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ABSTRACT
Home-based consistency model, a variant of lazy release
consistency model (LRC), is a recent development in the
DSM field that has open out many areas for further research
and development. In this paper, we present 2 adaptive
schemes for home-based DSM systems: home migration and
dynamic adaptation between write-invalidation and write-
update protocols. The two fully automatic schemes are in
line with our objective of building an adaptive DSM system
that involves minimal user intervention and yet delivers good
performances. We shall present evidence of this by doing a
performance evaluation of the two proposed schemes in our
software DSM system Orion.
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1. INTRODUCTION
The advent of multiple writer lazy release consistency (LRC)
[3][10] was a major milestone in the development of
software distributed shared memory. Since then a good
number of variants have appeared. The major challenge
facing software DSM is the cost of network communication
necessitated by the protocol as well as induced by false
sharing. Basically, the cost of network communication can be
broken down into two factors:

•  the number of messages transacted;

•  the amount of data transferred

Of the two, the former is more costly in terms of performance
loss. To these we can add a third – the timeliness of data.
Software DSMs rely on the use of signal handling
mechanisms that are costly. If data is available when it is
needed, this can be reduced.

This probably explain why in certain applications, write
update protocol will perform better than the write invalidate
protocol even if more data is transferred.

One of the important variant of LRC is the home-based
LRC (HLRC) [1][12]. Unlike the traditional LRC model
(which we shall from now on referred to simply as “LRC”),
each page in a HLRC has an assigned home. The main
advantage of HLRC over LRC is that after communicating
diffs to the homes, they can be discarded. In contrast, LRC
needs to use an aging mechanism to ensure that diffs do not
occupy too much storage. LRC, on the other hand, do not
need communicate diffs to the homes thereby potentially
reducing communication.

Published data have shown that for certain applications
LRC performs better than HLRC [4] while for some other
applications, the reverse is true [2]. The main cause for this
difference is the differences in the memory access patterns
(MAP) exhibited by the applications in question. This points
to the need to adapt the protocol to better suit the needs of
the applications. Many automatic adaptive schemes
[5,6,7,8,9,10,11] have been proposed. These include
adaptation between single-writer and multiple-writer
protocols, adaptation between write-invalidate and write-
update protocols, and even process/thread migration.

HLRC exhibited an important feature that aids
adaptation. The homes of pages serve as a natural point from
which access pattern information for the pages can be
collected. In this paper, we shall focus on taking advantage
of this feature. Probably the closest to the adaptive schemes
we shall propose is the adaptive migratory scheme proposed
by Kim and Vaidya [5]. Their scheme allows each process to
independently choose one of the three protocols: migratory,
invalidate and competitive update. While their proposals are
for general DSM systems, ours are targeted specifically at
HLRC by taking advantage of memory access information
collection at the home sites. In the rest of the paper, we shall
outline our proposals and present some experimental data on
their effectiveness.

2. ADAPTIVE PROTOCOLS FOR
HLRC DSM SYSTEMS
The choice of the home sites for each page is crucial to
performance. Some HLRC systems allow the users to specify
how the homes should be distributed before execution. This
strategy depends on the user’s expertise and the static nature
of the application’s memory references. This points to the
need for good initial home placements and dynamic
adaptation.



There are two possible ways to solve the initial home
assignment – through user intervention or by means of
compiler inference. The latter remains an area for active
research. It is the issue of dynamic home placement and
migration that we wish to explore. In most modern scientific
applications, repetitions or loops of codes are common. This
makes the MAP fairly predictable. Hence, knowing when
and which process will need the data will contribute to better
data distribution and better performance. For shared pages,
there can be multiple producers that produces some data
shared by either zero, one or many consumers (i.e. demand).
We limit our discussion here to one producer. If this supply-

and-demand MAP is kept stable, adaptive schemes can easily
be formulated. We have categorized the MAP of an
application from the producer’s point of view into 4 main
groups:

i) zero consumer,

ii) one persistent consumer,

iii) multiple persistent consumer, and

iv) non persistent consumer

Based on these 4 groups of MAPs, we have developed 2
adaptive schemes for HLRC.

