
Source Level Static Branch Prediction

W. F. Wong

Department of Computer Science

School of Computing

National University of Singapore

Lower Kent Ridge Road

Singapore 119260

Tel: (+65) 874-6902 Fax: (+65) 779-4580

Email: wongwf@comp.nus.edu.sg

March 24, 1999

Abstract

The ability to predict the directions of branches, especially conditional branches,

is an important problem in modern computer architecture and advanced compilers.

Many static and dynamic techniques have been proposed. Today, all state-of-the-art

microprocessors have some form of hardware support for dynamic branch prediction.

Static techniques, on the other hand, have not been widely studied because of the belief

that they give poorer results. However, good static branch predictions are invaluable

information for (static) compiler optimization or performance estimation. In this

paper, we propose performing static branch prediction at the source code level. The

assumption is that the source code contains information unavailable at the assembly

or machine code level that may be used for branch prediction. Empirical studies on 14

integer Spec benchmarks indicate that the simple heuristics proposed can be e�ective

in practice.

1 Introduction

Branch prediction is the attempt to foretell the directions of branch instructions in a

1



program. It is a particularly important problem in computer architecture especially with

pipelined superscalar processors. In a pipelined processor, the �nal branch decision cannot

be made until the instruction has passed a number of pipeline stages. In a deep pipeline,

this is often somewhere in the middle of the pipeline. For example, for the DEC Alpha

21164 microprocessor [8], for integer branches, the �nal resolution takes place in the 4th

stage of its 7 stage integer pipeline. If the branch prediction was incorrect, then the

instructions that followed the branch in entering the pipeline must be ushed (cancelled

and undone). The situation is made worse in superscalar processors which allow several

(typically four in today's technology) instructions to be issued in a single machine cycle.

So in the example of the Alpha 21164, some 12 instructions may have to be ushed on a

misprediction. This translates to a severe performance penalty. For this reason, almost

all processors today have some form of dynamic hardware branch prediction facility.

In this paper, we investigate the e�cacy of branch prediction based on inferences done

by compile-time inspection of the source code. This is refered to as program-based branch

prediction [3] as opposed to pro�le-based prediction [17]. Previous approaches have been

done mainly at the machine code level. This work is concerned only with conditional, non-

loop branches, i.e. all conditional branches outside of loops and all conditional branches

within a loop but excluding �nal conditional branch back to the top of a loop. We believe

loop-based branches are e�ectively handled by existing schemes [16]. The contribution of

this paper is two-folded:

� it is a quantitative study of source level program-based branch prediction based on

the 14 C programs from the Spec 92 and Spec 95 benchmarks;

� a new set of heuristics based on naming conventions is proposed and evaluated.

Evidence shows that using a set of simple heuristics, static branch prediction at the source

code level can achieve good results.

In section 2, we shall survey the various existing methods and proposals on the problem

of branch prediction. In section 3, a set of source level program-based branch prediction

heuristics is proposed. Section 4 outlines the experimental setup used in the study while

section 5 reports on the results. This is followed by a discussion and a conclusion.

2



2 Previous Works

There are three main families of branch prediction strategies [7]. One of the earliest

approach is to �x a branch prediction strategy in the hardware1. An important example

of this prediction strategy that has worked very well in practice is that of predicting

backward branches (i.e. branches to instructions that precede the branch instructions

themselves in the program order) as taken because it was found that backward branches

are more likely to be taken than forward ones [16]. While such schemes are e�ective

especially in loops, they fair less well in general conditional branches.

A dynamic scheme is one that performs branch prediction based on the speci�c be-

havior of the program in execution. They are based on the assumption that the historical

behavior of branches can serve to predict future branches. Proposals include the branch

history bits [16], the branch target bu�er [12], and the gshare predictor [15]. For example,

the DEC Alpha 21164 microprocessor has a 2 bit history counter associated with each

branch instruction in the instruction cache [8]. This is incremented on taken branches

and decremented on non-taken ones. A counter value greater than 0 is cause the branch

to be predicted as taken and vice versa. When the branch is �nally resolved, the counter

is updated. The problem with these approaches is that a signi�cant amount of hardware

is required to support them. Furthermore, the extra hardware may lengthen the critical

path of instruction processing.

