Tritanium: Augmenting the Trimaran Compiler
Infrastructure To Suppor t IA-64 Code Generation

Yogesh Chobe, Bhagi Narahari, Rahul
Simha
Department of Computer Science
The George Washington University
Washington DC 20052

{ylchobe, narahari, simha}@seas.gwu.edu

ABSTRACT

This paper describes Tritanium, an on-going project to en-
hance compiler optimization tools for Explicitly Parallel In-
struction Computing (EPIC) architectures, in particular,
the Intel’s TA-64 Itanium processor [1]. The project we
describe involves augmenting a popular research compiler
suite, the Trimaran compiler infrastructure [3], with the ca-
pability to generate IA-64 code so that its well-documented
capabilities can be used to explore compiler optimizations by
testing the resulting code directly on the IA-64 processor.
We have validated the tool with preliminary SPEC-based
results that show performance comparable with gcc and sg-
icc; this suggests that the tool can be used for exploring and
testing compiler optimizations to improve performance.

1. INTRODUCTION

In this paper, we describe the Tritanium (Trimaran for Ita-
nium) project: an effort to enhance the Trimaran research
compiler to produce code for the IA-64 EPIC processor.
Since EPIC processors rely strongly on the compiler to ex-
tract instruction-level parallelism [8], an infrastructure that
provides the ability to experiment with compiler optimiza-
tions helps compiler-writers save time in algorithm develop-
ment. The Trimaran compiler suite is one such popular re-
search compiler that allows experimentation at three levels:
front-end compiler techniques (for example, loop unrolling,
program transformations, etc), back-end resource optimiza-
tions (for example, scheduling and register allocation), and
architectural exploration (for example, changing the num-
ber of registers, etc) [3]. Unfortunately, the architecture
for which Trimaran was developed (a precursor to IA-64)
was not realized in hardware and remains inside Trimaran’s
simulator. Therefore, it is difficult to obtain realistic mea-
surements. We believe the compiler community, in partic-
ular, the growing Trimaran community, would benefit from
the ability to have the tools generate code directly for the

Weng-Fai Wong
Department of Computer Science
National University of Singapore
3, Science Drive 2
Singapore 117543

wongwf@comp.nus.edu.sg

TA-64.

The importance of tools such as Trimaran and Tritanium is
well-established. EPIC architectures, including the IA-64,
provide hardware features that have the potential to exploit
high levels of Instruction Level Parallelism (ILP). Because
EPIC processors rely heavily on the compiler to extract par-
allelism and perform instruction scheduling, the compiler is
now the focus of experimentation in optimization strategies.
Since experimentation requires easy access to the internals
of the compiler and the ability to measure performance at
various stages of the compiler process, Trimaran also con-
sists of a full suite of analysis and optimization modules,
as well as a graph-based intermediate language. Optimiza-
tions and analysis modules can be easily added, changed
or bypassed, thus facilitating highly targeted compiler opti-
mization research.

This paper describes the design issues involved in extend-
ing and modifying the Trimaran Infrastructure to gener-
ate code for the Itanium processor. These include using
the hardware-description langugage of Trimaran (MDES)
to support Itanium, providing a code-generator and han-
dling issues specific to IA-64 in the compiler front-end. The
performance of the Tritanium is being evaluated by compar-
ing its performance to that provided by gcc and sgicc on a
number of benchmarks. Current results include some of the
SPEC benchmarks with work going on to make the compiler
robust enough for more. These results indicate that the Tri-
tanium infrastructure produces code whose performance is
comparable to that produced by gcc and sgicc.

2. TRIMARAN - A BRIEF DESCRIPTION

Trimaran consists of the following components.

e An architecture description language called MDES [5][6]
to describe the target processor.

e A compiler front-end for the C programming language,
called IMPACT, which performs parsing, type check-
ing and a large suite of high-level (i.e. machine inde-
pendent) classical and ILP optimizations.

e A compiler back-end, called Elcor, parameterized by a
machine description, that performs instruction schedul-
ing, register allocation, and machine-dependent opti-
mizations.

e An extensible IR (intermediate program representa-
tion) that has both an internal and textual representa-
tion (called Rebel), with conversion routines between
the two. This IR supports modern compiler techniques
by representing control flow, data and control depen-
dence, and many other attributes.

e A cycle-level simulator of the HPL-PD architecture,
which is configurable by a machine description and

provides run-time information on execution time, branch

frequencies, and resource utilization. This information
can be used for profile-driven optimizations as well as
to provide validation of new optimizations.

e An integrated Graphical User Interface (GUI) for con-
figuring and running the Trimaran system. Included
in the GUI are tools for the graphical visualization
of the program intermediate representation and of the
performance results.