Events

RUC of page k PAC of page k Page k access permission Page request
sampling period

Conditions &
actions

1 Local access
detection (process
0)

Reset all
elements to 0

Increment PAC[0]

by 1
Change page access
permission

Increment by 1 NA

2 Remote diffs
update by process
M (M≠0)

Increment
RUC[M] by 1

NA Set page access
permission to
inaccessible (to detect
local access)

NA If RUC[M] exceeds
HMTL, event 4 is
triggered off.

3 Page request by
process M

(M≠0)

NA Increment PAC[M]

by 1
NA Increment by 1 If sampling period

ends, event 5 is
triggered off.

4 Home migration Reset all
elements to 0

NA Remove read protection NA Home is migrated to
process M

5 Write protocol
switch and home
migration
evaluation

NA Resets all elements
to 0 after evaluation

NA Reset page
request sampling
period to 0 after
evaluation

If PAC[0] is non-zero
and PAC[M] exceeds
WPTL, include
process M is partial
update list.

If PAC[0]=0 and
PAC[M] exceeds
HMTL, migrate
home to process
M(only one non-zero
PAC value).

Table 1: System statistics and events

2.1  System Statistics and Parameters
The MAP monitoring procedure, performed at the home
process, primarily involves keeping track of some system
statistics. The statistics involved in the adaptive actions
decision-making process are:

•  Remote update count (RUC) for each page. It is an array
in which each element, k, keeps track of the number of
times process k’s updates have been received since the
last local access at home.

•  Page access count (PAC) for each memory page. PAC
includes both local and external access. An external
access refers to the remote request for a fresh copy of a
page from the home. It is an array with each element
pertaining to each remote process.

To detect read operation in the page that is based locally
involves additional steps in a traditional DSM system.
Typically in a home-based DSM system, pages based locally
can either be write-protected or read/write accessible.
However, to detect local access for once, the ‘home’ page
has to be made totally inaccessible. The system parameters
include:

•  Page request sampling period for each memory page.
Within this sampling period, the PAC of each page is
accumulated upon each page request. If the period is set
as Y, then the Yth page request is considered the end of a
period and PAC is reset. Local access is also considered
a page request.

•  Home migration triggering limit (HMTL). This is the
limit set to kick off the home migration adaptive action.



•  Write protocol switch triggering limit (WPTL). This is
the limit set to activate the write protocol switch
adaptive action.

Table 1 shows a tabular summary of the collection of
system information and the conditions that trigger off the
adaptive actions. Assume that the events are happening to
page k whose home is process 0. Note that resetting RUC is
essentially to deter unnecessary and extensive home
migration.

2.2  Home Migration
It is quite obvious that the HLRC has one serious
shortcoming. That is the choice of home for a page. If the
initial choice is not good, time and network bandwidth will
be wasted. Hence, some DSM systems like home-based
Treadmarks do allow the users to specify how the homes
should be distributed before execution. It would be even
more desirable if the home assignment is automatic and
changeable during execution. In designing an efficient
HLRC, there are 2 things that we should avoid. They are
firstly improper initial home assignment, and secondly static
home assignment.

Improper initial home assignment may be sufficiently
solved with the help of the user who can specify how homes
should be assigned for the start. Yet, the greater hurdle to be
overcome is dynamic adaptation to the changing MAP of an
application during execution. Static home assignment is
never ideal for such an application, and so the solution is
home migration.

Home migration is one adaptive scheme that reduces
unnecessary network traffic. By monitoring the MAP, we can
make intelligent guess of which pages are frequently or
seldom fetched by other processes.

2.3 Dynamic Adaptation Between WI and
Partial WU protocols
Write protocol switch is an adaptive scheme that improves
the timeliness of data availability. It aims at reducing the
time spent on waiting for a page to come in from home.

HLRC sends out invalidation messages after diffs are
settled at their homes. Note that diffs are simply updates and
it is just a convenient extension of the consistency model by
sending diffs to all process. Subsequent invalidation
messages should therefore exclude pages that are maintained
by WU protocol. The question is when to make such a
switch. In one of our schemes, if more than 50% of the total
number of collaborating processes are in need of that page
and each of the non-zero PAC elements exceeds an
experimental threshold value (WPTL), then WU protocol is
adopted for that page.