Both of the above approaches cannot involve the compiler as they are done only at

runtime. This is undesirable because advanced compilers, especially those that attempt

optimizations including some form of code motion and scheduling, global register allo-

cation, inlining etc., need branch prediction information to achieve good results (see for

example Lowney et. al. [13]).

The CRISP compiler [1] was among the �rst compiler to perform static branch predic-

tion based on the source code. It detected loop-based branches and by using previously

gathered data, predicted the direction of branches based on the comparison operator and

1This family of strategies is refered to as `static' by Cragon [7] but in this paper, we will reserve this

word for compile or link-time branch prediction strategies (which is refered to as `semi-static' strategies

by Cragon).

3



the types of operand in C source programs.

The case for static branch prediction was made by Ball and Larus [3] where static

branch prediction done on executable codes was studied. Static branch prediction based

on analyzing the abstract syntax tree of a program was described by Wagner et. al. [18].

Both approaches are heuristics driven. Attempts to improve the performance of heuristics

based on studying a corpus of existing programs was described by Calder et. al. [4] where

neural networks were employed. The work of Ball and Larus was also extended in Wu

and Larus [21] by the use of the Dempster-Shafer theory of evidence. However, it was

shown by Calder et. al. in [5] that this method is susceptible to di�erences in compilers

and architectures as it was based on a prior prediction of object code. Recent works such

as that of Grunwald, Lindsay, and Zorn [11] propose the use of static predictors to aid

dynamic predictors.

This paper proposes a set of source-code level heuristics for static branch prediction.

Some of the heuristics described are extensions of earlier reported ones. An important

innovation is the use of names (macro, function and variable) as part of the heuristics.

The entire prediction is strictly program-based and do not use any pro�ling means di-

rectly. Speci�cally, they are based on analyzing C source programs during and just after

macro expansion. It is therefore also less vulnerable to inuences of architectures and

compilations.

3 Source Level Branch Prediction Heuristics

The heuristics studied in this paper are as follows:

� Baseline. In this `heuristic', the branches are assumed `as-is'. In other words, all

(C) `if' branches are predicted as `taken'.

� Random. Here, the `if' and the `else' branches are given a 50-50 chance of being

predicted as `taken'. The standard Unix random number generator drand48 was

used for the generation of the prediction probability. This is precisely the strategy

used in a trace scheduling compiler [13] which requires branch prediction at compile-

time to perform interprocedural code optimizations. However, there is no data on

4



the e�ectiveness of this heuristic.

� Heuristic S. This is based on a scoring system. Both the `if' and the `else' branches

are examined as follows:

{ if the if-condition is an equality comparison, then a score of �1 is recorded

against the `if' branch. Rationale: assuming a uniform distribution of data

values, the probability of two data values being equal is low.

{ for each logical `and' found in the if-condition, a score of �1 is recorded against

the `if' branch. Rationale: satisfying two predicates simultaneously is generally

harder than satisfying just one.

{ for each logical `or' found in the if-condition, a score of 1 is recorded against

the `if' branch. Rationale: `or' is used to relax constraints.

{ the branch which contains `fprintf(stderr, ...);' has a score of�1 recorded

against it for every such statements. Rationale: writing to stderr is gener-

ally used (in production programs) for error reporting or debugging purposes.

Therefore, such a branch is less likely to be executed.

{ in each branch, for every call to functions which has the word `exit', `warn' or

`err' as part of its name will have a score of �1 recorded against it. Rationale:

such an arm of a branch probably perform some form of error handling and is

therefore unlikely to be executed under normal circumstances.

{ in each branch, for every occurence of the `return' statement, a score of �1

would be recorded against it. Rationale: here the bet is that on entering

a procedure, one would do a certain amount of work before returning, and

therefore the arm containing the return is less likely to be resorted to than the

other.

{ if the if-condition is a greater than check against a variable (or expression) in

which the string `max' occurs, then a score of �1 would be recorded against

it. Rationale: the check is most probably to see if certain limits have been

exceeded, and most of the time under normal circumstances, this should not

happen.

5



{ if the if-condition is a lesser than check against a variable (or expression) in

which the string `min' occurs, then a score of �1 would be recorded against it.

Rationale: as above.