Trimaran allows various optimization modules to be inserted
into the optimization path; thus providing researchers with
an infrastructure with which to test compiler optimization
algorithms on the HPL-PD architecture. For example, re-
searchers can test a new register allocation algorithm by re-
placing the built-in register allocation module with their al-
gorithm. The proposed Tritanium infrastructure, as a result
of it being developed on top of the Trimaran infrastructure,
provides the same flexibility and thus allows researchers to
test their optimization algorithms on the Itanium/IA-64 ar-
chitecture.

3. 1A-64 OVERIEW

The Intel Itanium is an IA-64 EPIC architecture with a 64
bit processor supporting most of the EPIC features provided
in HPL-PD [1] [7]. However, there are some major differ-
ences between the two architectures. For example, Itanium
does not provide a division instruction and has a different
register stack engine. Besides this, other differences include
the 32 bit addressing of HPLPD and the 64 bit address-
ing of the IA-64 processor. In summary, the IA-64 sup-
ports features such as two system environments (32 and 64
bit modes), hardware support for speculation (control and
data), predication, and rotating registers. In addition to
predication, the compiler can use branch predict instructions
which can communicate early indication of target address.
TIA-64 avoids the unnecessary spilling and filling of regis-
ters at procedure call and return interfaces through compiler
controlled register renaming. Compiler optimizations which
utilize these EPIC features can be developed and tested on
Trimaran for the HPL-PD and on the Itanium processor
using our proposed augmentation- Tritanium.

4. DESIGN AND IMPLEMENT ATION OF
TRIT ANIUM- AN OVERVIEW

Tritanium has been implemented by writing a back end code
generator module that accepts Elcor output and writes out
the TA-64 assembly file. The tasks involved in the implemen-
tation of Tritanium also required changes to other existing
modules in Trimaran as listed below:

o Creating a hardware description of IA-64 in MDES.
The Trimaran Infrastructure uses MDES, a high-level

machine description language, to describe the target
processor. The IA-64 had to be described as a first step
towards retargeting the compiler for IA-64. The num-
ber of registers, number of functional units and their
latencies had to be described. Operations that had
characteristics different from HPL PD were described
in the modified Elcor file along with some changes to
follow the runtime conventions of TA-64.

e Changes to IMPACT (the front-end) to support the
runtime conventions of IA-64 and branch semantics.
Impact is the front end compiler in Trimaran that per-
forms machine independent optimizations prior to re-
source allocation. Changes were made to the instruc-
tion selection module to generate code that can be
mapped to the IA-64 processor. The runtime conven-
tions of the IA-64 for parameter passing also had to
be built into this stage.

e Supporting the rotating registers of the IA-64 in Elcor
(the back-end). HPL-PD assumes a separate set of ro-
tating registers from regular registers. This is not true
for the IA-64. Hence in the post-processing phase of
modulo scheduling, the current predicate registers are
saved before rotating. In Elcor, two registers are con-
sidered equal even if one is rotating and other is not.
However, this is not the case in IA-64 and therefore af-
fects the correctness of dependency inferences and the
correctness of scheduling. Hence changes were made
to distinguish between them.

e Supporting instructions that don’t have hardware im-
plementation on the IA-64. We included code to re-
place instructions such as DIV and MOD, which do
not have hardware implemention on the IA-64 by gen-
erating the appropriate routines to perform such oper-
ations at the instruction selection phase in IMPACT.

e The IA-64 code generator module. The output gener-
ated from Elcor is similar to IA-64 code, but is still in
the syntactical representation of HPL-PD. This out-
put was transformed to the IA-64 assembly file by
the Code generator module. Essentially, the code gen-
erator module maps the HPL-PD instructions to the
equivalent TA-64 instructions.

5. VALID ATION OF TRIT ANIUM

The Tritanium system was validated initially using the NUE
[2] (Native User Environment) Simulator from HP and later
using an Itanium SDV machine provided by Intel Corpo-
ration. The following Benchmarks / Test Suites were used
while developing Tritanium to test the implementation va-
lidity of the compiler.

1. Trimaran Test Suite: The test programs that came
with Trimaran were the initial targets for the compiler.
This suite includes small programs that test different
aspects of the compiler and various aspects of the lan-
guage.

2. SPEC Benchmarks: Spec (The Standard Performance
Evaluation Corporation) is the publisher of benchmark
suites that aim to provide a standardized set of rele-
vant benchmarks that can be applied to obtain a per-
formance evaluation of architectures.