We subsequently improved performance further by the
introduction of partial write update (PWU) protocol.
Switching from WI to full WU under the stringent conditions
stated above may potentially forgo some opportunities to
reduce data transferred. On the other hand, without the
stringent conditions, excessive protocol switches can happen.
To work around this problem, we use PWU protocol in place
of full WU protocol. PWU protocol allows some processes to
be updated simultaneously with the home. Therefore, we can

relax the condition or parameter that triggers off a protocol
switch. A protocol switch occurs when the percentage of
PAC by one process, within a sampling period, exceeds a
threshold level. This process will be included in an update
list that is broadcast to every process. This approach also
eliminates sending unnecessary page updates to processes to
do not require them in full WU protocol. Note that full WU
protocol is actually a subset of partial WU protocol and
hence, if the page is not maintained in full WU protocol, it
should be included in the invalidation messages as well.

Switching the write protocol of a page from partial WU
protocol back to WI protocol is easy. The non-trivial part is
deciding when to do it. When a page is in partial WU
protocol, processes in the update list do not go to the home
to fetch the page anymore, and as such the home does not
have enough information to decide if the write protocol of
the page should go back to WI. One possible way is the
home periodically solicits the local access count (LAC) of a
page from other processes. To facilitate local access
detection, the pages maintained in partial WU protocol have
to be made read-protected as well each time new diffs are
applied. Based on the LACs, the home then decides if the
write protocol of the page should be changed. If more than
50% of the participated processes have low LACs, then it
may warrant for a write protocol change.

HLRC naturally supports partial WU protocol because
there is always a home that processes can always rely on for
updated versions of pages, and the mandatory send-diffs-and-
forget feature during synchronization serve as a foundation
for full or partial WU protocol.

2.4 One Producer-Zero Consumer MAP
As an illustration, suppose there are 4 processes and process
0 keeps writing to page X. The home of page X is process 2.
Each time it reaches a synchronization point, diffs are sent to
process 2 but page X is never or seldom fetched by other
processes (including process 2 itself).

Figure 1: One producer-zero consumer MAP

Clearly, sending diffs of page X from process 0 to process 2
is unproductive. Process 2 can decide to shift the home for
page X to process 0 if RUC[2] of page X exceeds HMTL (i.e.
in our system this value is set to 3). Shifting the home to
process 1 thus results in lesser redundant network
communication.



This MAP is commonly found in applications like SOR
in which one process only uses some ’edge’ values among the
blocks of values computed by other process.

2.5 One Producer-One Persistent
Consumer MAP
Consider a slightly different scenario where process 3
persistently requests for fresh copies of page X from process
2. Process 2, which does not need diffs from process 0, acts
as a buffering zone. Based on the high PAC[3] (i.e. the zero-
based PAC value for process 3) and zero PAC[home] (i.e. the
PAC value for home) for page X, process 2 decides to shift
the home of process 3.

Figure 2: One producer-one persistent consumer MAP

2.6 One Producer-Multiple Persistent
Consumer MAP
The one producer-multiple persistent consumer (i.e. more
than 1 persistent consumers) MAP should be tackled by
dynamic adaptation between WI and full WU protocols since
home migration is not suitable in this case.

Figure 3: One producer-multiple persistent consumer MAP

Figure 3 shows the scenario where process 0 is the producer
while the other processes are consumers. In this case, we
make a switch to full WU based on the heuristics described
earlier.

2.7 One Producer-Non Persistent
Consumer MAP
Lastly, the recommended approach for dealing with the
situation of one producer-non persistent consumer is not to
do anything, i.e. maintain the page in WI protocol. In fact,
this approach is inherently built-in when the system
periodically evaluates whether the page should be maintained
in WI or partial WU protocol based on the PAC elements of
the remote processes. Since most consumers or processes do
not consistently request for the page, the average PAC
elements will be low. Therefore, no change of write protocol
is necessary.

3. IMPLEMENTATIONS
In this section, we describe how to implement the 2 adaptive
schemes in a safe manner.

3.1 Home Migration Procedure
When a process decides to shift the home of a page from
itself to another process, it sends the entire page with the
latest version number to the new home. Any outstanding
update messages or page request messages should also be
forwarded to the new home during this transient period.
Hence, it is possible that the new home may receive diffs or
page request sent by itself earlier on. The new home upon
receiving the entire page from the old home overwrites its
local copy if the page is not in read/write accessible state. If
it is in the read/write accessible state, it should first extract
diffs and adds an entry to the list of modified pages for
invalidation purpose before overwriting. The page version
number is set to the one given by the old home. The diffs are
then applied back to the page as if they were from the remote
processes. As usual, any application of diff to the page at
home causes the version number to be incremented. The page
is then made read-only. As mentioned earlier, the new home
may receive the page request message that it sent out. This
can be ignored safely. The next thing is to broadcast to every
process to declare that it is currently the new home for that
page and hence, the old home does not need to forward
messages anymore. This completes the home migration
procedure.