For each conditional branch, the branch with a more positive score will be predicted

as `taken'. For this study, we did not investigate the use of di�erent weights, i.e.

scores other than 1 and �1, for the di�erent rules. Such an investigation would take

us beyond the basic aim of this paper which is to demonstrate that the heuristics

work well in practice. For those branches where no inference can be made, a random

choice is made as to whether the `if' or the `else' branch (with a probability of 0.5

each) is to be predicted as `taken'.

� Heuristic SF. This heuristic is an extension of the S heuristic. A table of integer

Unix system functions and the values they are likely to return as well as error codes

are kept (with the implicit assumption that error is unlikely). Should these functions

participate in an `if' conditional, an analysis would be performed to see which branch

is the likely one. For example, in

if (fopen(...)) {

...

}

else {

...

}

it is likely that the `if' branch is taken. The integer values kept in the table are

encoded in the form of ranges. So for example, for the fopen system call, the

likely value is `greater than zero' while the error value kept is `equal to zero'. The

implementation of this technique has been extended to handle simple propagations.

For example it is able to analyze the following:

FILE *f;

...

6



f = fopen(...);

... /* No redefinition of f */

if (f == NULL) {

...

}

else {

...

}

For this purpose, def-use chains of variables are maintained.

� Heuristic SFM. A number of system calls are implemented as macros and expanded

during macro expansion via inclusion of system header �les. A good example is the

getchar() \function". This heuristic extends Heuristics S and SF by the inclusion

of macros into consideration. Heuristics S and SF, on the other hand, is applied

after macro expansion. The reader may notice that another way of doing this is to

perform the Heuristic SF processing prior to the macro expansion of the C compiler.

However, this was not done in the hope that macro expansion may yield further

information.

� Dynamic Prediction. For comparison purposes, the combined bimodal-gshare

predictor proposed by McFarling [15] was also implemented. In our implementation

(which closely mirrors the original proposal of McFarling), three tables of 256-entry,

2-bit saturating counters are maintained (see Fig. 1). One table is used for a bimodal

predictor. The lowest 8 bits of the line number of the `if' statement is used to index

this table. In the original proposal, the lowest 8 bits of the program counter pointing

to the branch instruction is used. Since aliasing is expected in the scheme, we do

not believe this violates the predictor's workings in any serious way. For a taken

branch, the 2-bit counter is incremented. Otherwise, it is decremented. However,

the counter is saturating and cannot be incremented beyond 3 or decremented below

0. A value greater than 1 is equivalent to predicting the branch as taken, and vice-

versa. The second predictor is gshare. Here, the counter works in the same way.

7



Line Number
(PC)

GR
B

IM
O

D
A

L

G
S

H
A

R
E

P1 P2

XOR

8

TAKEN

PREDICT

TAKEN TAKEN

PREDICT

P1 or P2

P1c-P2c Use P1

Use P2

Figure 1: Combined Dynamic Branch Predictor.

What is di�erent is the way the table is indexed. The lowest 8 bits of a special shift

register, the GR register is exclusive-OR'ed with the 8 bits of the line number (`PC')

to obtain the index. This is termed `gshare 8/8' by McFarling. GR is maintained

as follows: if a branch is taken, a bit 1 is shifted into the right-end of the register

while a not taken branch causes a 0 bit to be shifted in. The main assumption

in this scheme is that the behaviour of neighbouring branches are correlated. By

hashing on the past branches' behaviour (captured by GR), for each branch one can

maintain a number of counters for each predecessor branching pattern. A third table

indexed by the lowest 8 bits of the line number checks if for a particular `if', the

bimodal or gshare was accurate in the past and use the more accurate one [15]. The

reader should note that this is a far more elaborate scheme than those which exist

in practice. By comparison, for example, the DEC Alpha 21164 scheme maintains a

2 bit local counter for only those instructions that are in the instruction cache.

Our heuristics make the assumption that programmers name their variables in a pre-

dictable way. It is certainly possible to violate this assumption but in practice, for various

software engineering reasons, we expect that the naming of variables to be fairly pre-

8



dictable. Our initial results with tests on the Spec benchmark suite also seem to validate

this assumption.

4 Experimental Setup

The heuristics were tested on the 14 C programs from the Spec 92 and Spec 95 bench-

mark suites. The GNU C version 2.7.2 compiler was extended for this purpose. The

modi�cations include:

� The C macro preprocessor (cccp.c) was extended to insert markers at macro expan-

sion sites. These markers maintain pointers in such a way that at a later stage the

names of the macros prior to expansion can be retrieved. Essentially, the pointers

are line indices into a simple ASCII �le containing, in sequential order, the names

of the macros encountered in processing the �le.

