the main features of Sys-
temC. In section 3 we explain our scheme for using the
Rhapsody tool to develop designs. In the subsequent sec-
tion we first discuss the major details of our implementa-
tion. We then present some examples and results to illus-
trate the main aspects of our translator. The final section
concludes with remarks on future work.

2. SystemC preliminaries

Here we briefly describe the basic features of SystemC.
For more background information, please see [10] and [21].
SystemC is a library built entirely on C++. It separates
computation and communication by having modules and
processes for computation; interfaces and channels for com-
munication. Modules are the basic building blocks for par-
titioning a design. A module hides its data and algorithms
from other modules. A module may have one or many
processes which can run concurrently. Modules commu-
nicate through channels. There are two types of channels:
primitive channels and hierarchical channels. Primitive
channels are, in some sense, state-less while hierarchical
channels can have internal states and control flow associated
with them. As the name suggests, hierarchical channels can
contain other channels, modules or processes. Interfaces
specify the signature of the operations provided by chan-
nels. A module accesses a channel through a port whose
type is one of the interfaces implemented by the channel.

A key feature of SystemC 2.0 is that communication can
be modeled at a higher level of abstraction often referred
to as transaction level modeling (TLM). It is hard to pin
down this notion precisely. Intuitively, communication be-
tween components is described through method calls, with-
out any synchronization. Here, “transaction” stands for
the exchange of data between two components of a sys-
tem. This level emphasizes what data are transferred and
from which locations but not the detailed implementation
based on a specific protocol. Thus, communication among
components is abstracted from the details of the implemen-
tation of the communication architecture and this enables
component-reuse. In addition, simulation at this level can
usually be carried out at high speed. For a more detailed
description of TLM, see [5].

Behavioral synthesis of SystemC descriptions is still an
unfinished story. On this front, one tool we have been able

to access is the CoCentric SystemC Compiler tool. It syn-
thesizes a SystemC behavioral hardware module into an
RTL description or a gate-level netlist. Unfortunately, se-
vere restrictions are placed on the SystemC code that can
be synthesized.

3. UML modeling

We use two types of UML diagrams for modelling,
namely, class and state diagrams. Class diagrams are pre-
dominantly used to describe the component structure of a
system while state diagrams describe the behavior of the
components. Besides the standard UML notations, we have
also added some features using the stereotype extension
mechanism in order to lift some SystemC entities up to the
UML level.

3.1. Class diagrams

We of course use the class hierarchy to describe the com-
putational entities via their methods and their data types.
However, class diagrams are also used in a crucial way to
give an overview of a system in terms of components and
how the components are connected to each other.

We will use the simple bus model available in the Sys-
temC package [21] as a running example. In this model,
there are three possible masters, namely a blocking, a non-
blocking and a direct master, a bus and two memory slaves.
A master initiates transactions on the bus to access the mem-
ory. Figure 1 shows a fragment of the class diagram of this
example.

We now turn to the use of class notations to define and
distinguish between the various features of SystemC lifted
up to the UML-level using the stereotype mechanism. This
is an extension mechanism of UML that allows one to de-
fine virtual subclasses of UML meta-classes with new meta-
attributes and additional semantics. Using this, we can de-
fine a class as a module, an interface, a primitive channel
or a hierarchical channel. In addition, we support declara-
tion of ports for modules to access channels. A port can be
declared as an attribute of a module.

Classes can be related by the following UML relations:

• Generalization (or inheritance): when a channel imple-
ments an interface, it inherits that interface. Moreover,
an interface, channel and module can inherit another
interface, channel and module respectively.

• Aggregation/composition: modules and channels may
be hierarchical.

• Association: classes that exchange messages with each
other are associated to one another. We model mes-
sages by UML events with or without arguments. Fur-
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Figure 1. A class diagram

thermore, a module may have an association rela-
tionship with an interface when it accesses a channel
through this interface.

In the case of the simple bus example, the masters ac-
cess the bus through three different interfaces. The bus is a
hierarchical channel which implements the three interfaces.

3.2. State diagrams

State diagrams describe the behavior of a class. A state
can be a simple state or a composite state. A composite
state may be concurrent (often called an AND state). A
composite state which is not a concurrent state is called an
OR state. Being in an AND state means being in all of its
sub-states. Being in an OR state means being in exactly one
of its sub-states.