The least total number of messages involved in this
migration procedure is n-1, where n is the total numbers of
processes involved. The first message is from the old home
to the new home, and the n-2 messages to processes other
than the old home. The assumption is that there are no
outstanding messages directed toward the old home.

3.2 Write Protocol Switch Procedure
When the home of a page decides to switch from WI
protocol to partial WU protocol, it should inform all
processes to block any access to the particular page. This
may be mistaken for accessing an invalidated page. Hence,
there should be indication to tell the process to treat this page
fault differently. The typical way is to ignore it until the
adaptation procedure is complete. Processes receiving the
’freeze’ command from the home proceeds to make the page
inaccessible and then returns an acknowledgement to home.
The message also contains the list of processes in the update
list. Note that all processes should still be free to accept and



service any requests so as to prevent deadlock. If this is not
observed, simultaneous adaptation processes initiated by
different processes may cause a deadlock. When the home
receives acknowledgements from n-1 process, where n is the
number of collaborating processes, it can conclude that there
is no outstanding messages in the network relating to that
particular page. The home then sends the entire page to the
new members of the update list. The new members then
overwrite its local copy if its copy is not in read/write
accessible state. If not, it would extract the diffs before
overwriting. The diffs are then applied back. The access
permission of the page should remain the same before and
after the procedure completes. Finally the new members will
send back acknowledgement to the home, which then
broadcast messages to ’unfreeze’ the remote copies. This
completes the entire procedure of write protocol switch from
WI to WU.

The total number of messages involved during the
procedure is given as 3(n-1)+2m, where m is the number of
new members (i.e. m<n). Since m is at most n-1, the
maximum number of messages is 5(n-1). Therefore, it is
obvious that it is an expensive operation and decision to
perform a write protocol switch must be done carefully. Note
that there is no need to maintain version number if the
process is in the update list.

To switch from partial WU to WI protocol, the home
sends ’freeze’ messages to all processes. In response, the
processes, whether they are members in the update list or not,
must extract diffs and send them together with the
acknowledgement message back home. At the same time,
they may clear the page entry in the list of modified pages to
prevent unnecessary invalidation subsequently. Upon
receiving all diffs and acknowledgements, the home can
conclude that it has the latest version of the page and no
outstanding update messages are still in the network. During
the transient period, external page request can be ignored.
The home may reset its version number and sends ’unfreeze’
messages along with a fresh copy of the page to all processes
to continue. When the process completes, all processes
should have a new version number and possess the latest
copy of the page in read-only state. This procedure involves
3(n-1) messages.

4. THE EXPERIMENTS
We have tested the proposed schemes using our home-based
multithreaded software DSM named Orion. Eight
benchmarks were used. Barnes-Hut, 3D-FFT and Water are
from the SPLASH [13] suite while SOR, GAUSS, IS, CG
and MGS are some of the widely used benchmarks in the
software DSM community.  The data sizes used and some
interesting statistics about the benchmarks are shown in
Tables 2 and 3.

The hardware platform on which the benchmarking
process is carried out is Fujitsu AP3000. It currently supports
32 nodes and each node has a 143-MHz UltraSparc
processor. The nodes are connected via a high speed
network, APNet. In our benchmarking process, 4 nodes were
used.

The software DSM system, Orion, is a home-based
DSM system designed to provide POSIX-thread like API to
users. The aim is to facilitate the porting of pthread programs
to a distributed system. Currently, it provides approximately
50% of pthread’s functionalities. Orion was built on MPICH,
the public domain message passing interface (MPI) library
from Argonne National Lab [20, 21].

The main objective of this benchmarking process is to
verify and to show how well the two adaptive schemes can
improve the performance.  The process does not involve any
user intervention in providing clues for the DSM system in
initial home assignment. The initial home assignment is
round-robin assignment.