� A new pass that follows immediately the macro preprocessor was added to the com-

piler. This is where the actual branch prediction processing is performed. It is

essentially a strip-downed version of the C parser (c-lex.c and c-parse.y) and

outputs an augmented version of the macro-preprocessed C program. The main ad-

dition is a data structure which captures all the prediction information. The data

structure also contains the space allocated for the counters that will be used during

the execution of the program to capture runtime statistics.

� The original C parser is modi�ed to insert statistic gathering function calls at the

certain locations in the code, namely the start of each branch in a conditional branch.

� The statistic gathering functions were added to the main C runtime library. In

addition, the C startup routine is made to do some additional initializations which

are mainly related to patching pointers so that counters can be properly located

during runtime.

9



Program Lines Total no. of cond. Dyn. Pred. Perfect

of code executed (Wt. Ave.) Static Pred.

(excl. loops) (Wt. Ave.)

Spec CINT 92

008.espresso 18,901 2:737� 108 0.8987 0.7486

022.li 19,413 3:783� 108 0.9145 0.8193

023.eqntott 3,901 3:535� 108 0.9169 0.6754

026.compress 1,504 3:591� 107 0.8836 0.7508

072.sc 8,818 8:205� 107 0.9659 0.9188

085.gcc 152,531 3:049� 108 0.8862 0.8583

Spec CINT 95

099.go 33,172 8:691� 109 0.7616 0.7567

124.m88ksim 22,035 4:959� 109 0.9454 0.9243

126.gcc 214,090 2:665� 109 0.8680 0.8433

129.compress 4,461 4:732� 109 0.8903 0.7685

130.li 8,986 4:250� 109 0.9012 0.8165

132.ijpeg 34,269 2:455� 109 0.8411 0.8270

134.perl 32,064 3:048� 109 0.9284 0.8389

147.vortex 71,389 8:091� 109 0.8956 0.7157

Ave. over 14 benchmarks 0.8926 0.8044

Table 1: Characteristics of C benchmarks used.

10



5 Results

In this section, we shall present the main results of our investigations into the e�cacy of

the proposed heuristics. The 14 benchmarks were compiled with the modi�ed compiler

under the \-O" option of the compiler and executed over the `reference' data set as de-

�ned by Spec. The outputs were validated as per Spec requirements. For most of the

benchmarks the reference data set consists of several independent data sets and therefore

runs. Furthermore, the length of each runs di�er. We therefore need to introduce a fair

means of reporting the results.

For a program Pj executing over a data set Dk, let N
H
i;I=I [Pj(Dk)] be the number of

times the `if' arm of the ith branch was predicted as `taken' under heuristic H and indeed

was taken. Similarly, we can de�ne NH
i;I=E[Pj(Dk)]; NH

i;E=I[Pj(Dk)] and NH
i;E=E[Pj(Dk)] as,

for the ith branch, the number of times the `if' arm was taken given that the `else' arm

was predicted, the `else' arm was taken when the `if' arm was predicted and the `else' arm

was predicted and was indeed taken, respectively, under heuristic H . For brevity, when

the context is clear, we shall drop the `[Pj(Dk)]' portion of the formula. The total number

of branches covered by a heuristic H for a program Pj executing over a data set Dk is

therefore

NH [Pj(Dk)] =
X

i

(NH
i;I=I +NH

i;I=E +NH
i;E=I +NH

i;E=E)

We de�ne the accuracy of heuristic H for a program Pj executing over a data set Dk as

AccuracyH [Pj(Dk)] =

P
i
(NH

i;I=I +NH
i;E=E)

NH [Pj(Dk)]

The miss rate of heuristic H for a program Pj executing over a data set Dk is de�ned as

1 � AccuracyH [Pj(Dk)]. Due to the fact that the Spec benchmarks are executed over a

set of data, we used a weighted average accuracy measure which is de�ned as follows:

Weighted-Average-AccuracyH [Pj ] =

P
k
AccuracyH [Pj(Dk)]�NH [Pj(Dk)]

P
k
NH [Pj(Dk)]

Table 1 shows some of the basic characteristics of the 14 benchmarks we used in this

study. Table 1 also reports the weighted average of the dynamic predictor described in the

above section. The perfect static predictor statistics for program Pj executing over data

set Dk is obtained by the following formula:

11



AccuracyPSP[Pj(Dk)] =

P
i
max(if truei[Pj(Dk)]; if falsei[Pj(Dk)])

P
i
(if truei[Pj(Dk)] + if falsei[Pj(Dk)])

where if truei[Pj(Dk)] and if falsei[Pj(Dk)] is the number of times the ith if conditional of

program Pj evaluated to `true' and `false', respectively, while executing over data set Dk.