ECC L1 Instruction Cache LB IA-32 E
Branch Fetch/Pre-fetch Engine Decode :

Prediction 8 Bundles and E

Control |

gissue |B|B B HEEENEE f

T RN RN |

Register Stack Engine f

1
Branch, Predicat¢
Regi sters

L2 Cache
]
-~
|

-

128 FP Registers

L3 Cache

| S|
Y

Integer
MM
Units

Branch
Units

ﬁ«

Floating

o
o
ALAT

Point

Units

Scoreboard, Predicate
NaTs, Exceptions

Figure 1: Block Diagram of Itanium Processor

3. MediaBench: MediaBench is a suite of benchmarks
from UCLA, which is provided as a tool for evaluat-
ing and synthesizing multimedia, and communication
systems.

4. DIS: The Data Intensive Systems Benchmark Suite de-
veloped by the Atlantic Aerospace Electronics Corpo-
ration and the Boeing company and ERIM Int. Inc.

5. Olden: The benchmark suite from Princeton which
was used to test Olden, which is the language and run-
time system for parallelizing programs using dynamic
data structures.

Currently, we have not completed testing of all the programs
in the benchmarks suites but anticipate completion incre-
mentally as the infrastructure is released. The list of cur-
rently validated benchmarks will be available at the Trita-
nium website [4]. The performance of the code generated by
the Tritanium infrastructure (using the optimization mod-
ules currently available in Trimaran) for some test programs
is presented in the table below. As the table shows, the per-
formance of Tritanium is comparable to gcc with the current
implementation, which has not yet been tuned for perfor-
mance. With further work on tuning, which will include
some basic required additions like support for superblock
and hyper block region formation, due to which we expect
an improvement in performance.

For the performance table above, we compiled the programs
using gece with the -O3 option and sgicc with the -O3 option.
These options correspond to the full range of optimizations

Table 1: Performance Comparison of Tritanium

Test Program | Tritanium | gcc | sgicc
052.alvinn 115 117 | 100
022.1i 102 100 | 101
026.compress 112 110 | 100
124.m88ksim 108 116 | 100

provided by these compilers - for example, sgicc in the -O3
option forms hyperblock regions. In constrast, the Trita-
nium compiler was used with the basic block region forma-
tion option. At the time of running the tests, the superblock
and hyperblock region formation techniques were not stable
enough (for IA-64 code) to be included in the tests. The
numbers in the table are based on the execution times on
the Intel Itanium SDV. The entries in the table show the
relative performance of the compilers, on each benchmark
application, and not the absolute execution time of the pro-
grams. The numbers in the table were obtained by dividing
all the execution times with the least execution time of that
program - the lowest execution time was almost always ob-
tained with sgicc and thus the sgicc performance has been
normalized to 100%.

6. CONCLUSIONS AND FUTURE WORK

The Tritanium infrastructure will allow compiler researchers
to develop, test, and validate ILP optimization techniques
by examining performance of their techniques on the Ita-
nium processor. Currently, we have been able to compile a
number of small programs and some applications from var-

ious benchmark suites using the base set of optimizations
provided in Trimaran. The generated code, inspite of using
some conservative optimizations, shows performance compa-
rable to other compilers like gcc. We expect to support the
full range of region formation methods, such as superblock
and hyperblock, soon. In addition, enhancements to Trita-
nium will include some basic required additions such as sup-
port for compiling varargs functions, and additions of some
unimplemented instructions. While the initial phase of Tri-
tanium development involved generating correct code and
making the compiler compliant with the standard bench-
marks, the next phase involves performance tuning of the
compiler.

7. ACKNOWLEDGMENTS

The authors would like to thank Intel Corp for the Itanium
SDV machine given to The George Washington University.
The authors would also like to thank Aakash Kambuj, for-
marly at National University of Singapore for his contribu-
tions in the initial implementation of Tritanium.

8. REFERENCES

[1] The itanium architecture manuals.
hittp://developer.intel.com/design/itanium/manuals/index. htm.

[2] Nue, ia-64 simulator. www.software.hp.com /ia64linuz.
[3] Trimaran web site. www.trimaran.org.

[4] Tritanium web site. www.seas.gwu.edu/fri and
www. seas. gwu. edu/Glchobe /tritanium. hitml.

[5] S. Aditya, V. Kathail, and B. R. Rau. Elcor’s machine
description system: Version3.0. HPL Technical Report
HPL-98-128. Hewlett-Packard Laboratories, July 1998.

[6] J. C. Gyllenhaal, W. m. W. Hwu, and B. R. Rau.
Hmdes version 2.0 specification. Technical Report
IMPACT-96-3. University of Illinois at
Urbana- Champaign, 1996.

[7] V. Kathail, M. Schlansker, and B. R. Rau. Hpl-pd
architecture specification:version 1.1. HPL Technical
Report HPL-93-80 (R.1). Hewlett-Packard
Laboratories, February 1994.

[8] M. Schlansker and B. R. Rau. Epic: An architecture for
instruction-level parallel processors. HPL Technical
Report HPL-1999-111. Hewlett-Packard Laboratories,
February 2000.