Modelling concurrency is an important part of a system
specification and this is achieved with the help of AND
states. Figure 2 shows a state diagram of a master which
is a combination of the three masters described above. This
is a derived version of the simple bus model in the SystemC
package where we have combined the three masters into one
master to illustrate the ability to model concurrency. The
AND stateMaster has three sub-states, each of which is
an OR state which in turn has a set of simple leaf states (that
have no internal structure). Each state is associated with a
set of actions on entry and actions on exit. These will be ex-
ecuted when the object enters and leaves that state respec-
tively. A transition connects a source state and a target state.
The label of each transition includes a trigger event, a guard
and a sequence of actions. Events may be parameterized.
A guard is a boolean expression. When an object is in a
state and an event of an outgoing transition of that state oc-
curs, the corresponding guard is evaluated. If the guard is

true, the transition is taken, the actions are performed and
the object moves into another state. Otherwise, the object
stays in that state and the event is simply discarded.

The action associated with a transition can be a C++ ex-
pression or a function call whose body (in the form C++
code) is to be provided by the user. The action could also
correspond to sending an event to another state diagram (de-
scribing the behavior of a different class). In addition, the
action could be calling an interface method through a port.
Moreover, in the actions, we support specification of clock
sensitivity or delays in terms of clock cycles or time units
through C++ macros. This gives the designers an option
to have either un-timed or timed models. Furthermore, this
allows users to provide annotations of timing information
for performance estimation and architectural exploration.
For TLM level implementations, we do not restrict the C++
code associated with the actions in anyway. There will how-
ever be severe restrictions when the target is behavioral level
SystemC code. We will return to this point in the next sec-
tion.

Figure 2 shows a concurrent stateMaster consisting
of three states:Master_direct , Master_blocking
andMaster_non_blocking . We describe the behav-
ior of the process associated with theMaster_blocking
state. First, it goes from the initial state tomb_to_read
state. When the eventfinish_bw arrives, the process
performs the actionmb_do_read and goes to state
mb_waiting_read . Note that there is no guard for
this transition. In statemb_waiting_read , the process
waits for the eventfinish_blocking_read and when
it arrives, doesmb_after_read then goes to state
mb_to_write . Other states and transitions can be inter-
preted similarly.

In UML, objects can also communicate through events
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Figure 2. An AND state

that may carry arguments. In our framework, users can
model their systems in terms of UML classes (or objects)
that communicate through events. They can also have
classes corresponding to modules or hierarchical channels
to communicate by means of interface methods.

We currently require users to declare a top level class to
instantiate objects. Object diagrams could have been used
instead to do this, but it is not supported at this time. We
also allow for only one level of nesting in our state diagrams
with AND states at the top layer and OR states at the second
layer. However it will not be difficult to extend our state
diagrams to allow more than two levels of hierarchy.

4. Implementation

We use Rhapsody which supports the main features of
UML that we need. Moreover, Rhapsody has a toolkit
which can generate XMI [17] as an intermediate representa-
tion. This representation contains all the information about
the model that we need for code generation.

The XMI toolkit of Rhapsody is used to generate XMI
document from the graphical models. We then use our XMI
parser to gather information from the XMI document to
build an abstract tree as an input to a template engine. Sys-
temC code is generated from templates using Velocity [23]
which is a template engine that generates code from pre-
defined templates. With the help of Velocity, we decouple
the parsing of XMI document from the code generation step
so that changes in the XMI parser do not affect code gener-
ation process. Further, in the later part of the workflow, we
only need to work with the templates to generate code with-
out having to deal with the verbose code of parser. With this
approach, by merely changing the templates we can gener-
ate code for different levels of abstraction. Figure 3 shows
the workflow of our translator.