The perfect static predictor is the upper bound for any static branch prediction strat-

egy. Dynamic predictors are not bounded by this. Contrary to what was reported by

Ball and Larus [3], our dynamic predictor performed consistently better than the perfect

static predictor. We attribute this to the better dynamic predictor used in our experi-

ments. On the average, the dynamic predictor is some 11% better than the perfect static

predictor. However, as stated earlier, the domain of the static and dynamic predictors are

quite di�erent. Therefore, we argue that there is still good potential for static prediction

strategies.

Heuristic S Heuristic SF Heuristic SFM

Program Appl. Appl. Appl. Appl. Appl. Appl.

(Stat) (Dyn) (Stat) (Dyn) (Stat) (Dyn)

Spec CINT 92

008.espresso 31.74 55.59 31.74 55.59 40.19 65.87

022.li 65.25 71.32 65.25 71.32 82.38 84.59

023.eqntott 91.84 62.47 91.84 63.13 91.84 64.44

026.compress 60.99 80.21 60.99 79.17 74.48 88.54

072.sc 67.35 56.12 67.35 56.12 62.60 66.33

085.gcc 87.26 70.81 88.47 74.45 93.89 79.33

Spec CINT 95

099.go 80.40 74.61 80.40 74.62 82.28 79.47

124.m88ksim 82.97 69.95 82.97 70.44 82.96 75.92

126.gcc 78.27 76.71 78.28 77.26 87.67 83.37

129.compress 77.16 74.55 77.16 74.55 83.43 80.00

130.li 59.20 72.82 59.20 72.82 81.94 85.44

132.ijpeg 45.29 70.49 45.29 74.93 47.58 81.54

134.perl 25.91 57.88 25.91 59.44 39.48 69.65

147.vortex 50.51 42.21 50.63 42.35 56.36 51.63

Average 64.58 66.84 64.68 67.59 71.93 75.44

Table 2: Applicability of Heuristics in Percentages.

12



Table 2 shows the applicability of the heuristics, i.e. the percentage of non-loop

branches for which a heuristic was able to perform a prediction. Recall that for all those

(non-loop) conditionals about which it was not possible to apply any of a heuristic's rule,

random predictions were made. Applicability measures the percentage of conditionals for

which de�nite predictions were possible and therefore random predictions were not re-

sorted to. There are two values to each, a static and a dynamic ratio. The static ratio

is the percentage of conditionals in the source code for which prediction was possible.

The dynamic ratio is the percentage of executed branches for which prediction was pos-

sible. The best average value was that achieved by SFM which was 75%. This compares

favourably with the 61% applicability for the corresponding Spec integer code (the overall

�gure reported for their 23 benchmarks was 79%) reported by Ball and Larus [3] for their

non-loop predictors.

Baseline Random Heuristic S Heuristic SF Heuristic SFM

Program Accu. Accu. Accu. Accu. Accu. Accu.

(+Ran) (+Ran) (+Ran)