Applications Size

(# of iterations)

Synchronization
point

SOR 1024X2048
(100)

201 barriers

GAUSS 1024X1024

(1024)

1026 barriers

FFT 64X64X64

(10)

24 barriers

IS 22X16

(50)

250 barriers

WATER 512

(10)

73 barriers

15440 locks

BARNES-HUT 8192 20 barriers

MGS 64X64X64

(5)

124 barriers

CG 14KX14K

(10)

792 barriers

Table 2: Sizes and iterations of benchmarks

Applications

(executed
without
adaptive
actions)

Execution
time (sec)

Amount
of data
transfer
red
(MB)

No. of
msg

No. of
page
request

SOR 334.008 59 175762 1824

GAUSS 2083.563 670 225399 5513

FFT 133.220 112 18951 4898

IS 201.966 108 24992 8698

WATER 332.490 27 152138 2998

BARNES-HUT 52.760 32 12733 4227

MGS 80.250 50 13729 1477

CG 259.877 90 30779 10615

Table 3: Statistics of benchmarks executed without adaptive
actions



4.1 Results
Table 4 summarizes the main performance results of the
proposed scheme. As can be seen, compared to the basic
home-based DSM system without adaptive action, a speedup
ranging from 12% to 94% was observed. Table 5 reports the
adaptive actions taken for each benchmark. Figures 4 to 11
shows the number of external requests for every page in each
of the eight benchmarks. These requests necessitate network
activity as they call for remote page fetches. This is an
important characterization of the memory access pattern of
each of the benchmarks.

Applications

(executed
with

adaptive
actions)

Speedup
(%)

Reduction
in data

transacted
(%)

Reduct.
in no.
of msg

(%)

Reduct.
in

external
page

request
(%)

SOR 58 93 86 38

GAUSS 94 99 88 20

FFT 30 38 -19 -2

IS 21 -31 3 74

WATER 12 26 -7 67

BARNES-
HUT

27 -3 -65 15

MGS 59 66 51 11

CG 46 3 17 91

Table 4: Performance results of benchmarks executed with
adaptive actions

Applications

(executed with
adaptive actions)

No. of home
migration

No. of write
protocol switch

SOR 774 9

GAUSS 390 3

FFT 1079 481

IS 31 60

WATER 221 83

BARNES-HUT 135 284

MGS 493 22

CG 13 37

Table 5: Adaptive actions taken during benchmark execution

Figure 4: SOR external page request graph

Figure 5: GAUSS external page request graph

Figure 6: FFT external page request graph

Figure 7: IS external page request graph



Figure 8: WATER external page request graph

Figure 9: Barnes-Hut external page request graph

Figure 10: MGS external page request graph

Figure 11: CG external page request graph

In the case of SOR, GAUSS and MGS, reductions in the
overall network traffic brought on the expected speedups.
However, FFT and IS are also achieving better performance
despite increases in amount of data transferred, number of
transacted messages, or number of external page requests. In
general, a reduction in network traffic should give rise to
better performance, but the converse may not be true. Time
spent on waiting for diffs or pages can substantially be
reduced if they are already available when they are needed.
This is the key rationale for page and diff prefetching
techniques. The dynamic write protocol adaptation scheme
we propose can potentially increase network traffic, as is the
case for write update protocols. The primary aim of this
adaptation is to reduce external page request. However, this
was not the case in FFT, which actually incurs 2% more of
external page request.  The amount of data transferred
reduces by 38% while there are more messages. We attribute
this to excessive home migration, a total of 1079 migrations
over 1470 pages, leading to more page requests. Admittedly,
our understanding of the various key parameters that triggers
adaptation is still weak and is a focus of our future work. In
any case, FFT still achieved a 30% speedup probably due to
the fact that the savings from reducing the amount of data
transferred exceeded the cost of the additional messages.

5. CONCLUSION
In this paper, we presented two dynamic adaptive schemes
for home-based software distributed shared memory system.
They take advantage of the fact that the home of a page is a
natural point to maintain memory access pattern information
regarding individual pages. Using this information, pages can
migrate to new homes dynamically. The second scheme
supports partial write-update protocol. For the same page, on
those nodes where the page is accessed frequently, the write-
update protocol is used, whereas on the others the initial
write-invalidate protocol is maintained. Our experiments
show that the proposed schemes can effectively reduce the
number of external page requests thereby reducing network
communication overheads. The proposed schemes are
general and can be implemented on any home-based software
DSM.
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