We support the initialization of multiple instances of a
type (module, primitive channel or channel). However, they
cannot be created dynamically because at present SystemC
does not support dynamic instantiation; the structure of a
system is assumed to be determined at elaboration time.
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Figure 3. Our implementation workflow

4.1. Translation to TLM level

SystemC code at the TLM level is ideal for simulation as
details of the low level communication infrastructure are not
present. In our design flow, users do not have to specify any
SystemC components at UML level. They can work with
classes or objects, state diagrams and model communica-
tion between objects by events with or without arguments.
Such events will be implemented through SystemC primi-



tive channels. Each module has a primitive channel to re-
ceive events sent by other modules. This primitive channel
essentially acts as a buffer for incoming events to that mod-
ule. When a module has an association relationship with an-
other module, it can send messages to that module. A port
is declared in its code body to access the other module’s
primitive channel. Thus, the primitive channels implement
two interfaces: the interface for sending events and the in-
terface for receiving events. The SystemC code generated
by our translator will be at the TLM level since the senders
and receivers just call functions of the primitive channels,
regardless of whether or not the events have arguments as-
sociated with them.

Users can also specify SystemC components, such as in-
terfaces and channels through stereotypes, ports, time delay,
and clock sensitivity through C++ macros. These are trans-
lated to SystemC accordingly.

There are three types of SystemC processes:
sc_thread , sc_cthread and sc_method [10].
Each OR state in a state diagram is translated into a
sc_thread of the corresponding module. Thus, a state
diagram such as the one in Figure 2 will be translated into
threesc_thread s of the same module. The reason we
chosesc_thread oversc_method andsc_cthread
is that ansc_thread can be suspended during execution
to wait for events and is not necessarily sensitive to every
clock edge.

4.2. Translation to behavioral level

Behavioral level SystemC code has to have the details
needed for the generation and synthesis of the hardware im-
plementation of the described system. As such, it is neces-
sary to place certain restrictions on the design. The restric-
tions we place at Rhapsody level on the C++ code supplied
by the user are the ones demanded by the Synopsys tool.
Further, at the Rhapsody level, users have to declare a class
calledTop to initialize all the instances. This is because
the methodnew() used to create instances is not synthe-
sizable. Users may however initialize multiple instances of
the same class. The translator will create the correspond-
ing modules and connect them according to their specified
relationships.

The code to be synthesized at this level has to comply
with the coding convention of the Synopsys tool. Restric-
tions are placed on the data types, constructs, instructions
and SystemC classes [19]. Due to these restrictions, an OR
state is translated to ansc_cthread which is only sen-
sitive to an active clock edge. Communication at this level
is done only through signals. According to the Synopsys
coding convention, an interface method call from a mod-
ule to a channel cannot be synthesized. We find this re-
striction rather severe and have implemented a fix to work

around this restriction. The translator detects function calls
and replaces them by signals that are then sent to trigger lo-
cal function calls. The transfer of function arguments and
return values are also translated into an exchange of sig-
nals. Although at UML level, there may be interfaces and
channels, the translator converts channels to modules and
ignores interfaces since only modules can be synthesized.
The translator adds ansc_cthread to each channel mod-
ule to receive triggers for local function calls. The UML
events and their arguments are also translated into signals.
Thus, the actual implementation is complicated by the need
to detect module-module and module-channel connections
and connect the corresponding signals at elaboration time.

5. Examples and results

5.1. A Simple Bus

This is a benchmark example of SystemC at the TLM
level which has been described partially in the previous sec-
tion. Here we use it to demonstrate how one might model a
fragment of a platform at UML level and translate it into
SystemC. This model uses all the four stereotypes men-
tioned above, namely modules, interfaces, primitive chan-
nels and hierarchical channels. In particular, the three mas-
ters are modules that access the bus through three ports us-
ing three different interfaces. The bus is a hierarchical chan-
nel which implements the methods of the three interfaces.
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Figure 4. Block diagram for the simple bus
example [10]

For faster simulation speed, the arbiter and the fast mem-
ory are modelled as primitive channels to decrease the num-
ber of threads and thus, decrease the context-switching
time. The bus accesses these primitive channels through
the arbiter interface and the fast memory interface, respec-
tively. TheTop class initializes all the objects of the sys-
tem, in this case one instance for each module and channel.
Figure 5 shows the class diagram of this example.
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Figure 5. Class diagram of the simple bus example