CINT 92

008.espresso 0.4268 0.5105 0.4631 0.4843 0.4631 0.4843 0.5253 0.5121

022.li 0.2570 0.5350 0.8142 0.6629 0.8142 0.6629 0.7337 0.6642

023.eqntott 0.3329 0.3315 0.6697 0.6705 0.6697 0.6705 0.6697 0.6705

026.compress 0.4342 0.4783 0.7078 0.6596 0.7078 0.6685 0.6865 0.6753

072.sc 0.0872 0.4309 0.7428 0.7281 0.7428 0.7281 0.9057 0.6548

085.gcc 0.2352 0.7711 0.7466 0.7160 0.7466 0.7159 0.7641 0.7424

CINT 95

099.go 0.2653 0.4931 0.7318 0.7101 0.7318 0.7101 0.7301 0.7065

124.m88ksim 0.1640 0.6796 0.8556 0.7652 0.8556 0.7652 0.8672 0.7849

126.gcc 0.2822 0.5281 0.7220 0.6895 0.7220 0.6882 0.7384 0.7086

129.compress 0.4493 0.5024 0.7322 0.7091 0.7322 0.7091 0.7049 0.6765

130.li 0.2933 0.5443 0.8079 0.6560 0.8079 0.6559 0.6998 0.6411

132.ijpeg 0.4487 0.5489 0.6664 0.3991 0.6664 0.3991 0.6558 0.5517

134.perl 0.2634 0.6969 0.7390 0.5089 0.7390 0.5075 0.7383 0.5821

147.vortex 0.3582 0.5189 0.6472 0.5654 0.6481 0.5623 0.6664 0.6206

Average 0.3070 0.5407 0.7176 0.6375 0.7177 0.6377 0.7204 0.6565

Table 3: Accuracy of Heuristics.

The results for the various heuristics are shown in Table 3. Two set of numbers are

given for each heuristics. The �rst set of numbers are the accuracies of a given heuristics

computed over those branches for which it made a prediction. The second set of accuracies

are the overall results in which random predictions were made to those branches for which

13



the heuristic were not able to make any prediction.

In all the 14 cases, at least one of the proposed heuristics performed better than the

baseline and the random method. When compared with the dynamic predictor, the best

of our predictors (SFM) achieved between 58% to 96% (average 80%) of the performance

of the dynamic predictor. An important point to note is that the applicability of the

dynamic predictor is 100%, i.e. it can be applied to all branches.

Heuristic Ave. Qual. Factor Ave. Qual. Factor

(Heur Only) (+ Rand Others)

Baseline 0.3775 N.A.

Random 0.6368 N.A.

S 0.8934 0.7959

SF 0.8934 0.7962

SFM 0.8954 0.8201

Dynamic 1.1097 N.A.

Table 4: Average Quality Factors of the Heuristics.

Table 4 shows the quality of the di�erent heuristics by means of a Quality Factor (of

using heuristic H on program Pj) de�ned as

Quality FactorH [Pj ] =
Weighted-Average-AccuracyH [Pj ]

Weighted-Average-AccuracyPSP[Pj ]

In comparing with results reported in the literature, we believe that the quality factor is

a better means of comparison. Even if the benchmarks used are the same, di�erences in

the data set used makes directly comparison of miss ratios meaningless.

From Table 3 and Table 4, we may draw the following observations:

1. Conditional branches are not symmetric. If a static strategy of predicting the `else'

branches as `taken', then our data suggest that one can achieve an accuracy of

0:7045(= 1:0 � 0:2955) on the average. We believe that this may be an artifact of

the way these particular programs were written and do not provide any convincing

proof for predicting all `else' branch as `taken'.

2. The random strategy pursued by Lowney et. al. [13] yields an accuracy better than

an expected 0.5 accuracy due to the asymmetry in the branches. A small number

14



of branches tend to be the ones that are executed most of the time. A random

predictor that happens to predict these correctly will get a higher overall score.

3. Heuristic SF adds little to the performance of Heuristic S. The reason can be seen as

follows. Take the example of fopen. If its return value is tested, then it is unlikely to

go to the branch in which the return value is zero as this indicates an error. However,

since in this error handling branch, error handling or reporting procedures, such as

fprintf(stderr,...) or perror, would be invoked. But these are already tested

for by Heuristics S. Thus the e�ectiveness of Heuristic SF is reduced.

4. Heuristic SFM performs signi�cantly better than Heuristic SF in 072.sc, a spread-

sheet program. The boundary of the spreadsheet is de�ned by a number of macro

variables pre�xed by `MAX' and `MIN' which were readily made use of by Heuristic

SFM.

5. When compared to the dynamic predictor, 008.espresso gives the worst performance.

We attribute this mainly to inlined procedures found in the source code. We are

not sure how these fragments were generated but they tend to use terse names for

variables. If this benchmark is ignored from the suite, then for both Spec 92 and

Spec 95, SFM (without randomizing those branches for which predictions were not

made) achieved an average of about 82% of the accuracy of the dynamic predictor.

The caveat is that the dynamic predictor is applicable to all branches.

6. Our best average quality factor of 0.89 (for SFM without randomizing those branches

for which predictions were not made) is about 15% better than the value of 0.774

reported by Ball and Larus[3] for its 5 integer Spec benchmarks.

7. Wagner et. al. [18] reported their static non-loop branch predictor, which is similar

to our Heuristic S, achieved a miss rate of about 2.2 times that of the perfect static

predictor or a quality factor of 0.80. Our SFM predictor's quality factor is 10%

higher.

In addition to being qualitatively better than the previous works, we should also point

out that

15



� Ball and Larus' prediction is performed on executable codes. This makes the pre-

diction unavailable at the compiler level.

� Wagner et. al.'s (non-loop) prediction, though a derivative of Ball and Larus' heuris-

tics, is done at the abstract syntax tree level. Still, information available at prior to

macro processing is not utilized. This, we showed, can help improve the accuracy of

the prediction and the number of branches over which prediction can be performed.

6 Discussion

It must be stressed that the proposed scheme is not meant to replace runtime dynamic

branch prediction. Instead, the aim is to get good approximation of branching behaviour

during compilation. This information is useful is several ways. Here are some examples:

1. Trace Selection. In trace scheduling compilers [13], the selection of good traces is

crucial to performance. The proposed schemes can aid in the selection process.

2. Software Data Prefetching.[14] Modern microprocessors have started to provide in-

structions for prefetching data into the cache. Aided by branching probabilities, a

compiler can better evaluate if data accesses in a basic block is worth prefetching.

3. Global Register Allocation. In many global register allocation algorithms, such as

the priority-based graph colouring approach [6], heuristics are used to weigh the

importance of virtual registers so that those that contribute to better performance

get allocated to physical registers. The availability of branching information would

increase the accuracy of such estimates.

4. Code Instrumentation. A new and popular form of code pro�ling and runtime infor-

mation gathering is code rewriting in which `witness' code are inserted into strategic

points of the target [2]. These witnesses capture the control ow of the program dur-

ing execution. As an optimization, instead of inserting instrumentation code into

every basic blocks, it is possible to insert witnesses into some less frequently executed

basic blocks and then reconstruct the control ow later. Again, our proposal may

be able to assist in identifying less frequently executed basic blocks.

16



5. Assist Hardware Branch Prediction. It may be possible that a software-hardware

approach be taken so as to improve the accuracy of branch prediction during run-

time. This remains a subject for further research [11]. In any case, we are now seeing

architectures that recognize the importance of branch prediction and the possibility

of software branch prediction. The SPARC version 9 [19] and the PowerPC [20] in-

struction sets are examples of modern superscalar architectures that have introduced

branch instructions with prediction bits.

As described in Section 4, the implementation of the testbed for our ideas was a

modi�cation (of no more than an estimated 5%) of the GNU C compiler, a production

quality compiler. The advantage of our approach is done very early in the compilation

process making branch prediction information available to nearly all passes in the back

end of the compiler. This makes it possible to use the information for the abovementioned

areas. What is required is a modi�ed macro preprocessor which basically notes down how

macro expansion was done so that names can be related to their expanded phrases, and

an additional pass before parsing. In this additional pass the entire source code �le is

scanned. Predictions are then made and the intermediate �le is `cleaned up' in such a

way that the actual parser can accept the input. Arrangements must be made for the

prediction information to be passed to the backend of the compiler. The degradation in

the speed of compilation, though not measured, was observably negligible in our testbed.

The approach taken in this paper is quite closely coupled to the Unix/C environment.

However, we believe that the general approach can be adapted to other operating systems

and programming environments. A contribution of this paper is to show the potentials of

source code level branch prediction.

7 Conclusion

In this paper, we proposed several heuristics for performing source level static branch pre-

diction and evaluated their performance against large C benchmarks. A number of source

level static branch prediction heuristics were proposed and studied in empirical experi-

ments. Performing static branch prediction at the source code level has the advantage of

17



permitting the inspection of names under the assumption that programmers employ names

(in macros and variables) that are indicative of the uses of the named data. Branch pre-

diction can then be performed in the front end of a compiler assuming such uses. The best

heuristic, i.e. SFM, is applicable 75% of the time and in the best case achieves an accuracy

that is 96% that of the dynamic predictor. We argue that this is evidence that even with

simple heuristics, good branch predictions can be obtained at compile time. It should be

emphasized that we are not arguing that static branch prediction should replace dynamic

ones. Rather, we believe that the heuristics proposed are straightforward to implement in

any compiler and should be helpful to many compilers in their optimization.