We first captured this UML-level model using the Rhap-
sody 4.2 tool and then translated it into TLM SystemC code
automatically using our translator. We then simulated the
resulting SystemC code using the standard SystemC sim-
ulation kernel. When measuring performance, we did not
initialize the direct master, because it is only used for de-
bugging. The experiments were performed on Linux Red
Hat 9.0 running on CPU Intel Xeon 2.8GHz. We measured
the number of CPU clock cycles for 1,000 transactions us-
ing the Pentium’srdtsc instruction. With the original
code provided in the SystemC public distribution, we ob-
tained a speed of 81K transactions per second. In compari-
son, with our automatically generated code from the UML
model, we obtained a speed of 41K transactions per second.
One reason for the slower simulation speed of our generated
code is the use ofsc_thread for all processes. The orig-
inal model has the bus and the slow memory implemented
assc_method s. Due to the need for context switching,
sc_thread s run slower thansc_method s. We intend
to look into this and other optimization issues in our future
work.

5.2. The micro polymerase chain reaction controller

This is a simple real-time embedded control system.
Polymerase Chain Reaction (PCR) is a thermal cycle reac-
tion used for the rapidin vitro multiplication of DNA sam-
ples [14]. Theµ-PCR chip realizes a miniaturized version
of this process where a small quantity of the DNA sample
is placed in each chamber of the chip and the PCR reac-

tion is achieved by controlling the thermal power supplied
to the the chambers according to an input temperature pro-
file. A schematic diagram is shown in Figure 6. We will not
describe here the PCR bio-chemical process in detail but
instead focus on the functional model of the real time con-
troller. This unit is driven by the temperature profile (which
specifies the control objective) and feedback received from
the chip regarding the current temperatures of the cham-
bers. In the present version of the plant model, the effects
of inter-chamber influences are ignored as a simplification.
Hence there is essentially one independent controller for
each chamber. This controller periodically reads the tem-
perature (converted into a voltage value via an analog-to-
digital converter) of the chamber. With the help of the esti-
mator (the control law) it then computes the output voltage
required for that chamber to maintain the temperature ac-
cording to the temperature profile of the current PCR ther-
mal cycle. This voltage is then converted back into an ana-
log value (via a digital-to-analog converter), which is then
used to control the heating element of that chamber.

Heating block

D/A A/DController PlantProtocol
Generator

Figure 6. µ-PCR block diagram



In this example, the profiler which keeps the tempera-
ture profile and the estimator which keeps the control laws
were modelled separately from the controller so that we can
re-configure the temperature profile and control law easily.
They were modelled as primitive channels in order to get
better simulation speed at the TLM level. The communica-
tion among the modules are cycle-accurate, in the sense the
status of a module’s input and output are specified at each
clock cycle. Yet another real time aspect of this example is
the timing diagram associated with the A/D converter. For
this example, we have synthesized the behavioral level Sys-
temC code generated via our translator using the CoCentric
compiler tool of Synopsys.

This application has been simulated at both TLM and
behavior level. Following is a fragment of the code for the
thread of the Controller at behavior level. For brevity we
have eliminated somewait() statements.

while (true){
switch (state){

case 72:
// wait for the current temperature signal
// from the ADC
wait_currenttemp();
if ( read_currenttemp() == true ){

//the guard of this transition is true
if (true){

//get current temperature value
Yk = GET_PARAM(currenttemp, temp);
state = 76;
break;

}
}
break;

case 76:
if (true){

// send and receive information
// from the profiler
setPoint=IMC(profiler_port,mapping(timer));
state = 80;

}
break;

. . .
}

}

Table 1 shows the simulation speed -in terms of transac-
tions per second- of the Micro-PCR example on the same
platform as the one used in he previous example. By a
transaction we mean the period of time in which the con-
troller senses the current voltage, computes and outputs to
the plant.

Our simulation results show, as expected, that simulation
speed at the TLM level is higher than that at the behavior
level. The experiments also give evidence that the code we
generate scales fairly well in terms of performance.

5.3. Digital down converter

For our third example, we implemented adigital down
converter(DDC) for theglobal system for mobile communi-
cations(GSM) - a wireless communication protocol . Dig-
ital radio receivers often have fast analog to digital con-
verters delivering vast amounts of data. However, in many
cases, the signal of interest represents a small proportion of
that bandwidth. A DDC is a filter that extracts the signal of
interest from the incoming data stream. Our implementa-
tion closely follows the MATLAB example in Xilinx’s sys-
tem generator (see Figure 7).