Acknowledgements

I would like to thank the anonymous referees for their many useful and incisive comments.

References

[1] S. Bandyopadhyay, V. S. Begwani, and R. B. Murray. (1987) Compiling for the CRISP

Microprocessor. Proc. of Compcon Spring '87. 96-100.

[2] T. Ball, and J. R. Larus. (1994) Optimally Pro�ling and Tracing Programs. ACM

Trans. on Prog. Lang. and Systems. 16-4. 1319-1360.

[3] T. Ball, and J. R. Larus. (1993) Branch Prediction for Free. Proc. of SIGPLAN '93

Conf. on Prog. Lang. Design and Impl. 300-313.

[4] B. Calder, D. Grunwald, D. Lindsay, J. Martin, M. Mozer, and B. Zorn. (1995)

Corpus-based Static Branch Prediction. Proc. of SIGPLAN '95 Conf. on Prog. Lang.

Design and Impl. 79-92.

[5] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and B.

Zorn. (1997) Evidence-Based Static Branch Prediction using Machine Learning. ACM

Trans. on Prog. Lang. and Systems. 19-1. 188-222.

18



[6] F. Chow and J. Hennessy. (1990) The Priority-based Coloring Approach to Register

Allocation. ACM Trans. on Prog. Lang. and Systems. 12-4. 501-536.

[7] H. G. Cragon. (1992) Branch Strategy Taxonomy and Performance Models. IEEE

Computer Society Press.

[8] Digital Equipment Corp. (1997) Digital Semiconductor 21164 Alpha Microprocessor

Hardware Reference Manual.

[9] D. R. Ditzel, and H. R. McLellan. (1987) Branch Folding in the CRISP Microproces-

sor: Reducing Branch Delay to Zero. Proc. of 14th Int'l Symp. on Computer Arch.

2-9.

[10] J. A. Fisher, and S. M. Freudenberger. (1992) Predicting conditional branch directions

from previous runs of a program. Proc. of 5th ASPLOS. 85-95.

[11] D. Grunwald, D. Lindsay, and B. Zorn. (1998) Static Methods in Hybrid Branch

Prediction. Proc. of Int'l Conf. on Parallel Architectures and Compilation Techniques.

http://www.cs.colorado.edu/ grunwald/Papers/PACT98-StaticHybrid.

[12] J. K. F. Lee, and A. J. Smith. (1984) Branch Prediction Strategies and Branch Target

Bu�er Design. IEEE Computer. 21-1. 6-22.

[13] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J.

S. O'Donell, and J. C. Ruttenberg. (1993) The Multiow Trace Scheduling Compiler.

J. of Supercomputing. 7-1. 51-142.

[14] C-K. Luk, and T.C. Mowry. (1996) Compiler-Based Prefetching for Recursive Data

Structures. Proc. of 7th ASPLOS. 222-233.

[15] S. McFarling. (1993) Combining Branch Predictors. Digital WRL Technical Note

TN-36.

[16] J. E. Smith. (1981) A Study of Branch Prediction Strategies. Proc. of 8th Int'l Symp.

on Computer Architecture. 135-148.

19



[17] D. W. Wall. (1991) Predicting program behavior using real or estimated pro�les.

Proc. of SIGPLAN '91 Conf. on Prog. Lang. Design and Impl. 59-70.

[18] T. A. Wagner, V. Maverick, S. L. Graham, and M. A. Harrison. (1994) Accurate

Static Estimators for Program Optimization. Proc. of SIGPLAN '94 Conf. on Prog.

Lang. Design and Impl. 85-106.

[19] D. L. Weaver, and T. Germond. (1994) The SPARC Architecture Manual - Version

9. Prentice-Hall.

[20] S. Weiss, and J. E. Smith. (1994)Power and PowerPC. Morgan Kaufmann Publishers,

Inc.

[21] Y. Wu, and J. R. Larus. (1994) Static Branch Frequency and Program Pro�le Anal-

ysis. Proc. of MICRO-27. 1-11.

20