The desired channel is translated to baseband using the
digital mixer comprised of multipliers and a direct digital
synthesizer (DDS). The sample rate of the signal is then ad-
justed by a multi-stage, multi-rate filter consisting of a cas-
cade integrator-comb (CIC) filter and two polyphase finite
impulse response (FIR) filters with a decimation factor of
2. The functions performed in the system are complex mul-
tiplication and multi-rate filtering. The overall down sam-
pling rate of the converter is 192:1.

Each of the components is mapped into a module, and
the data is sent through the chain by events (see Figure 8).
The model has been translated into both TLM and behav-
ioral levels. We could not find the source code for a similar
DDC in UML or SystemC for comparison. Hence we have
compared just the FIR module of our design with an FIR ex-
ample provided by Synopsys. The only modification we did
to the Synopsys code was to ensure that the coefficients and
the bit-widths of the ports are the same as those of our FIR
model. The codes were compiled into gate-level netlist us-
ing Synopsystc6a_cbacore library, which targets cell-
based array architectures [20]. The same timing constraints
were used on the synthesis runs of both. Table 2 shows the
comparisons of the final synthesized hardware. From the re-
sult we can see that our generated code uses about 33.25%
more resources than the hand-coded version. We believe
that this is an acceptable overhead given the fact we input
the model using the Rhapsody tool with UML notations.

6. Conclusions and future work

We have presented here the backbone of a framework in
which designs can be specified using UML notations. Sys-
temC code implementing these designs can then be auto-
matically generated. We showed three examples illustrat-
ing the use of abstraction via object-oriented modeling, real
time constraints, transaction level modeling and behavioral
synthesis. We see this framework as a sound basis for car-
rying out further research on system level design methods.
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Table 1. Simulation speed of the Micro-PCR example
Chamber arrangementTLM sim. (trans./sec) Behavioral sim. (trans./sec)

2 × 2 12,125 5,766
4 × 4 2,714 1,543
5 × 5 1,676 785
8 × 8 555 148

Table 2. Area statistics for FIR component implemented on cell-based array architecture
FIR from Synopsys(S) FIR from DDC(D) Ratio((D-S)/S)

Number of ports 260 261 0.39%
Number of nets 18393 27942 51.92%
Number of cells 18010 27547 55.15%
Number of references 93 99 6.45%
Combinational area 30181.2 50583.7 67.60%
Non-combinational area 34560.0 36844.2 6.61%
Net interconnect area 244806.2 325033.1 32.77%
Total cell area 64741.1 87430.3 35.05%
Total area 309547.6 412461.1 33.25%



An important extension will be to incorporate test
benches. Here we see the sequence diagram extensions pro-
vided in UML 2.0 as very promising. In the new standard,
complex interaction patterns can be specified using choice
and iteration operations on sequence diagrams. One can
also attach conditions to the sequence diagrams to capture
“may” and “must” assertions in the spirit of Live Sequence
Charts [12]. Consequently, one can capture a variety of re-
quirements provided by the end-users and the design teams.
These extended sequence diagrams can be endowed with
precise execution semantics. Hence it will be possible to
specify requirements at the UML-layer and translate them
into the SystemC level to generate powerful test benches.

Another important direction to pursue is the problem of
mapping applications to executable platform descriptions.
This is a difficult problem and a great deal of effort is re-
quired to capture generic platforms with a sufficient amount
of detail. Our hope is that efforts such as [2] can be ex-
ploited to rapidly derive SystemC-based descriptions of re-
alistic platforms. One could then design an infrastructure to
solve the mapping problem with the crucial supporting fea-
ture being that both the application and the platform are ex-
ecutable SystemC programs at a comparable level of gran-
ularity. In this context, we also hope to leverage on the in-
sights being gained in Metropolis project [3] which however
uses a native intermediate representation language called
the Metropolis Meta Model from which there is a path to
SystemC.

A third important line of work would be to instrument
our translator so that diagnostic information obtained via
simulations at the SystemC level can be reflected back to
the UML-based model level. Here, we expect test benches
based on (extended) sequence diagrams at the UML-level
and their translated SystemC versions to play an important
role.
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